GPRS Understanding

download GPRS Understanding

of 20

Transcript of GPRS Understanding

  • 8/9/2019 GPRS Understanding

    1/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 1SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Southern Methodist University

    EETS 8315 / TC752-N

    Advanced Topics in Wireless Communications

    Spring 2005

    http://engr.smu.edu/eets/8315

    Lecture 6: GPRS/ EDGE

    Instructor: Dr. Hossam H’mimy, Ericsson Inc.

    [email protected](972) 583-0155

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 2SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Announcement

  • 8/9/2019 GPRS Understanding

    2/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 3SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Course Outline…

    • Lecture 1

    • Lecture 2

    • Lecture 3

    • Lecture 4• Lecture 5

    • Lecture 6

    • Lecture 7

    • Lecture 8

    • Lecture 9

    • Lecture 10

    1/24

    1/31

    2/1

    2/72/21

    2/28

    3/7

    3/14

    3/21

    3/28

    Introduction & overview

    IMT2000

    Traffic & simulation

    Mobile IP, CDPDCSD, SMS, MMS

    GPRS EDGE :RN/CN, (Abstract Due)

    UMTS

    Exam

    UMTS (WCDMA) RN & CN

    WCDMA Design

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 4SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Outline

    • Introduction

    • GPRS Reference Model

    • GPRS Core Network

    • Protocol stack• Air Interface ( logical/physical channels)

    • Network operating Modes and paging

    • Terminal Classes

    • UL/DL data transfer 

    • Mobility Management

    • EDGE air interface

  • 8/9/2019 GPRS Understanding

    3/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 5SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Reference Model

    Gb

    FR over T1

    SGSN

    GGSN

    SMSC

    GGSNBSC

    EIR

    HLR

    SGSN

    MSC/VLR

    RBSMS

    SS7 over T1

    Gc

    Gd

    Gs Gr 

    Gp

    Gn

    Gn

    IP over ATM/

    Ethernet /FR

    Gi PDN

    TE

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 6SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS Interfaces

    Interface Between Entities Technology Physical

    Gb SGSN and BSC FR T1

    Gd SGSN and SMS SS7 T1

    Gi GGSN and PDN IP fiber  

    Gn/Gp GSNs within/inter- PLMN IP Ethernet,T1, fiber 

    Gr /Gc SGSN/GGSN and HLR SS7 T1

    Gs SGSN and MSC/VLR SS7 T1

  • 8/9/2019 GPRS Understanding

    4/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 7SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GSM and GPRS Net

    IP

     A

    HLR

    AUC

    SOG

    MAP

    Gs

    Gd

    SGSN

    GGSN

    BGW

    GPRS

    Backbone

    Gn

    Gb

    Gi

    Gr 

    Gn

    BTS

    BSC

     A’

    MSC/

    VLR

    SMS-GMSC/ SMS-IWMSC

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 8SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS Gore Network

    • New Packet Switched Core network

    • Nodes

     – SGSN – GGSN

    • IP mobility via …..

  • 8/9/2019 GPRS Understanding

    5/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 9SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GSN: GPRS Support Nodes

    • SGSN

     – (Server and Router)

     – Routing built in routers (dynamic and static)

     – Security (unlike GSM , ciphering is terminated at SGSN

     – Auth. Has VLR functionality, register attached users

     – Mobility management: routing area update, HO sessions

    between BSCs, make sure packets are tunneled to correct

    GGSN

     – Charging: Call detail records CDR), based on IP payload and

    session duration.

     – SMS: supports interface to SMS-GMSC & SMS-IWMSC

     – Session management: negotiate QoS parameters with MS

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 10SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GSN: GPRS Support Nodes..

    • GGSN

     – Gateway

     – Has SGSN capabilities

     – Mobility management : make sure that packets are tunneledto correct SGSN

     – Firewall

     – Border gateway (external nets) has radius client for external

    authentication.

  • 8/9/2019 GPRS Understanding

    6/52

  • 8/9/2019 GPRS Understanding

    7/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 13SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Protocols

    • SNDCP Subnet dependent convergence

    protocol:

     – Network layer protocol

     – MUX network layer users’ data into one logical message, – encryption,

     – Data compression V.42bis algorithm

     – TCP/IP header compression is supported.

     – segmentation of Network PDU into LLC frames,

     – interface between network layer and LLC

     – It supports IP, X.25 network layer protocols

     – Services PTP, PTM-M, PTM-G.

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 14SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Protocols

    • GTP : GPRS tunneling protocol – Data Link Control protocol on logical link level

     – In GSNs on the Gn interface.

     – Transported on TCP/UDP

    • BSSGP: BSS GPRS protocol, – Data Link Control protocol on Radio link level

     – In SGSN on Gb interface

     – message format

     – procedures for transfer of paging and data ,

     – link management

  • 8/9/2019 GPRS Understanding

    8/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 15SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Protocols

    • LLC: Logical Link Control:

     – higher sublayer of data link control

     – reliable logical link between MS and SGSN

     – LLC frames are variable with temporary ID max 1600Bytes – TX ACK/NAK frames,

     – Error detection and ARQ of Frames

     – Logical link is valid within one SGSN

    • RLC Radio Link Control

     – Medium sublayer of data link control

     – Detect corrupt radio blocks and request selective ARQ

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 16SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Protocols

    • MAC: Medium Access Control

     – Lower sublayer of Data link control

     – Physical channel allocation

     – Channel sharing using modified Slotted Aloha with

    reservation ( is MAC for UL or DL or both???)

