Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys....

22
Gravitational Casimir Effect JAMES Q. QUACH Quach, PRL 114, 081104 (2015)

Transcript of Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys....

Page 1: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Gravitational Casimir EffectJAMES Q. QUACH

Quach, PRL 114, 081104 (2015)

Page 2: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Hendrik Casimir (1948)

𝑃𝐼 𝑎 = −𝜋2

240ℏ𝑐𝑎4

𝐸𝑛 = ℏ𝜔(𝑛 +12)

𝐸0 =ℏ𝜔2

Casimir Effect

Page 3: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

�Motivation�Gravitational Casimir Effect

�Ordinary Materials�Superconductors

Outline

Page 4: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

QM & GR Interface

Hawking Radiation

Detectors

BA

DC

T

g

COW Experiment

Page 5: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

QM & GR InterfaceDetectors

BA

DC

T

g

COW Experiment

A. Overhauser, R. Colella, S. Werner

Page 6: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

QM & GR InterfaceDetectors

BA

DC

T

g

Colella, Overhauser, Werner, PRL 1975

COW Experiment

Page 7: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

QM & GR InterfaceDetectors

BA

DC

T

g

Colella, Overhauser, Werner, PRL 1975

𝐻 =𝒑2

2𝑚𝑖+ 𝑚𝑔𝒈𝒓 − 𝝎𝑳

Δ𝛽𝑔 ≈𝑚𝑔𝑚𝑖𝒈𝑲𝑇𝑇′

COW Experiment

Lammerzahl, Gen. Rel. Grav.1996

Page 8: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

WEP violation in QMExample: Dirac Equation

𝑑𝑠2 = 𝑉2 𝑑𝑥0 2 −𝑊2(𝑑𝒙 ∙ 𝑑𝒙)

𝑖ℏ𝛾𝛼𝐷𝛼 −𝑚𝑐 𝜓 = 0

𝐷𝛼 = ℎ𝛼𝑖 𝐷𝑖, 𝐷𝑖 = 𝜕𝑖 +𝑖4𝜎𝛼𝛽𝜔𝑖

𝛼𝛽

Obukhov, PRL, 2001

There is no experiment that can be done, in a smallconfined space, which can detect the differencebetween a uniform gravitational field and anequivalent uniform acceleration.

Page 9: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

WEP violation in QMExample: Dirac Equation

𝑑𝑠2 = 𝑉2 𝑑𝑥0 2 −𝑊2(𝑑𝒙 ∙ 𝑑𝒙)

𝑖ℏ𝛾𝛼𝐷𝛼 −𝑚𝑐 𝜓 = 0

𝐷𝛼 = ℎ𝛼𝑖 𝐷𝑖, 𝐷𝑖 = 𝜕𝑖 +𝑖4𝜎𝛼𝛽𝜔𝑖

𝛼𝛽

𝑉 = 1 +𝒂 ∙ 𝒙𝑐2, 𝑊 = 1

𝐻𝑎 = 𝛽𝑚𝑐2 + 𝛽𝑝2

2𝑚 + 𝛽𝑚𝒂 ∙ 𝒙 +ℏ2𝑐 𝚺 ∙ 𝒂 +

ℏ2𝑚𝑐2 𝛽𝚺 ∙ (𝒂 × 𝒑)

(ii) Accelerated frame

Obukhov, PRL, 2001

ℏ𝑔𝑐= 2 × 10−23eV

𝑉 = 1 −𝐺𝑀2𝑐2𝑟

1 +𝐺𝑀2𝑐2𝑟

−1

, 𝑊 = 1 +𝐺𝑀2𝑐2𝑟

2

𝐻𝑎 = 𝛽𝑚𝑐2 + 𝛽𝑝2

2𝑚− 𝛽𝑚𝒈 ∙ 𝒙 −

ℏ2𝑐𝚺 ∙ 𝒈 −

ℏ𝑚𝑐2𝛽𝚺 ∙ (𝒈 × 𝒑)

