Graph Isomorphism as Hsp

download Graph Isomorphism as Hsp

of 34

Transcript of Graph Isomorphism as Hsp

  • 8/9/2019 Graph Isomorphism as Hsp

    1/34

  • 8/9/2019 Graph Isomorphism as Hsp

    2/34

    Outline

     Group theory review

     The hidden subgroup problem

      Classes of HSP

     An example of Abelian HSP

     GI as HSP

    2/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    3/34

    Group Theory Review

    Definition

    A group  G   is a finite or infinite set of elements with a binary 

    operation a.k.a. group operation  ◦. Any group has following four 

    fundamental properties.   Closure: If  A, B  ∈ G , then  A ◦ B  ∈ G .

      Associativity: If  A, B , C  ∈ G ,  (A ◦ B ) ◦ C   = A ◦ (B  ◦ C ).

      Identity: There is an identity element  e   such that

    ∀A ∈  G   : e  ◦ A = A ◦ e  = A.   Inverse: There must be an inverse of each element.

    Therefore, for each element  A ∈ G , the set contains anelement  B  = A−1 such that  A ◦ A−1 = A−1 ◦ A = e .

    3/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    4/34

    continued...

    Definition

    A subgroup  H  ⊂ G  satisfies the four group requirements.

     The order,  |H |, of any subgroup,  H  of a group  G  must be adivisor of  |G |.

      Let  H  with elements  hi  be the a subgroup of a group  G . If anelement  x  ∈ G , ∈ H , then  x  ◦ hi   for  i  = 1, 2, . . .  constitute theleft coset of the subgroup H with respect to  x .

    4/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    5/34

    The Hidden Subgroup Problem

    Definition

    Find the subgroup  H  of periods of a function  f    : G   → S  under the promise that  f    is strictly periodic, that is, for all  x , y  ∈ G ,

    f   (x ) = f   (y )   ⇐⇒   y  = xh  for some  h ∈ H .

    In other words   1,Given:   G : group,  S : set,  f    : G   → S  via an oracle.Promise:   Subgroup  H  ≤ G   such that  f    is constant on the leftcosets of  H  and distinct on different cosets.Task:   Find the hidden subgroup  H  by querying  f   .

    1Taken from  Graph isomorphism, the hidden subgroup problem and identifying quantum states  by Pranab Sen

    5/ 33

    http://goforward/http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    6/34

    Classes of HSP

     Abelian hidden subgroup problem Integer factoring Simon’s problem

     Non-abelian hidden subgroup problem Dihedral hidden subgroup problem

    Lattice problems

    Symmetric hidden subgroup problem Graph isomorphism problems

    6/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    7/34

    Simon’s Problem

    Definition

    Suppose 2 we are given a function  f    : {0, 1}n → {0, 1}m, withm ≥ n, and we are promised that either  f    is  1 − to  − 1, or there exists a non-trivial  s , such that 

    ∀x  = x  (f   (x )) = f    (x )   ⇐⇒   x  = x  ⊕ s , where  ⊕  denotes bitwise exclusive-or. We wish to determine which of these conditions holds 

    for  f   , and in the second case, to find  s .

    2Verbatim from Simon’s paper.

    7/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    8/34

    Simon’s Problem as HSP

    Definition

    Suppose we are given a function  f    : {0, 1}n → {0, 1}m, with m ≥ n,and we are promised that either  f    is  1 − to  − 1, or there exists a

    non-trivial  h, such that  ∀x  = x 

    (f    (x )) = f   (x 

    )   ⇐⇒   x 

    = x  ⊕ h,where  ⊕  denotes bitwise exclusive-or. We wish to determine whichof these conditions holds for  f   , and in the second case, to find  h.

    Given:   G  = ({0, 1}n , ⊕): group,  S  = {0, 1}m: set,  f    : G  → S   via

    an oracle.Promise:   Subgroup  h ∈ H  ≤ G   such that  f    is constant on theleft cosets of  H  and distinct on different cosets.Task:   Find the hidden subgroup  H  by querying  f   .

    8/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    9/34

    Example : Simon’s problem for  Z/2,  n = 3

    Subgroups are closed under inverses and the group operation.