    • Phy. Physical layer 

     – CRC, Channel coding, interleaving

     – Modulation...

    • L2 on SGSN/GSN can be ethernet, ATM or ISDN

  • 8/9/2019 GPRS Understanding

    9/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 17SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    PCU

    • Packet Control Unit

     – Mediator between MS (BSS) and SGSN

     – PDCHs are allocated to PCU

     – Assign channels to different MS

     – Responsible for RLC and MAC, BSSGP

     – Terminates the Gb interface

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 18SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS Protocols

    User dataPH

    FH FCSInfo

    segment segment

    segment segment

    FH BCSdata

    Physical

    RLC/MAC

    LLC

    SNDCP

    Application/ Net

    Burst

    20 m sec

    Burst Burst Burst114bits

    Encoding and puncture456bits

    RLC dataPC BCSRLC Header TUSF

    MAC Header 

    Payload

    228 Bits

  • 8/9/2019 GPRS Understanding

    10/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 19SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Protocols

    User dataPH

    segment segment

    InfoFH FSC

    segment segment

    dataFH BCS

    Encoding and puncture

    Burst

    20 m sec

    Burst Burst Burst

    Physical

    RLC/MAC

    LLC

    SNDCP

    Application/Net• Packet flow

     – SNDCP: subnet

    dependent convergence

    protocol

     – PH: Packet header 

     – FH: Frame header 

     – FCS: frame check

    sequence

     – BCS: Block Check

    sequence114bits

    456bits

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 20SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS ….

    • Air interface

     – 12 Radio blocks on a 52 multiframe over 240msec

     – Radio block is 20msec, 4 Frames

     – Number of Radio Blocks is 50 Blocks /sec

     – Frame length is 4.6 msec

  • 8/9/2019 GPRS Understanding

    11/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 21SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Radio Access (Air Interface) GSM

    • 26 Multi-frame structure for TCH/FR

    =3 Radio blocks x 4 frames + 1 Idle frame + 1 SACCH frame

    3 157 1 35726 8.25

    T Coded Data S T.Seq. S Coded Data T GP

    Burst

    Frame

    Radio Block 

    SACCH

    Idle

    576.92 µ sec

    TS0 TS7

    B0 B0B5 B5

    26 Multi-frame TCH/FR 

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 22SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Radio Access (Air Interface)

    • 52 Multi-frame structure for PDCH

    =12 Radio blocks x 4 frames + 2 Idle frames + 2 PTCCH frames

    3 157 1 35726 8.25

    T Coded Data S T.Seq. S Coded Data T GP

    Burst

    Frame

    Radio Block 

    PTCCH

    Idle

    576.92 µ sec

    B0 B12

    TS0 TS7

  • 8/9/2019 GPRS Understanding

    12/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 23SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Radio Access (Air Interface)

    Scheme Code rate USF Pre-coded

    USF

    Radio

    Block

    excl. USF

    and BCS

    BCS Tail Coded

    bits

    Punctured

    bits

    Data rate

    kb/s

    CS-1 1/2 3 3 181 40 4 456 0 9.05

    CS-2 ≈2/3 3 6 268 16 4 588 132 13.4

    CS-3 ≈3/4 3 6 312 16 4 676 220 15.6

    CS-4 1 3 12 428 16 - 456 - 21.4

    Add

    BCS

    Add

    USF

    Add

    TCoding

    1/2Puncture

    8kbps

    12 kbps

    14.4kbps20kbps

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 24SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Puncturing

    Conv.Coding

    1 0 0 1 101 101 011 001

    Output 1 P1= 01 01 11 01

    Output 2 P2= 10 10 01 00

    Puncture 1

    Puncture 2

  • 8/9/2019 GPRS Understanding

    13/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 25SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    CS-1 symbol = 1 bits

    USF

    3bits

    MAC H

    (5bits)

    FBI+ data(20 octets=160bit) + spare (0)

    (160 bits)

    Pre-code3

    181 bits TB4

    6 42P1

    408

    Total bits= 456= 456 symbol I.e. 114 symbols per PDCH

    FBI: final bit indicator. It is in the RLC header.

    Coding 1/2

    BCS40

    RLC H

    (16 bits)

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 26SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    CS-2 symbol = 1 bits

    USF

    3bits

    MAC H

    (5bits)

    FBI+ data(30 octets=240bit) + spare (7)

    (247 bits)

    Pre-code

    6 268 bits

    TB

    4

    12 42P1

    402

    Total bits= 456= 456 symbol I.e. 114 symbols per PDCH

    Coding 1/2

    BCS

    16

    RLC H

    (16 bits)

  • 8/9/2019 GPRS Understanding

    14/52

  • 8/9/2019 GPRS Understanding

    15/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 29SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Radio Access (Air Interface) GSM

    • GSM logical channel – CCCH common control

     – RACH UL Random Access (requests)

     – PCH DL Paging

     – AGCH DL Access grant ( info on dedic and time adv. – DCCH Dedicated Control

     – SACCH (DL system info, time adv., UL MAHO)

     – FACCH Info as SDCCH HO

     – SDCCH stand alone signaling

     – BCH Broadcast

     – BCCH DL system parameters

     – FCCH DL freq. correction

     – SCH DL synch – TCH Traffic

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 30SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Radio Access (Air Interface) GPRS

    • Packet data logical channel

     – PCCCH common control

     – PRACH UL Random Access (requests)

     – PPCH DL Paging

     – PAGCH DL Access grant ( prior to Pkt Tx)

     – PNCH DL Notify (PTM-M group of MS) Ph.2.

