Graphene Technology: Roadmap to...

76
CAMBRIDGE UNIVERSITY DEPARTMENT OF ENGINEERING AND MATERIALS GROUP SPECTROSCOPY GROUP NANOMATERIALS AND Graphene Technology: Roadmap to Applications Andrea C. Ferrari Department of Engineering, Cambridge University, Cambridge, UK

Transcript of Graphene Technology: Roadmap to...

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene Technology: Roadmap to Applications

Andrea C. FerrariDepartment of Engineering, Cambridge University, Cambridge, UK

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

2

One Atom Thin

Strength

HighlyStretchable

Linear Spectrum

Unique OpticalProperties

High Mobility

Quantum Hall Effect

Transistors

Photovoltaics

TransparentConductors

Composites

Membranes/Gas Barrier

?

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Material Fracture Strain Material Fracture Strain

Silicon ~0.7% Poly- ZnO 0.03%

ITO 0.58~1.15% Polyimide 4%

Au 0.46% Graphene >15-20%

Bendability of Electronic Materials

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUP

Drawing:(micro) mechanical cleavage of graphite

How to Make Graphene?

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUP

How to Make Graphene?

GRAPHITE ISSTRONGLY LAYERED

SLICE DOWN TO ONE ATOMIC PLANE

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene Production

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

SKKU ProcessBae Nature Nano (2010)

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

10

Industrial graphite Industrial graphite purification & exfoliationpurification & exfoliation

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

11

Chemical Exfoliation of Chemical Exfoliation of GrapheneGraphene

28 April 2011

Large area graphene coverage

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

+

Ideal case: 100% monolayergraphene flakes

graphite

Ultrasonication

Liquid phase exfoliation

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Dispersion in organic solvent

Y. Hernandez et al. Nat. Nano. (2008) M. Lotya et al. JACS (2009)

Solvent with high surface tension prevents re-aggregations!

Liquid phase exfoliation

Dispersion in water-surfactant solution

Surfactant compensates repulsion between water and graphene.

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

14

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

0 400 800 12000

4

8

12

16

20N= 108

Num

ber o

f fla

kes

Area (nm2)1 2 3 4 5

0

10

20

30

40

50

60

70

Num

ber o

f fla

kes

Number of layers

N= 108

Yield(monolayer)~70%

Liquid phase exfoliation in waterTEM statistics

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Issue: Monolayer, bi-layer, tri-layer have same density (ρ)!

We exploit the effect of surfactant coverage

Sorting number of layers via Density Gradient Ultracentrifugation (DGU)

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

After DGU

The buoyant density increase with N

ρ

NOW: Density depends on number of layers

N-layers

.

.

A. Green, M. Hersam, Nano lett. (2009)

Sorting number of layers via DGU

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

2600 2700 2800

2D

2600 2700 2800R am an sh ift (cm -1)

2600 2700 2800

2D

2D

Sorting number of layers via DGU

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

200 nm

Sorting number of layers via DGU

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Ink-Jet Printing Graphene-Ink

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

On Si/SiO2 On Optical Fiber

Deterministic Placement

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

1400 2100 2800

0

10000

20000

Inte

nsity

[A

.U.]

Raman shift [cm-1]

Bottom

Top

Overlap

BILAYER TWIST

TOP

OVERLAP

BOTTOM

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Wafer Scale Graphene Transfer

Kim et al Nature 2010

Mechanicalpeeling offin water

Support/Graphene/Ni(or Cu)/SiO2

Ni (or Cu)

SiO2

Rapid etchingwith FeCl3 (aq)

Graphene onpolymer support

Graphene onarbitrary substrate

Transfer

Patterning

Patterned graphene on Ni Patterned graphene on arbitrary substrate

Post-patterningPre-patterning

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

LC : 10 μmLW : 5 μm

16,200 FET devices

Y. Lee et al. NanoLett., 10, 490 (2010)

Wafer Scale Graphene Devices

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphitic Carbon For LHC

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Preparation for SPS magnet prototype graphitic coating

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Gas Diffusion Barrier

CO2

AA

O2

H2O

Migration of flavors

Gas barrier diffusion properties

Barrier to oxygen

Barrier to CO2 gas

Industrial specifications

compatible with blow molding production rate

few seconds Deposition time

Packaging regulationRecyclable

food contact safe

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Thickness distribution

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Point

Thic

knes

s (n

m)

Vd = 60 nm/s

Uniformity = ± 15%

C2H2: 160 sccmMWP: 350 WT1 : 1 sT2 : 1 sP1 : 50 mbarsP2 : 0.1 mbars

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

0,0

5,0

10,0

15,0

20,0

25,0

0,0 10,0 20,0 30,0 40,0 50,0 60,0Time (weeks)