    G   = S  = {x |x  ∈ {0, 1}∗ , |x | ≤ 3}

    = {000, 001, 010, 011, 100, 101, 110, 111}   (1)

    and let the blackbox be,

    f    (000) → 111, f    (001) → 101

    f    (010) → 111, f    (011) → 101

    f    (100) → 010, f    (101) → 001

    f    (110) → 010, f    (111) → 001 (2)

    Find  H .

    9/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    10/34

    (We pretend that we haven’t seen this slide!)

    Obviously, the non-trivial period is 010.

    f   (000) → 111, f    (001) → 101f    (010) = f    (000 ⊕ 010) → 111

    f    (011) = f    (001 ⊕ 010) → 101

    f   (100) → 010, f    (101) → 001

    f    (110) = f    (100 ⊕ 010) → 010f    (111) = f    (101 ⊕ 010) → 001 (3)

    10/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    11/34

    The Promises are Kept!

      H  = {000, 010}. So, Promise 1,  |H | ≤ |G |   =⇒   2  

  • 8/9/2019 Graph Isomorphism as Hsp

    12/34

    Example: Graph Isomorphism (GI) Problem

    Definition

    Let   3 V  (G )  be the vertex set of a simple graph and  E  (G )   its edge set. Then a graph isomorphism from a simple graph  G   to a simple 

    graph H   is a bijection  f    : V  (G ) → V  (H )  such that (u , v ) ∈  E  (G )   ⇐⇒   (f    (u ) , f   (v )) ∈  E  (H ).

    3Verbatim from (West 2000).

    12/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    13/34

    A Case of Graph Isomorphism

      A  and  B  are two undirected graphs with  n = 4 vertices labeled1, 2, 3 and 4   4.

     They may be described by two 4 × 4 adjacency matricesrespectively.

      The   ij -th entry of an adjacency matrix is 1 iff the graph has anedge joining vertices   i   and   j . Rest of the entries are zeros.

     We assume a graph will always have at most one edge joiningtwo vertices.

    4This is a special case of the exposition from (Jozsa 2000)

    13/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    14/34

    Isomorphic Graphs

    0 1 1 1

    1 0 1 01 1 0 11 0 1 0

    0 1 1 1

    1 0 0 11 0 0 11 1 1 0

    14/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    15/34

    Permutations

      P 4   is the group of all permutations of  n = 4 symbols 1, 2, 3and 4.

      A  and  B  are isomorphic if  ∃Π ∈ P 4  operates on  A  to produceB .

    Such a permutation is,

    1 2 3 41 2 4 3

    15/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    16/34

    Symmetry Group of a Graph

    Pick two permutations,  Π1 = 1 2 3 4

    2 1 3 4 and

    Π2 =

    1 2 3 41 4 3 2

    .   Π1 ◦ Π2  and  Π2 ◦ Π1, operating on  A,

    separately, produces two very different graph. So, symmetric groupsare non-abelian i.e. group operations are non-commutative.

    16/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    17/34

    Non-abelianness of Graph Permutation

    17/ 33

    http://goforward/http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    18/34

    The Question

    Can we detect the isomorphism of any two graph defined on  nvertices in  poly  (n)  steps?

    18/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    19/34

    A Bigger Space

      C   is the disjoint union of  A  and  B .

      V  (C ) = 2 × n = 2 × 4 = 8.

     The vertices are labeled as 1, . . . , n, n + 1, . . . 2n = 1, . . . 8 .

    19/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    20/34

    Symmetry Group of  C 

     The permutation group on 2n  vertices is  P 2n, in our case,  P 8.

     For our example, any permutation will be a 8 × 2 matrix.

     A symmetric group,  K , on the new graph  C  will be a subgroupof  P 8 × P 8   i.e.  K   ⊂ P 8 × P 8.

     Any symmetric permutation on  C  (because of the disjointunion)

    case 1:  either separately permutes the vertices  {1, 2, 3, 4}  and

    {5, 6, 7, 8}, case 2:  or swaps these two sets of vertices.

    20/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    21/34

    Subgroups in P 2n

      Let,  H  = P 4 × P 4   .

      The elements of  H  are ordered pairs of vertices of  A  and  B   .