     – PDCCH Dedicated Control

     – PACCH Associated (ACK, CS page, PC,.)

     – PTCCH/U Time advance

     – PTCCH/D Time advance

     – PBCCH DL Broadcast ( may use BCCH) – PDTCH Traffic

  • 8/9/2019 GPRS Understanding

    16/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 31SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Radio Access (Air Interface) GPRS

    • Mapping Logical Packet data channels into

    Physical channel PDCH

     – PCCCH mapped on 52 multi-frame

     – PRACH UL 1 or more PDCH – PPCH DL 1 or more PDCH

     – PAGCH DL 1 or more PDCH

     – PNCH DL 1 or more blocks on PCCCH

     – PDCCH

     – PACCH Dyn. allocated block basis

     – PTCCH/U-D 2 defined frames

     – PBCCH DL 1 or more PDCH

     – PDTCH 1 PDCH. Up to 8 MS per PDCH

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 32SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    PDCH Allocation

    • PDCH is a time slot (physical)

    • Dedicated PDCH

     – Allocated/ released by the operator 

     – up to 8 PDCH can be allocated per cell

    • On-demand PDCH

     – Temporary Dynamically allocated/ released

     – no limit on number of PDCHs

     – Load supervision function handles the high load in the cell

     – SGSN allocated the PDCHs to the PCU.

    • The PCU assign the PDCH to the MS

  • 8/9/2019 GPRS Understanding

    17/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 33SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    PDCH Allocation

    • PDCH are allocated for GPRS in sets (PSET)

     – Max 4 PDCH per PSET

     – must be consecutive

     – same carrier (RF) ( Hop on the same FH group of RF)

     – PDCHs in the same PSET can be dedicated and on-demand

     – MS can be assigned PDCH from same PSET

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 34SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    PDCH Allocation ...

    • GPRS Idle List ( in the BSS)

     – It is a list of available recourses (PDCHs) to be used for PS

     – Dedicated : Idle list can not be used by GSM

     – On-Demand: Idle list can be shared by GSM

    GSM

    Idle List

    On-Demand

    GPRS

    Idle List

    Dedicated

    GPRSIdle List

  • 8/9/2019 GPRS Understanding

    18/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 35SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    PDCH Allocation ...

    • CS calls (GSM)

     – check available channels in GSM Idle list

    GSM

    Idle List

    On-Demand

    GPRS

    Idle List

    Check GSM

    Idle List

     Any

    TCH

    Check

    on-demandIdle List

     Any

    PDCH

    no active

    TBF

     Assign

    TCHChange

    to TCH

    Pre-empty

    PDCH   E  n   d  c  a   l   l   g  o   t  o   I   d   l  e   l   i  s   t

    GSM

    GPRSN

    NY

    Y

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 36SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    PDCH Allocation ...

    • PS calls (GPRS)

    Check GSM

    Idle List

     Any

    TCH

    Check GPRS

     Allocated List

    PDCH

    low load

    Convert to PDCH

     Assign

    PDCH

    Check

    GPRSIdle list

       E  n   d  c  a   l   l   g  o   t  o   I   d   l  e   l   i  s   t

    GSM

    GPRS

    N

    N

    Y

    GPRS

    Dedicated

    PDCH

    Y

    N

    on-demand

     Any

    PDCH. Dedicated

    first

    Y

    N

    Timer 

    Block

  • 8/9/2019 GPRS Understanding

    19/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 37SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Modes

    On demand Dedicated

    - Voice and data - Data only

    - Priority for voice - No voice

    - Same coverage as

    GSM

    - Guaranteed Throughput

    - Mainly coverage - Capacity

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 38SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Master slave

    • MPDCH

     – 2 options ( with MPDCH) and (No MPDCH =on demand)

     – Decided by operator: MPDCH can be added and removed on air 

    • No MPDCH

     – Uses only BCCH, PCH, RACH, AGCH

     – MS specifies the service PS or CS

    • With MPDCH

     – MS listen to BCCH first to get info on the PBCCH, PPCH

     – uses PBCCH, PPCH, PACH – for Access CS uses ACH , PS uses PACH

  • 8/9/2019 GPRS Understanding

    20/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 39SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Network Operation modes

    • 3 Network operation modes

     – Based on the Gs interface

    Mode

    I

    II

    III

    CS

    PPCH

    PCH

    PDTCH

    PCH

    PCH

    PCH

    GPRS

    PPCH

    PCH

    -

    PCH

    PPCHPCH

    Coordination

    Yes

    No

    No

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 40SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Network Operation modes ...