%C

O2

Loss

PET a-C:H 60 nm a-C:H : 150 nm

CSD

Beer- CSD (17.5% of CO2 loss) - 44 weeks with 60 nm a-C:H

- 52 weeks with 150 nm a-C:H

- Beer (10% of CO2 loss) -25 weeks with 60 nm a-C:H

-30 weeks with 150 nm a-C:H

- Non coated PET bottle- 4 to 10 weeks shelf life

0

10

20

30

40

50

60

0 50 100 150 200Thickness(nm)

She

lf lif

e (w

eeks

)

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND Graphene Balloon

Bunch,McEuen, Nano Lett 2008

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Com

posi

tes

Stra

in S

enso

r

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Optical properties

Graphene can be visualized optically

The optical image contrast scales with the number of layers

Confocal Rayleigh mapOptical micrograph

Casiraghi, C. et al Nano Lett. 7, 2711 (2007).

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Optical properties

SLG reflects << 0.1% of the incident light in the visible region, raising to ~2% for 10 layers

A=1-T=πα=2.3%

T = (1 + 0.5πα)−2 ≈ 1 − πα ≈ 97.7%

Universal optical conductanceG0 = e2 /4ħ ≈ 6.08 × 10−5Ω−1

Nair Science 2008Kuzmenko PRL 2008

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

ITO drawbacks

• Increasing cost due to Indium scarcity

• Processing requirements, difficulties in patterning

• Sensitivity to acidic and basic environments

• Brittleness

• Wear resistance

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

ITO replacements

200 400 600 800

20

40

60

80

100

ITO ZnO/Ag/ZnO TiO2/Ag/TiO2 Arc discharge SWNTs

Tran

smitt

ance

(%)

Wavelength (nm)

Metal grids, metallic nanowires, metal oxides and SWNTs have been explored as ITO alternative

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

200 400 600 800

20

40

60

80

100

Graphene ITO ZnO/Ag/ZnO TiO2/Ag/TiO2 Arc discharge SWNTs

Tran

smitt

ance

(%)

Wavelength (nm)

Graphene films have higher T over a wider wavelength range with respect to SWNT films, thin metallic films, and ITO

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

For n→0, σdc,min ≈ 4e2/h

⇒ Rs ≈ 6kΩ/ for an ideal intrinsic SLG with T ≈ 97.7%

Thus, ideal intrinsic SLG, would beat the best ITO only in terms of T, not Rs

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

100 102 104 106 108 1010 101240

50

60

70

80

90

100

n=3.4x1012 cm-2

μ=2x104 cm2/ Vs

Rs(Ω/sq)

Tran

smitt

ance

(%)

LPE RGO PAHs CVD MC Graphene calc.

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene-based flexible smart window

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Rod coating

PET film

Rod coaterGraphenedispersion

Wire winding

SubstrateGraphenedispersion

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

On PET~ 500Ω sheet resistance ~ 80% transparency

Transparent conductor

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

VVPolymer dispersedLiquid Crystal

Flexible, transparentPolymer support

Graphene basedtransparent electrode

Polymer dispersed Liquid Crystal: Schematic

Flexible, transparentPolymer support

Polymer dispersedLiquid Crystal

Graphene basedtransparent electrode

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Touch screens

Considering the Rs and T required, GTCFs produced via LPE offer a viable way towards low cost devices

The TC requirements for touch screens are Rs ≈ 500 − 2000Ω/ and T>90%

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Transparentgraphene film

Patterned Graphene film on PET

4 inch scale graphene film on Flexible Substrate

4 inch scale graphene film on Stretchable Substrate

Wafer-Scale Synthesis and Transfer

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

SKKU Touch screen

Bae, S. et al. Nature Nano (2010)

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Flexible, Foldable AMOLED Display

• Front Plane : Touch Screen, OLED • Back plane : TFTs

Substrate

Anode(ITO)

Touch Screen

CathodeOLED

TFT

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Photovoltaic devices

Graphene can fulfil multiple functions in PV devices:

1) Transparent conductor window

2) Photoactive material

3) Channel for charge transport

4) Catalyst

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Silicon solar cells

η up to ~25%

Graphene TC Films can be used as window electrodes in inorganic solar cells

Silicon solar cells dominate the current PV technology

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Organic solar cells

η > 12% could be possible Yong, V. ,Tour, J. M. Small 6, 313 (2009)

• Transparent conductor window

• Photoactive material

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Dye Sensitized Solar Cell

II33-- II33

--II-- II--

O'Regan and Gratzel, Nature, 252, 737 (1991)

Transparent conductive electrode

Graphene bridge structure

Counter electrode

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene electrode is prepared by drop casting the dispersion on quartz substrate

DSSCs assembly

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Photodetectors

GPDs can work over a much broader wavelength range

GPDs have a faster response compared to traditional PDs

Graphene based PDs (GPDs)

Avouris, et al.