(i) Gravitational field 𝒈 = −𝐺𝑀𝒓𝑟3

(Foldy–Wouthuysen transformation)

Page 10: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

WEP violation in QMExample: Dirac Equation

𝑑𝑠2 = 𝑉2 𝑑𝑥0 2 −𝑊2(𝑑𝒙 ∙ 𝑑𝒙)

𝑖ℏ𝛾𝛼𝐷𝛼 −𝑚𝑐 𝜓 = 0

𝐷𝛼 = ℎ𝛼𝑖 𝐷𝑖, 𝐷𝑖 = 𝜕𝑖 +𝑖4𝜎𝛼𝛽𝜔𝑖

𝛼𝛽

𝑉 = 1 +𝒂 ∙ 𝒙𝑐2, 𝑊 = 1

𝐻𝑎 = 𝛽𝑚𝑐2 + 𝛽𝑝2

2𝑚 + 𝛽𝑚𝒂 ∙ 𝒙 +ℏ2𝑐 𝚺 ∙ 𝒂 +

ℏ2𝑚𝑐2 𝛽𝚺 ∙ (𝒂 × 𝒑)

(ii) Accelerated frame

Obukhov, PRL, 2001

ℏ𝑔𝑐= 2 × 10−23eV

𝑉 = 1 −𝐺𝑀2𝑐2𝑟

1 +𝐺𝑀2𝑐2𝑟

−1

, 𝑊 = 1 +𝐺𝑀2𝑐2𝑟

2

𝐻𝑎 = 𝛽𝑚𝑐2 + 𝛽𝑝2

2𝑚− 𝛽𝑚𝒈 ∙ 𝒙 −

ℏ2𝑐𝚺 ∙ 𝒈 −

ℏ𝑚𝑐2𝛽𝚺 ∙ (𝒈 × 𝒑)

(i) Gravitational field 𝒈 = −𝐺𝑀𝒓𝑟3

(inertial spin-orbit coupling)

(gravitational spin-orbit coupling)

Page 11: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝑉 = 1 +𝒂 ∙ 𝒙𝑐2 , 𝑊 = 1

𝐻𝑎 = 𝛽𝑚𝑐2 + 𝛽𝑚𝒂 ∙ 𝒙 + 𝛽𝑝2

2𝑚+ℏ2𝑐𝚺 ∙ 𝒂 +

ℏ2𝑚𝑐2𝛽𝚺 ∙ (𝒂 × 𝒑)

(i) Accelerated frame

𝑉 = 1 −𝐺𝑀2𝑐2𝑟

1 +𝐺𝑀2𝑐2𝑟

−1

, 𝑊 = 1 +𝐺𝑀2𝑐2𝑟

2

𝐻𝑎 = 𝛽𝑚𝑐2 − 𝛽𝑚𝒈 ∙ 𝒙 + 𝛽𝑝2

2𝑚−ℏ2𝑐𝚺 ∙ 𝒈 −

ℏ𝑚𝑐2𝛽𝚺 ∙ (𝒈 × 𝒑)

(ii) Gravitational field

ℏ𝑔𝑐= 2 × 10−23eV

Altschul, et al., Advances in Space Research (2015) 𝜂 = 2𝑎𝐴 − 𝑎𝐵𝑎𝐴 + 𝑎𝐵

Eötvös ratio:

𝒈 = −𝐺𝑀𝒓𝑟3

WEP violation in QM

Page 12: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966).

G. Papini, “London moment of rotating superconductors and lense-thirring fields of general relativity”, Nuovo Cimento B 45 , 66 (1966).

G. Papini, “Particle Wave Functions in Weak Gravitational Fields”, Nuovo Cimento B, 52, 136–41 (1967).

G. Papini, “Detection of inertial effects with superconducting interferometers”, Phys. Lett. A 24, 32–3 (1967).

G. Papini, “Superconducting and Normal Metals as Detectors of Gravitational Waves”, Lettere Al Nuovo Cimento 4, 22 1027 (1970).