    BSC

    MSC/

    VLR

    SGSN

    BSC

    MSC/

    VLR

    SGSN

    •combined LA and RA update

    •combined paging

    •longer sleep periods for MS

    •smaller paging load

    •MS is only paged within RA

    •separate LA and RA update

    •MS needs to listen to two types

    of paging channels

    •MS is paged in Location Area

    I

    II

    &

    III

  • 8/9/2019 GPRS Understanding

    21/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 41SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Paging

    • For Network operation Mode I , MS class A,B

     – CS pages are sent from MSC to SGSN instead of directly to BSC

     – SGSN knows where the MS on

     – cell level when MS is on READY state. – RA level otherwise

     – SGSN sends the page to PCUs with cell or RA info

     – PCU sends the page on

     – PPCH or PCH

     – PACCH if the MS is in packet transfer mode

    • For Network operation Mode III, MS class A,B,C

     – CS pages are sent from MSC to BSC to MS on PCH

     – PS pages are sent from SGSN to PCU to MS on PPCH or PCH

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 42SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Packet transfer between MS and BSS

    • There is a physical connection established between the RLC of

    MS and BSS only during Packet transfer called TBF.

    • There is one TBF for UL and one TBF for DL

    • Released if there is no RLC blocks for transmission.

    • MS will get an ID for the TBF (TFI) for each direction from the

    PCU during attach procedure

    • Packet transfer can be ACKed or unACKed

    • Which protocol is responsible for the TBF??

  • 8/9/2019 GPRS Understanding

    22/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 43SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    TBF

    • TBF is Logical connection between MS and PCU in the

    BSS

    • It is carried over physical PDCH ( changes)+ DS0 on A’

    • It is defined by the TFI• TFI changes if the MS changes BSC.

    PHY

    SNDCP

    LLC

    RLC

    MAC

    L1bisPHY

    BSSGP

    FR

    IP

    TCP

    UDP

    Appl.

    MS BSS

    RLC

    MAC

    LLC relay

    Gb

    TBF

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 44SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    BSS to SGSN

    • SGSN is connected to each cell ( BTS) in the

    BSS via a virtual connection.

    • The virtual connection is BSSGP VC (BVC)

    and it has Id called BVCI

    • LCC frames is transferred between SGSN andBSS (PCU) over the BVC

    • BVC (s) are carried over the physical FR PVCs

    over DS0 on Gb.GTP

    PHY

    RLC

    MAC

    L1bis L1bis

    LLC

    IP

    BSSGP

    FR

    L1

    SNDCP

    BSS SGSN

    L2BSSGP

    FR

    TCP/

    UDP

    IP relay

    LLC relay

    Gb

    SGSN

    BSC

    BTS

    BTS

    BTS

    BVC

  • 8/9/2019 GPRS Understanding

    23/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 45SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MS and SGSN connection

    • The MS is attached to net by sending the IMSI and the

    NSAPI ( net sever Access Point ID) to the SGSN.

    • SGSN authorize and authenticate the MS and Assign it

    TLLI ( Temp LL ID)

    • The LLC Link is established and stays alive as long as

    the MS is connected to the SGSN.

    PHY

    SNDCP

    LLC

    RLC

    MAC

    L1bisPHY

    BSSGP

    FR

    IP

    TCPUDP

    Appl.

    MS BSS

    RLC

    MAC

    LLC relay

    TBF

    GTP

    L1bis

    LLC

    IP

    L1

    SNDCP

    SGSN

    L2BSSGP

    FR

    TCP/

    UDP

    Gb

    BVC

    LLC

    PVC

    SAPI

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 46SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    MS and SGSN connection ...

    • TLLI

     – Identify the MS on the LLC

    • SAPI

     – Identify the service access ( IP services) on LLC

    • DLCI ( generated from TLLI & SAPI)

     – Identify the LCC connection between MS and SGSN

    • NSAPI : Identify the Access provider on SNDCP

    PHY

    SNDCP

    LLC

    RLC

    MAC

    L1bisPHY

    BSSGP

    FR

    IP

    TCPUDP

    Appl.

    MS BSS

    RLC

    MAC

    LLC relay

    TBF

    GTP

    L1bis

    LLC

    IP

    L1

    SNDCP

    SGSN

    L2BSSGP

    FR

    TCP/

    UDP

    Gb

    BVC

    LLC

    PVC

    SAPI

  • 8/9/2019 GPRS Understanding

    24/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 47SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    SGSN to GGSN connection

    • GTP

     – establishing tunnels on PDP activation. Each tunnel has ID (TID) made

    of IMSI and NSAPI. I.e. unique tunnel between MS and ISP

    GTP

    L1bis

    LLC

    IP

    L1 L1

    L2

    SNDCP

    IP

    SGSN GGSN

    L2BSSGP

    FR

    IP

    GTP

    TCP/

    UDP

    TCP/

    UDP

    IP relay

    Gn

    IMSI123

    TLLI55

    Cell12

    NSAPI1

    GGSN4.3.2.1

    PDPa.b.c

    PDPa.b.c

    IMSI123

    NSAPI1

    SGSN4.5.6.1

    • MS has IP address “a.b.c”

    • MS ID “IMSI”

    • LLC frames on LLC with

    “TLLI”

    • Connected to “NSAPI”

    • IP Packets encapsulated in

    GTP and sent to GGSN“4.3.2.1”

    • Received packets

    from “4.5.6.1” is

    decapsulated given

    the inner IP “a.b.c”

    that belongs to MS

    IMSI

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 48SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Packet transfer 

    IMSI

    123

    TLLI

    55

    Cell

    12

    NSAPI

    1

    GGSN

    4.3.2.1

    PDP

    a.b.c

    PDPa.b.c

    IMSI123

    NSAPI1

    SGSN4.5.6.1

    SGSN

    BSC

    BTSBVC

    MS

    Src. A.b.c

    dest. d.e.f PHY

    SNDCP

    LLC

    RLCMAC

    L1bisPHY

    BSSGPFR

    IP

    TCP

    UDP

    Appl.