     The group operation is as usual composition of permutation.

      If  case 1   is true,  K   ⊂ H .

      Let   σ  be the special permutation i.e. involution. So,   σ =  σ−1

    and   σ2 = e .

     So, we could define a group on 2n = 8 vertices as  {{e , σ} , ◦}.

    Any nontrivial group operation on  H ,   σH , will just swap thevertices in the ordered pairs.

      So, if  case 2   is true,  K   ⊂  σH .

    21/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    22/34

    Verification

      Claim 1:If  A  and  B  are isomorphic exactly half of themembers of  K  are in  H  and half are in   σH .

      Claim 2:If  A  and  B  are not isomorphic then  K   ⊂ H 

    22/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    23/34

    Claim 1:   K 2

      ⊂  H ,  K 2

      ⊂ σH 

      Let  A  and  B  be the two graphs we previously seen.

      K  is the symmetric group over  A ∪ B .

      K  contains all the ordered pairs of elements from  P 4  and  P 4

    respectively.  By definition, all such ordered pairs are in  H .

     Being a symmetric group,  K  also has the previously mentionedordered pairs in reverse order.

     The involution   σ  can generate each of those reversed pairs byoperating on individual elements of  H   respectively.

     So, these two sets of ordered pairs are equal in number andconstitutes  K .

    23/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    24/34

    Claim 2:   K  ⊂  H 

    Redefine  A  and  B .

     The symmetric group,  K   is defined over  A ∪ B  = C .  The vertices will be relabeled to 1 . . . 8.

     Every element of  K   separately permutes  {1, 2, 3, 4}  and{5, 6, 7, 8}. So,  K   ⊂ H .

     Any swap operation   σ  on  K  will destroy the symmetry. So,K   ⊂  σH .

    24/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    25/34

    The Ambient Group,  G 

      Let  G   = H  ∪ σH .   H   is a subgroup.

      σ   is a coset of  H .

    25/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    26/34

    GI as HSP

    Definition

    Find the symmetric hidden subgroup  G  on the disjoint union of two 

    graphs, A  and  B , each of   n  vertices, in the permutation group  P 2nby querying an oracle,  f    : P 2n  → P 2n.

    26/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    27/34

    Break

    Thank you!

    27/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    28/34

    Example: Graph Isomorphism (GI) Problem

    Definition

    Let   5

    V  (G )  be the vertex set of a simple graph and  E  (G )   its edge set. Then a graph isomorphism from a simple graph  G   to a simple 

    graph H   is a bijection  f    : V  (G ) → V  (H )  such that (u , v ) ∈  E  (G )   ⇐⇒   (f    (u ) , f   (v )) ∈  E  (H ).

    5Verbatim from (West 2000).

    28/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    29/34

    A Case of Graph Isomorphism

      A  and  B  are two undirected graphs with  n = 4 vertices labeled1, 2, 3 and 4   6.

     They may be described by two 4 × 4 adjacency matricesrespectively.

      The   ij -th entry of an adjacency matrix is 1 iff the graph has anedge joining vertices   i   and   j . Rest of the entries are zeros.

     We assume a graph will always have at most one edge joiningtwo vertices.

    6This is a special case of the exposition from (Jozsa 2000)

    29/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    30/34

    Isomorphic Graphs

    0 1 01 0 10 1 0

    0 1 11 0 01 1 0

    30/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    31/34

    The group

    P 2n × P 2n   is the permutation group of 2n   symbols. The first(second)  n  symbols correspond to the vertices of  G 1  (G 2). For ourexample, we consider  S 6  hence it is non-abelian.

    31/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    32/34

    The sub group

    K   ≤ P 2n × P 2n   is the set of all permutations of the vertex setwhich leaves the edge set the same. So,  K   is a symmetry group.

    32/ 33

    http://find/

  • 8/9/2019 Graph Isomorphism as Hsp

    33/34

    Promise 1

      K   ≤ P 2n × P 2n

    33/ 33

    http://find/http://goback/

  • 8/9/2019 Graph Isomorphism as Hsp

    34/34

    Questions and Answers

    Thank you!

    34/ 33

    http://find/http://goback/