J. Anandan, “Gravitational and Inertial Effects in Quantum Fluids”, Phys. Rev. Lett. 47 , 463 (1981).

R. Y. Chiao, “Interference and inertia: A superfluid-helium interferometer using an

Enhanced gravitational interaction with quantum systems

Page 13: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Gravitational Casimir Effect

𝛻 ∙ 𝑬 = 𝜅𝝆(𝐸)𝛻 ∙ 𝑩 = 𝜅𝝆 𝑀

𝛻 × 𝑬 = −𝜕𝑩𝜕𝑡− 𝜅𝑱 𝑀

𝛻 × 𝑩 =𝜕𝑬𝜕𝑡+ 𝜅𝑱 𝐸

𝜅 =8𝜋𝐺𝑐4

𝐸𝑖𝑗 = 𝐶0𝑖0𝑗𝐵𝑖𝑗 = ⋆ 𝐶0𝑖0𝑗

𝐽𝜇𝜈𝜌 = −𝑇𝜌 𝜇,𝜈 +13𝜂𝜌[𝜇𝑇,𝜈]

𝜌𝑖𝐸 = −𝐽𝑖00

𝜌𝑖𝑀 = − ⋆ 𝐽𝑖00𝐽𝑖𝑗𝐸 = 𝐽𝑖0𝑗𝐽𝑖𝑗𝑀 = ⋆ 𝐽𝑖0𝑗

Gravitoelectromagnetism (GEM)

Page 14: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝐸0 =ℏ4𝜋 0

∞𝑘∥𝑑𝑘∥

𝑛

𝜔𝑛+ + 𝜔𝑛× 𝜎

Δ 1 +𝜅𝜒2𝑬𝑇𝑇 = 0

Δ𝑩𝑇𝑇 = 0

𝑬𝑇𝑇 =𝛼(1 −

sin2𝛾2) 𝛽cos𝛾

𝛽cos𝛾 −𝛼(1 −sin2𝛾2)𝑒𝑖(𝒌∙𝒓−𝜔𝑡)

𝑩𝑇𝑇 =−𝛽(1 −

sin2𝛾2) 𝛼cos𝛾

𝛼cos𝛾 𝛽(1 −sin2𝛾2)𝑒𝑖(𝒌∙𝒓−𝜔𝑡)

Gravitational Casimir Effect

(smoothness principle)

Page 15: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Gravitational Casimir Effect

𝛼′ 1 +𝜅𝜒2 1 −

𝑆′

2 𝑒−𝑞′𝑎/2 = 𝛼 1 −

𝑆2

2 𝑒−𝑞𝑎/2 + 𝛼′′ 1 −

𝑆2

2 𝑒𝑞𝑎/2

𝑆 = sin𝛾𝐶 = cos𝛾

𝛼′′′ 1 +𝜅𝜒21 −𝑆′

2𝑒−𝑞′𝑎/2 = 𝛼 1 −

𝑆2

2𝑒𝑞𝑎/2 + 𝛼′′ 1 −

𝑆2

2𝑒−𝑞𝑎/2

𝛼′𝐶′𝑒−𝑞′𝑎2 = 𝛼𝐶𝑒−

𝑞𝑎2 − 𝛼′′𝐶𝑒𝑞𝑎/2

-𝛼′′′𝐶′𝑒−𝑞′𝑎2 = 𝛼𝐶𝑒−

𝑞𝑎2 − 𝛼′′𝐶𝑒−𝑞𝑎/2

𝑞2 = −𝑘𝑧2 = 𝑘∥2 −𝜔2

𝑐2

𝑞′2 = −𝑘𝑧′2 = 𝑘∥2 − (1 + 𝜅𝜒)