    MS BSS

    RLCMAC

    LLC relay

    TBF

    GTP

    L1bis

    LLCIP

    L1

    SNDCP

    SGSN

    L2BSSGP

    FR

    TCP/

    UDP

    Gb

    BVC

    LLC

    PVC

    SAPI

    d.e.f 

    GGSN

    LLC  c o n n e c t i o n  “ T LLI ” 

    TBF

    P  V  C  . D  S  0  

     A ’   D  S  0  

    P   D   C   H   

      G   T  P

    I P  P a c k e t 

    T  LLI + N S  A P I 

      I  P   p a c  k e  t

      G  I  D

      T  C  P  /  I  P 

      H

    4.5.6.1

    4.3.2.1

    Src. A.b.c

    dest. d.e.f 

    IP

  • 8/9/2019 GPRS Understanding

    25/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 49SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MAC

    • Allows MS to share same PDCH on the UL ( up to 8)

    • on every DL MAC header there are 3 bits USF (UL

    state Flag). It identifies which MS to transmit

    • Immediately after the Attach, The MS is given the

    TFI

    • At TBF the MS is given the list of PDCH ( PSETS) and

    an ID for the USF

    • MS will always listen to the PDCHs.• MS will transmit on the PDCH that contains its USF

    ID.

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 50SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Packet Scheduling on UL

    • PCU does scheduling

     – reserve PDCH and assign USF to it for the MS

     – In next DL RLC block. PCU puts this USF in MAC header 

     – All MSs on this PDCH (s) listen to the MAC header USF for all

    DL RLC Blocks.

     – The MS whose USF ID matches the USF starts to transmit.

  • 8/9/2019 GPRS Understanding

    26/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 51SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Packet Scheduling on UL

    • Some MS share same PDCH on the UL

     A1

     A2 A3

    B1B2

    B3

    C1C2

    C3

    S1

    S1

    S1

    S2

    S2S2

    S3

    S3

    S3

    S2

    DL

    USF =

    ULB1S1 S1 S3

    B2 A1 C1 A2S2 S3 S3 S2

    C2 C3 B3  A3S1

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 52SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS Send and receive Packets

    • Before Packet transfer, the GPRS must be

    attached and ready.

     – Attach procedure

     – Activation of PDP context

     – Packet data Transfer 

  • 8/9/2019 GPRS Understanding

    27/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 53SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Attach Procedure

    • Attach procedure

     – Initiated by MS ( on ready state)

     – MS (IMSI) , class, ciphering key are delivered to net.

     – User info updated in SGSN – Location info sent to the new MSC/VLR

     – MS is given a TLLI

     – PCU gives the MS TFI

    • After the attach procedure,the MS is ready for 

     – SMS transfer 

     – activate PDP context

     – receive PTM-M

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 54SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS attach

    BTS BSC

    SGSNGGSN

    HLRMSC/VLR

    IP

    Back bone

    MS request attache

     Authentication

    use info into SGSN and MSC

    attach procedure completed

  • 8/9/2019 GPRS Understanding

    28/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 55SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    PDP

    • PDP (packet data protocol) is activated for each

    session.

     – MS requests the network to activate PDP context with requested

    QoS. – Network can request activation of PDP.

     – PDP can be activated for fixed and dynamic IP address

     – MS can have more than one PDP activated

     – PTP and PTM transfer requires activated PDP

     – Routing is enabled between SGSN and GGSN

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 56SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS PDP

    BTS BSC

    SGSNGGSN

    HLR

    IP

    Back bone

    MS request PDP

    SGSN validates the request

    DNS in SGSN gives GGSN’s IP

    Logical connection created

    GGSN assign Dynamic IP to MSConnect to external net

    DNS

  • 8/9/2019 GPRS Understanding

    29/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 57SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Mobility Management

    Idle

    Standby

    Ready

    • Ready for data transfer but not

    active

    • MM context active ( RA update)

    • Receive

     – paging for PTP, PTM-G, and CS

     – PTM-M data

    • Data reception without paging Ready Timer outabnormal RLC

    forced to STANDBY

    LLC PDU

    received

    • PLMN selection

    • Cell selection

    • Re-selection

    • Receive PTM-M data

    GPRS AttachGPRS

    detachSTANDBY Timer out

    or cancel location

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 58SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    C/I [dB]

       B   l  o  c   k   E  r  r  o

      r   R  a   t  e

    0

    10

    20

    0 5 10 15 20 25 30

    CS-1

    CS-2

    CS-3

    CS-4

    C/I [dB]

       T   h  r  o  u  g   h  p  u   t

      p  e  r  c   h  a  n  n  e   l

    T[C/I] = ( 1-BLER[C/I] )×Traw

    Link/ System Level Simulations

  • 8/9/2019 GPRS Understanding

    30/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 59SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Simulations

    • Performance

    ResultsC/I=9dB

    CS1--> 40kbps

    CS2--> 50kbps

    C/I=15dB

    CS2-->65kbps

    System Throughput Downlink: 8 PDCH

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25 30 35

    C/I (dB)

       m   e   a   n   (   k   b   i   t   /   s   ) CS1 MSC2

    CS1 MSC4

    CS2 MSC2

    CS2 MSC4

    CS3 MSC2

    CS3 MSC4

    CS4 MSC2

    CS4 MSC4

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 60SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS Simulations

