Graficos & Abacos

11

description

ABACOS PARA CARATERIZACION GEOMECANICA

Transcript of Graficos & Abacos

Page 1: Graficos & Abacos
Christian Obregon
Rectangle
Page 2: Graficos & Abacos

1

Page 3: Graficos & Abacos

2

Page 4: Graficos & Abacos

89o

85o

70o

60o

50o

40o

30o

20o

10o

5o

1o

89o

85o

80o

70o

60o

50o

40o

30o

20o

10o

5o

1o

30'

10'

90o

70o

60o

50o

40o

30o

20o

10o

5o

1o

True dip

Apparent dip

Angle between strike and apparent dip

Fig. 1.7 Alignment diagram (nomogram) for use in solving apparent-dip problems. Place a straight edge on the twoknown values to determine the unknown value. As shown on the diagram, if the true dip of a plane is 438 and the anglebetween the strike and the apparent dip direction is 358, then the apparent dip is 288. After Palmer (1918).

ROWLAND / Structural Analysis and Synthesis 01-rolland-001 Final Proof page 10 26.9.2006 4:59pm

10 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Attitudes of Lines and Planes ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3

Page 5: Graficos & Abacos

164W

edgefailure

Dip of plane B

B chart—dip difference 20°

Rat

io B

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

00 20 40 60 80 100 120 140 160 180

360 340 320 300 280Difference in dip direction—degrees

260 240 220 200

Dip of plane A

A chart—dip difference 20°

Rat

io A

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

00 20 40 60 80 100 120 140 160 180

360 340 320 300 280Difference in dip direction—degrees

260 240 220 200

9080

605040

30

304050

20

3040

5060

70 70

Figure 7.10 Wedge stability charts for friction only: A and B charts for a dip difference of 20◦.

4

Page 6: Graficos & Abacos

Shear strength of rock discontinuities

9

0 10 50 60

Schmidt hardness - Type L hammer

Ham

mer

orie

ntat

ion

50 100

150

250

Average dispersion of strengthfor most rocks - MPa

20

22

24

26

28

3032

Uni

t w

eigh

t of

roc

k - k

N/m

3

400350300

250

200

150

10090807060

50

40

30

20

10

Uni

axia

l com

pres

sive

stre

ngth

- M

Pa

20 30 40

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

200

+ + + + +|| | | |

Figure 7: Estimate of joint wall compressive strength from Schmidt hardness.

5

Page 7: Graficos & Abacos

Shear strength of rock discontinuities

8

0.1 0.2 0.3 0.5 1 2 3 4 5 10

Length of profile - m

2016121086543

2

1

0.5

Join

t Rou

ghne

ss C

oeffi

cien

t (JR

C)400

300

200

100

504030

20

10

1

0.1

0.2

0.30.40.5

2

345

Am

plitu

de o

f asp

eriti

es -

mm

Length of profile - m

Asperity amplitude - mm

Straight edge

Figure 6: Alternative method for estimating JRC from measurements of surfaceroughness amplitude from a straight edge (Barton 1982).

6

Page 8: Graficos & Abacos

VALORES CONTINUOS DE RMR1,2,3 (Bieniawski, 1989)

7

Page 9: Graficos & Abacos

8

Page 10: Graficos & Abacos

INTACT ROCK & ROCK MASS EQUATIONS

Christian Obregon Mitma 9

Page 11: Graficos & Abacos

105

α

Figura 3.19: Diagramas de la sección y transversal de un ensayo de inclinación o “tilt-test” con testigos para

obtener el ángulo de fricción básico según la propuesta de Stimpson (1981).

Figura 3.20: Imagen de la realización en laboratorio de un ensayo de inclinación o “tilt-test” con testigos para obtener el ángulo de fricción básico según la propuesta de Stimpson (1981).

A partir de la configuración geométrica del ensayo, Stimpson demostró que el ángulo de

fricción básico de la roca de los testigos se podía calcular como:

2arctan ·tan

3bφ α =

(3.24)

Este ensayo resulta sencillo, barato y fácil de repetir y de gran utilidad para aplicar el modelo

Barton-Bandis de estimación de las propiedades resistentes de la discontinuidades rugosas sin

relleno, que son las que más comúnmente se encuentran en gran parte de los macizos rocosos

a partir de cierta profundidad, por lo que se suele utilizar muy a menudo.

10