𝜔2

𝑐2

Page 16: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝛼′ 1 +𝜅𝜒2 1 −

𝑆′

2 𝑒−𝑞′𝑎/2 = 𝛼 1 −

𝑆2

2 𝑒−𝑞𝑎/2 + 𝛼′′ 1 −

𝑆2

2 𝑒𝑞𝑎/2

𝑆 = sin𝛾𝐶 = cos𝛾

𝛼′′′ 1 +𝜅𝜒21 −𝑆′

2𝑒−𝑞′𝑎/2 = 𝛼 1 −

𝑆2

2𝑒𝑞𝑎/2 + 𝛼′′ 1 −

𝑆2

2𝑒−𝑞𝑎/2

𝛼′𝐶′𝑒−𝑞′𝑎2 = 𝛼𝐶𝑒−

𝑞𝑎2 − 𝛼′′𝐶𝑒𝑞𝑎/2

-𝛼′′′𝐶′𝑒−𝑞′𝑎2 = 𝛼𝐶𝑒−

𝑞𝑎2 − 𝛼′′𝐶𝑒−𝑞𝑎/2

Δ+ = 𝑒−𝑎𝑞′{ 𝐶′ 𝑆2 − 2 − 1 +𝜅𝜒2𝐶 𝑆′2 − 2

2𝑒−𝑎𝑞 − 𝐶′ 𝑆2 − 2 + 1 +

𝜅𝜒2𝐶 𝑆′2 − 2

2𝑒𝑎𝑞 = 0

Gravitational Casimir Effect

Page 17: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝑛

𝜔𝑛(𝑞) =12𝜋𝑖 𝑖∞

−𝑖∞𝜔(𝑞) 𝑑lnΔ(q) +

𝐶+𝜔(𝑞)𝑑lnΔ(q)

𝐸0 =ℏ4𝜋 0

∞𝑘∥𝑑𝑘∥

𝑛

𝜔𝑛+ + 𝜔𝑛× 𝜎

𝐸 𝑎 =𝐸0𝜎− lim𝑎→∞

𝐸0𝑎

𝐸 𝑎 =ℏ4𝜋2 0

∞𝑘∥𝑑𝑘∥

0

∞ln 1 − 𝑟+2𝑒−2𝑞𝑎 + ln 1 − 𝑟×2𝑒−2𝑞𝑎 𝑑𝜉

𝑟+ =𝐶′ 𝑆2 − 2 − 1 + 𝜅𝜒2 𝐶(𝑆

′2 − 2)

𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶(𝑆′2 − 2)

, 𝑟× =1 + 𝜅𝜒2 𝐶

′ 𝑆2 − 2 − 𝐶(𝑆′2 − 2)

1 + 𝜅𝜒2 𝐶′ 𝑆2 − 2 + 𝐶(𝑆′2 − 2)

Gravitational Casimir Effect

Page 18: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝐸 𝑎 =ℏ4𝜋2 0

∞𝑘∥𝑑𝑘∥

0

∞ln 1 − 𝑟+2𝑒−2𝑞𝑎 + ln 1 − 𝑟×2𝑒−2𝑞𝑎 𝑑𝜉

𝑟+ =𝐶′ 𝑆2 − 2 − 1 + 𝜅𝜒2 𝐶(𝑆

′2 − 2)

𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶(𝑆′2 − 2)

, 𝑟× =1 + 𝜅𝜒2 𝐶

′ 𝑆2 − 2 − 𝐶(𝑆′2 − 2)

1 + 𝜅𝜒2 𝐶′ 𝑆2 − 2 + 𝐶(𝑆′2 − 2)

𝛼′ 1 +𝜅𝜒21 −𝑆′

2𝑒−𝑞′𝑎/2 = 𝛼 1 −

𝑆2

2𝑒−𝑞𝑎/2 + 𝛼′′ 1 −

𝑆2

2𝑒𝑞𝑎/2

𝛼′𝐶′𝑒−𝑞′𝑎2 = 𝛼𝐶𝑒−

𝑞𝑎2 − 𝛼′′𝐶𝑒𝑞𝑎/2

𝛼′′

𝛼=−𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶(𝑆

′2 − 2)

𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶(𝑆′2 − 2)

𝑒𝑞𝑎

Gravitational Casimir Effect

Page 19: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝐸 𝑎 =ℏ4𝜋2 0

∞𝑘∥𝑑𝑘∥

0

∞ln 1 − 𝑟+2𝑒−2𝑞𝑎 + ln 1 − 𝑟×2𝑒−2𝑞𝑎 𝑑𝜉

𝑟+ =𝐶′ 𝑆2 − 2 − 1 + 𝜅𝜒2 𝐶(𝑆

′2 − 2)

𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶(𝑆′2 − 2)

, 𝑟× =1 + 𝜅𝜒2 𝐶

′ 𝑆2 − 2 − 𝐶(𝑆′2 − 2)

1 + 𝜅𝜒2 𝐶′ 𝑆2 − 2 + 𝐶(𝑆′2 − 2)

𝛼′′

𝛼=−𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶 𝑆

′2 − 2

𝐶′ 𝑆2 − 2 + 1 + 𝜅𝜒2 𝐶 𝑆′2 − 2

𝑒𝑞𝑎 = |𝑟+|

𝛽′′

𝛽=− 1 + 𝜅𝜒2 𝐶

′ 𝑆2 − 2 + 𝐶 𝑆′2 − 2

1 + 𝜅𝜒2 𝐶′ 𝑆2 − 2 + 𝐶 𝑆′2 − 2

𝑒𝑞𝑎 = r×

Gravitational Casimir Effect

Page 20: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Ordinary material

𝑛 = 1 +2𝜋𝐺𝜌𝜔2

𝜒 =1 − 𝑛 𝜔 2

𝜅𝑐2

𝐺 = 6.67 × 10−11m3kg−1s−2

Peters, PRD, 1974

𝑂 𝜌 = 𝑂[𝑐2

𝐺] ≈ 1027kg/m3

𝑂 𝜌 = 104kg m−3

𝑃 𝑎 = −𝜕𝐸 𝑎𝜕𝑎

𝑃(10−6) ≈ 10−21nPa

Page 21: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

Superconductor𝐻 =𝒑 − 𝑞𝑨 −𝑚𝒉 2

2𝑚+ 𝑉

𝒋𝐺 =1𝑚Re 𝜓∗

ℏ𝑖𝛻 − 𝑞𝑨 −𝑚𝒉 𝜓

=1𝑚−𝑞𝑨 −𝑚𝒉 𝜓∗𝜓

𝒋𝐺 = 𝜎𝐺𝑬𝐺

𝑟𝐺 = 1 +2𝛿2

𝑐𝑑𝜉−1

𝑟𝐸 = 1 +2𝜆𝛿2

𝑐𝑑2𝜉−1

Minter, Wegter-McNelly, Chiao, Physica E, 2010

Heisenberg-Coulomb effect

Page 22: Gravitational Casimir Effect...B. S. DeWitt, “Superconductors and Gravitational Drag”, Phys. Rev. Lett. 16 , 1092 (1966). G. Papini, “London moment of rotating superconductors

𝐻 =𝒑 − 𝑞𝑨 −𝑚𝒉 2

2𝑚+ 𝑉

𝒋𝐺 =1𝑚Re 𝜓∗

ℏ𝑖𝛻 − 𝑞𝑨 −𝑚𝒉 𝜓

=1𝑚−𝑞𝑨 −𝑚𝒉 𝜓∗𝜓

𝒋𝐺 = 𝜎𝐺𝑬𝐺

𝑟𝐺 = 1 +2𝛿2

𝑐𝑑𝜉−1

𝑟𝐸 = 1 +2𝜆𝛿2

𝑐𝑑2𝜉−1𝑑 = 2 nm 𝛿 = 37 nm 𝜆 = 83 nm

Superconductor