    Performance

    • System capacity

    • C/I

     – mean=15dB – var=3dB

    System Throughput downlink: CS 2

    0

    10

    20

    30

    40

    50

    60

    70

     A B C D E F

    # User 

       m   e   a   n   (   k   b   i   t   /   s   )

    CS 2 - 8 PDCHs

    CS 2 - 4 PDCHs

    CS 2 - 2 PDCHs

    CS 2 - 1 PDCHs

    1 3 5 7 9 11 1PDCH2 6 10 14 18 22 2PDCH4 10 16 22 28 34 4PDCH10 20 30 40 50 60 8PDCH

  • 8/9/2019 GPRS Understanding

    31/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 61SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GPRS Simulations

    Performance

    • User Throughput

    C/I

     – mean=15dB

     – var=3dB

    • 4TS DL

    WWW Object Throughput downlink: 4 PDCHs

    0

    5

    10

    15

    20

    25

    4 10 16 22 28 34

    # User 

       m   e   a   n   (   k   b   i   t   /   s   )

    CS 1 - MSC 4

    CS 2 - MSC 4

    CS 1 - MSC 2

    CS 2 - MSC 2

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 62SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Reference

    • Jian Cai et al, “General Packet Radio Services in GSM,” IEEE

    communication Mag. Oct. 1997. Handout # 18 

    • Ericsson Review “ GPRS”

    http://www.ericsson.com/about/publications/review/1999_02/fil

    es/1999024.pdf 

    • http://www.gprsworld.com

  • 8/9/2019 GPRS Understanding

    32/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 63SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Enhanced Data rates for Global Evolution (EDGE)

    • EDGE is essentially a TDMA technology with

    higher level modulation and coding and

    combined timeslots & carriers to meet ITU’s IMT-

    2000 requirements for TDMA( IS136) and GSMsystems

    • Introduces concept of “Link Adaptation” in

    wireless for maximum throughput in variable

    radio conditions

    • EDGE is a convergence of TDMA( IS 136) and

    GSM!

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 64SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Enhanced Data rates for Global Evolution (EDGE)

    • EDGE is designed for easy and stepped migration

    towards 3G for both TDMA(IS 136) and GSM

    • EDGE = EGPRS +ECSD

    • Today(2002): some TDMA (IS136) operators have

    started to deploy Overlay GSM/GPRS Network ….

    Radio Net

    GPRS

    EDGE (EGPRS)

    Core NetGPRS

  • 8/9/2019 GPRS Understanding

    33/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 65SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    EDGE

    • Release 99

     – finished

     – ECSD + EGPRS

     – Basic functionality (Link Quality, MCS, .. GPRS stack)

    • release 00/01 ( R4 &5))

     – RT EGPRS

     – New protocol Stack

     – GERAN

     – Enhance system performance (close to UMTS)

     – HR on 8PSK,

     – wideband vocoder 

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 66SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    The EDGE Radio Interface

    • Carrier Spacing = 200 kHz

    • Frame Length = 4.6 ms split into 8 time slots

    • Modulation Formats:

     – 8-PSK, data channels

     – GMSK, robust fall back, control channels

    • Interleaving over 4 Frames

    • Link Quality Control:

     – Optimize Throughput w.r.t. the Radio Quality

     – Combination of Link Adaptation and Incremental

    Redundancy... – Data rate per Time Slot 8.8 - 59.2 kbps

  • 8/9/2019 GPRS Understanding

    34/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 67SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Radio Access (Air Interface) Classic

    • Packet data logical channel

     – PCCCH common control

     – PRACH UL Random Access (requests)

     – PPCH DL Paging – PAGCH DL Access grant ( prior to Pkt Tx)

     – PNCH DL Notify (PTM-M group of MS) Ph.2.

     – PDCCH Dedicated Control

     – PACCH Associated (ACK, CS page, PC,.)

     – PTCCH/U Time advance

     – PTCCH/D Time advance

     – PBCCH DL Broadcast ( may use BCCH)

     – PDTCH Traffic

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 68SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Radio Access (Air Interface)

    • Mapping logical channels to physical channel

     – 3 different configurations

     – config. (1) for first TS on the first RF carrier 

     – Config (2 ) for second TS of first carrier of can be on another carrier…

     – Config (3), for all the rest of TSs

    • In GSM can you have Config. ( 1 or 2) why?...

       P

       B   C   C   H

       P

       C   C   C   H

       P

       D   T   C   H

       P

       D   C   C   H

       P

       C   C   C   H

       P

       D   T   C   H

       P

       D   C   C   H

       P

       D   T   C   H

       P

       D   C   C   H

    1 23

  • 8/9/2019 GPRS Understanding

    35/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 69SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MCS-9 symbol = 3 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (45 bits)

    FBI+data(74 octets=592bit)

    +BCS +TB(612 bits)

    coding36 Coding 1/3(135) Coding 1/31836

    36 124P1

    612

    SB

    8

    Total bits= 1392= 464 symbol

    FBI+data(74 octets=592bit)

    +BCS +TB(612 bits)

    Coding 1/31836

    P1

    612

    36 124P2

    612

    SB

    8

    P2

    612

    36 124P2

    612

    SB

    8

    P2

    612

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 70SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    MCS-8 symbol = 3 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (45 bits)

    FBI+data(68 octets=544bit)