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene for photodetection•high mobility and Fermi velocity potentially allow high operating speeds→ ft 40 GHz / 10 Gbit/s demonstrated• absorption of 2.3 % per layer constant over the visible range to the infrared• zero band-gap semiconductor→ no cut-off wavelength• dark current

Mueller et. al., Nature Photonics 4, 297 (2010).

Nair et. al., Science 6, 5881 (2008).

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Working principle

Metal-induced doping

Giovanetti et. al., Phys. Rev. Lett. 101, 026803 (2008).

e-h pair creationMetal

e-h separation

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Light emitting devices

• TC films based on graphene and graphene oxide have been demonstrated for OLED and light-emitting electrochemical cell

• Electroluminescence observed in graphene could lead to novel emitting devices based entirely on graphene

Essig, S. et al. Nano Lett. 10, 1589 (2010)

Organic light emitting diodes (OLED)

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Making GraphenePhotoluminescent

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

3s, scale 5μm

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

PL

Elastic Scattering

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

e-e relaxation(~100fs)

Cooling by phonon emission (~1ps)

Optical pumping

Broadband Nonlinear PL

PL

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Elastic light scattering image

50 x 50 µm2Heinz+Wang+Sthor+Hartschuh

Broadband Nonlinear PL

Nonlinear PL image

Red and Blue PL, as result of e-e collisions

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

MirrorMirror

Laser gainmedia

CWUltrafast Pulses< 10-12 second

A saturable absorber turns a continuous wave (CW) laser into an ultrafast laser

Ultrafast lasers

Mode-locked laser produces:

Ultra-short Pulse Duration

Enhanced Peak Power

Wide Spectrum

SaturableAbsorber

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Normal Cancerous

Essential tools for cutting-edge research in Physics, Engineering, Chemistry, Biology, Nanotechnology

Applications of mode-locked lasers

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

The effect of a saturable absorber

First, imagine raster-scanning the pulse vs. time like this:

After many round trips, even a slightly saturable absorber can yield a very short pulse.

Short time (fs)

Inte

nsity

Round trips (k)

k = 1

k = 7

Notice that the weak pulses are suppressed, and the strong pulse shortens and is amplified.

k = 2k = 3

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

requires molecular beam epitaxy growth of GaInAs/GaAsheterostructures

ion implantation (Ni, Be, etc) to reduce relaxation time

can work only in reflective mode

Current technology of Semiconductor Saturable Absorber Mirrors (SESAM)

Problems with current technology

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

e-e relaxation(~100fs)

Cooling by phonon emission (~1ps)

Optical pumping

Graphene as an ultrafast ultrawide band saturable absorber

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm

1000 1200 1400 1600 1800 2000

Abso

rban

ce (a

.u.)

Wavelength (nm)

70

Graphene

CNTs

Z. Sun et al. Nano Research (2010)

Exploiting the wide graphene absorption band: Wavelength tunability

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm 1534nm 1541nm 1547nm 1553nm 1559nm

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm 1534nm

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm 1534nm 1541nm

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm 1534nm 1541nm 1547nm

1515 1530 1545 1560 15750.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Inte

nsity

Wavelength (nm)

1525nm 1534nm 1541nm 1547nm 1553nm

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Highly-doped Er3+ fiberWDM

Pump laser

PC

Graphene mode-locker

Coupler

ISO

Output

Graphene-SMMA polymer composite

Ultrafast laser

Z. Sun et al. ACS nano 4, 803, 2010

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Graphene Mode-locked Laser

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Wavelength-tuneable Graphene Mode-locked Laser

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

74

One Atom Thin

Strength

HighlyStretchable

Linear Spectrum

Unique OpticalProperties

High Mobility

Quantum Hall Effect

Transistors

Photovoltaics

TransparentConductors

Composites

Membranes/Gas Barrier

?

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Potential of Graphene

Science Engineering Technology

FlexibleDisplay

Touch Panel

High speedTransistor

RFIC, Sensor

Solar cellBattery

Supercap.

Conductive inkEMI screen ink

Dispaly/Solar cellPackag

LEDlighting, BLUAutomobile ECUPC

Automobile Air plane components

Graphene

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

A. LombardoB. Bonetti

T.J. EchtermeyerZ. Sun

D. PopaS. Piscanec

F. BonaccorsoG. Calogero

T. HasanG. PriviteraF. Torrisi

T. M. G. MohiuddinR. R. NairC. Galiotis

D.M. Basko

E. Lidorikis

A.HartschuhH. Qian

T. Gokus

T. RyhanenS. LacourJ. KiviojaA. Colli

P. BeecherZ. Radivojevic

Thanks to

Jong-Hyun AhnByung Hee Hong

K. S. NovoselovA. K. Geim

P. ChiggiatoM. Taborelli

CAMBRIDGE UNIVERSITYDEPARTMENT OF ENGINEERING

ELECTRONIC DEVICES AND MATERIALS GROUPSPECTROSCOPY GROUPNANOMATERIALS AND

Acknowledgements