Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

17

description

catastrophy theory seminar at the department of chemistry, cambridge

Transcript of Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Page 1: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Gradient Dynamical Systems, Bifurcation Theory,

Numerical Methods and Applications

Boris Fa£kovec

David Wales group

Department of Chemistry

University of Cambridge

30st May 2013

1 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 2: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

What is this about?

solution x1(y1, ...c1, ...cm, t), ...xn(y1, ...c1, ...cm, t) to

Fi

(xα..., cβ...

∂kxj

∂ykl, ...

∂rxp∂tr

, ...

∫fγ(xδ, ...cε, ...yζ)dyζ , ...

)= 0

theory of dynamical systemsno spatial derivativesno higher order derivativesno integrals�rst order time derivative separable

dxidt

= f (x1, ...xn, c1, ...cm, t)

bifurcation theory - how the solutions change with cigradient systems - xi = ∂V (x1,...xn,c1,...cn)

∂xiautonomous - right side does not explicitly depend on timegradient - not Hamiltonian systems pi = − ∂H

∂qi, qi = ∂H

∂pi

catastrophy theory - one more approximationstationary → how solutions to systems of non-linear algebraicequations change with ci

2 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 3: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Where are Fractals?

not in this presentation

self-repeating structures - non-integer Haussdorf dimension

important in dynamical systems but . . .

discrete dynamical systems

in chemistry - basins of attraction

3 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 4: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

What is a Dynamical System?

dynamical system {S, ϕ}dynamics ϕ : S× R→ S

ϕ(σ, 0) = σϕ(ϕ(σ, t), s) = ϕ(σ, t + s)

∀σ ∈ S

phase �ow - in RN , dynamics given by vector �eld

one more condition ∂ϕ(x,t)∂t = v(ϕ(x, t))

system of �rst order ordinary di�erential equations (SODE)

if we can evaluate ϕ fast, we know the dynamics

no memory

autonomousdxidt

= f (x1, ...xn, c1, ...cm)

4 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 5: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Phase Portrait

solution to SODE - touple of functions (x1(t), ...xn(t))

trajectories

unique (in contrast with con�guration space)singular - stationary point, periodic, homoclinic, heteroclinic

Steady state, periodic, homoclinic, heteroclinic trajectory

Lyapunov stability

asymptotic

5 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 6: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Linear SODE

linear SODE (homogeneous): x = A x

has an analytical solution: ϕ(x0, τ) = eAτx0

6 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 7: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Non-linear SODE

general system xi = fi (x1, ...xn, c1, ...cm)

Grobman-Hartman theorem

non-zero Re(eigval)topologically equivalent

stability by eigenvalues of matrix of linearisation

qualitative studies of phase portrait

identify singular trajectoriesdetermine their stability

7 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 8: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Structural Stability of Vector Fields

SODE x = v(x) is structurally stable if there is ε, for which all

vector �elds u (|u− v| < ε) have qualitatively the same phase

portraits

bifurcation - cannot happen in structurally stable systemssteady stateperiodic trajectory

local bifurcations of 1-parametric system of vector �eldssaddle-node bifurcation (parameter µ )

8 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 9: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Common types of bifurcations

pitchfork bifurcation

Hopf bifurcation

.

9 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 10: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Bifurcation Diagram

diagram of stationary solutions

a quantity as a function of a parameterbranching, critical points, bifurcation points, double, triple BP,HB points

bifurcation diagram

more than 1 parametercurves of bifurcation points

10 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 11: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Bifurcation Diagrams

LEFT diagram of stationary states - periodic trajectories for

lorenz model

RIGHT - bifurcation diagram for CSTR1EXO model

11 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 12: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Constructing the Diagram of Stationary Solutions

�nding stationary solutions

parameter mapping

not e�cient

DERPAR

introducing an arti�cial parameter (parametrisation of thecurve in the diagram of stationary solutions)∑n

i=1

(dxi

dz

)2+(dαdz

)2= 1

in stationary point dfidz

= 0∂fi∂α

dαdz

+∑n

j=1

∂fi∂xj

dxj

dz= 0

underdetermined systemGauss-Jordan elimination using maximum pivotalgorithm must remember signs of derivatives

predictor-corrector

can continuate the whole curvecannot �nd isolated curve of solutions

periodic trajectories - DERPER

12 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 13: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 1 - CSTR1EXO

stirred tank reactor with an exothermic reaction

toy system for bifurcation analyses with connection to chem

eng reality

reduction of parameters by using dimensionless quantities

x - conversion, Θ - temperature

Da - Damköhler number - �ow

Θc - temp of cooling medium, γ - activation energy, β - heat

exchange param, Λ - recycle, B - heat production param

dxdt

= −Λx + Da(1− x)eΘ

1+Θ/γ

dΘdt

= −ΛΘ + DaB(1− x)eΘ

1+Θ/γ − β(Θ−Θc)

13 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 14: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 1 - Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

x

Da

stabunstab

HBLB

14 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 15: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 2 - Cluster of 3 Charged Atoms

gradual increase of LJ energy

x1 = y1 = x2 = 0r13 =

√x23

+ y23

r23 =√

x23

+ (y3 − y2)22-

++

2-

+

+

SODE (6-dimensional phase space):

y2 = vy2x3 = vx3y3 = vy3

vy2 = −[

2y22− y2−y3

r323+ 6ε

(− 2

y132− 2(y2−y3)

r1423+ 1

y72+ (y2−y3)

r823

)]vx3 = −

[2x3r313− x3

r323+ 6εx3

(− 2

r1413− 2

r1423+ 1

r813+ 1

r823

)]vy3 = −

[2y3r313− y3−y2

r323+ 6ε

(−2y3

r1413− 2(y3−y2)

r1423+ y3

r813+ (y3−y2)

r823

)]15 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 16: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 2 - Results

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

xco

ordi

nate

ofth

eth

irdat

om

energy ratio LJ/elstat

16 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 17: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

References

M. Holodniok, A. Klic, M. Kubicek, M. Marek, Metody

analyzy nelinearnich dynamickych modelu, 1986

M. Kubicek, Algorithm 502: Dependence of Solution of

Nonlinear Systems on a Parameter. ACM Trans. Math.

Software, (2):98, 1976

A. Klic, M. Dubcova, L. Buric, Soustavy obycejnych

diferencialnich rovnic, 2009

R. Gilmore, Catastrophe theory for scientists and engineers,

1981

V.I. Arnold, Catastrophe theory, 1986

17 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013