    +BCS +TB(564 bits)

    coding

    36

    Coding 1/3

    (135)

    Coding 1/3

    1692

    36 124P1

    612

    SB

    8

    Total bits= 1392= 464 symbol

    FBI+data(68 octets=544bit)

    +BCS +TB(564 bits)

    Coding 1/3

    1692

    P1

    612

    36 124P2

    612

    SB

    8

    P2

    612

    36 124 P2612

    SB8

    P2612

  • 8/9/2019 GPRS Understanding

    36/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 71SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MCS-7 symbol = 3 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (45 bits)

    FBI+data(56 octets=448bit)

    +BCS +TB(468 bits)

    coding36 Coding 1/3(135) Coding 1/31404

    36 124P1

    612

    SB

    8

    Total bits= 1392= 464 symbol

    FBI+data(56 octets=448bit)

    +BCS +TB(468 bits)

    Coding 1/31404

    P1

    612

    36 124P2

    612

    SB

    8

    P2

    612

    36 124P2

    612

    SB

    8

    P2

    612

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 72SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    MCS-6 symbol = 3 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (33 bits)

    FBI+ data(74 octets=592bit)+BCS +TB

    (612 bits)

    coding

    36

    Coding 1/3

    (99 bits)+ 1 padding

    Coding 1/3

    1836

    36 100P1

    1248

    SB

    8

    P2

    124836 100

    SB

    8

    Total bits= 1392= 464 symbol

  • 8/9/2019 GPRS Understanding

    37/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 73SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MCS-5 symbol = 3 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (33 bits)

    FBI+ data(56 octets=448bit)+BCS +TB

    (468 bits)

    coding36

    Coding 1/3(99 bits)+ 1 padding

    Coding 1/31404

    36 100P1

    1248

    SB

    8

    P2

    124836 100

    SB

    8

    Total bits= 1392= 464 symbol

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 74SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    MCS-4 symbol = 1 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (36 bits)

    FBI+data(44 octets=352bit)

    +BCS +TB(372 bits)

    coding

    12

    Coding 1/3

    (108)

    Coding 1/3

    1116

    12 68P1

    372

    SB

    8

    Total bits= 464= 464 symbol

    12 68P2

    372

    SB

    8

    12 68 P2372

    SB8

  • 8/9/2019 GPRS Understanding

    38/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 75SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MCS-3 symbol = 1 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (36 bits)

    FBI+data(37 octets=296bit)

    +BCS +TB(316 bits)

    coding12 Coding 1/3(108) Coding 1/3948

    12 68P1

    372

    SB

    8

    Total bits= 464= 464 symbol

    12 68P2

    372

    SB

    8

    12 68P2

    372

    SB

    8

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 76SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    MCS-2 symbol = 1 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (36 bits)

    FBI+ data(28 octets=224bit)+BCS +TB

    (244 bits)

    coding

    12

    Coding 1/3

    108

    Coding 1/3

    672

    12 68P1

    372

    SB

    8

    P2

    37212 68

    SB

    8

    Total bits= 464= 464 symbol

  • 8/9/2019 GPRS Understanding

    39/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 77SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    MCS-1 symbol = 1 bits

    USF

    3bits

    RLC/MAC Header +HCS

    (36 bits)

    FBI+ data(22 octets=1762bit)+BCS +TB

    (196 bits)

    coding12

    Coding 1/3108

    Coding 1/3588

    12 68P1

    372

    SB

    8

    P2

    37212 68

    SB

    8

    Total bits= 464= 464 symbol

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 78SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GPRS vs GMSK MCSs of EGPRS

    MCS Code rate Bit rate/TS

    MCS-1 0.53 8.8

    MCS-2 0.66 11.2

    MCS-3 0.8 14.8

    MCS-4 1 17.6

    CS Code rate Bit rate

    CS1 1/2 9.05

    CS2 2/3 13.4

    CS3 3/4 15.6

    CS4 1 21.4

    EGPRS GPRS

       B

      o   t   t  o  m   o   f   M   A   C

     ,

      n

      o   U   S   F ,   B   C   S  o  r   T   B

    Bit rate

    8

    12

    14.4

    20

       B

      o   t   t  o  m   o   f   L   L   C

       B

      o   t   t  o  m   o   f   L   L   C

    Is GPRS a subset of EGPRS??What throughput you are really measuring?

    GSM 3.64 GSM 4.6

  • 8/9/2019 GPRS Understanding

    40/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 79SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Link Quality Control

    • Why

     – path loss, Shadowing and rayligh fading Carrier change

     – Bursty packet data lead to bursty interference

     – Increase packet throughput

     – Link quality control

     – Link quality C/I , BER, FER, BLER,..

    • Type II Hybrid ARQ ( ARQ with adaptive

    Modulation/coding)

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 80SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Link Quality Control

    • LA Link Adaptation

     – select the MCS that gives a maximum throughput for

    certain C/I

    • IR (Incremental Redundancy)

     – Packet is sent with a certain puncture scheme

     – If a packet is received in error, the transmitter will

    retransmit the packet with another puncture scheme

     – at the end all the packets will be combined ( better

    performance)

  • 8/9/2019 GPRS Understanding

    41/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 81SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    IR

    • RLC block size

    MCS-9

    Family A MCS-6

    MCS-3

    MCS-7

    Family B MCS-5

    MCS-2

    MCS-4

    Family C MCS-1

    22 byte 22 byte

    22 byte

    28 byte 28 byte 28 byte 28 byte

    28 byte 28 byte

    28 byte

    37 byte 37 byte 37 byte 37 byte

    37 byte 37 byte

    37 byte

             F         i       n

            d          t

             h      e

              R         L        C

              b         l      o

          c         k       s

             i       z      e

             f      o       r          M

            C         S

             8         ?

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 82SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    IR

    • RLC block size

    MCS-9

    Family A MCS-6

    MCS-3

    example

    • MCS-9 carries 2 RLC blocks @ 74 byte each

    • Retransmission using MCS-6

    • for further retransmission, 74byte block will be

    segmented into 2 x 37 blocks MCS-3.

    37 byte 37 byte 37 byte 37 byte

    37 byte 37 byte

    37 byte

  • 8/9/2019 GPRS Understanding

    42/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 83SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Modulation and Coding Schemes for EDGE

    MCS Modulation Code rate Bit rate/TS

    MCS-1 0.53 8.8

    MCS-2 GMSK 0.66 11.2

    MCS-3 0.8 14.8

    MCS-4 1 17.6

    MCS-5 0.37 22.4

    MCS-68-PSK

    0.49 29.6

    MCS-7 0.76 44.8

    MCS-8 0.92 54.5

    MCS-9 1 59.2

    Family H Code rateRLC/20m

    C 1/2 1

    B 1/2 1

    A 1/2 1

    C 1/2 1

    B 1/3 1

    A 1/3 1

    B 0.35 2

    A 0.35 2

    A 0.35 2

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 84SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Link Adaption: LA

    0

    10

    20

    30

    40

    50

    60

    0 5 10 15 20 25 30 35 40 45C/I

           k       b       i       t       /     s

    MCS-1MCS-2MCS-3MCS-4

    MCS-5

    MCS-6

    MCS-7

    MCS8

    MCS-9

  • 8/9/2019 GPRS Understanding

    43/52

  • 8/9/2019 GPRS Understanding

    44/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 87SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GERAN

    • GSM EDGE Radio Access Network

    for easy transition between 2G and full 3G (UMTS) and align

    with the UMTS SERVICES

    • Motivation

     – All IP Network

     – Low cost of operation

     – One platform

     – support of new services

     – Support for different access networks

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 88SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Requirements GERAN

    • Spectrum efficient support for VoIP, (end-to-end

    IP-based voice service), Quality TDMA

    • Integration of all services over IP infrastructure

    • Alignment with UMTS/UTRAN service classes and

    QoS

    • Common GPRS and GSM Core Network for EDGE

    and UTRAN

    • Support of EDGE/GPRS R97 and R99 terminals

    • Software upgrade to EDGE R99 base stations

  • 8/9/2019 GPRS Understanding

    45/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 89SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    EDGE R4,5 features

    • Channel coding

     – Turbo code

    • Interleaving (variable length)

    • Voice over 8PSK AMR half rate R5

    • Wideband codec AMR R5

    • all IP (RT application)

    • PDCP

    • enhanced cell reselection R4

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 90SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    GERAN

    3G SGSN

    Iu-ps'

    TE MT

    Um

    BSS

    GERAN

    Core Network 

    3G MSC

    MGW

    SGSN server 

    SGSN

    MSC server 

    Iu-cs'

    Gb

    MSC

    A

    MGW

    GERAN connects to PS CN through:

    Iu-ps for R4, R5 terminals

    New protocols

    Gb for R97 and R99 terminalsLLC and SNDCP protocols

    GERAN connects to CS CN through:Iu-cs or A

  • 8/9/2019 GPRS Understanding

    46/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 91SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    GERAN Interfaces

    • A

     – GSM CS interface

    • Iu-CS – WCDMA CS interface could be considered for GERAN

    • Gb

     – GPRS interface not suitable for RT transmission

     – LLC+RLC both ARQ protocols

     – IP instead of FR

    • Iu-PS – UTRAN PS, IP, QoS, AAL2/ATM , possibly IP over SDH

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 92SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Functional split between CN and GERAN

    • HO support for RT IP services in RAN (new in R4)

    • Ciphering

     – R4 GERAN, – R99 SGSN

    • Header compression

     – R4 GERAN

     – R99 SGSN

    • Radio resource handling in RAN (R99, R4)

    • Support Iu bearer (R5)

  • 8/9/2019 GPRS Understanding

    47/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 93SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Iu-PS and Gb

    Function

    ciphering

    compression

    IP header & payload

    Termination of

    LLC and SNDCP

    Buffer management

    flow controlRR handeling

    Iu-PS

    RAN

    RAN

    RAN

    RAN

    NoRAN

    Gb

    CN

    CN

    CN

    CN

     YesCN+RAN

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 94SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Protocol Stack R4,..

    • PDCP (Packet data convergence protocol UTRA)

     – TCP/IP, UDP/IP with H compression

     – Buffering and numbering PDCP SDUs

     – Transfer of user data

     – Multiplexing

    L1

    MAC

    RLC

    PDCP

    L1

    MAC

    RLC

    PDCP

    MS CN

  • 8/9/2019 GPRS Understanding

    48/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 95SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Protocol Stack R99

    • LLC

     – ACK and none-ACK modes

     – Error detection

     – ciphering

    • SNDCP

     – Transfer of user data

     – Multiplexing

     – Buffering and ARQ

     – Segmentation and assembly

     – H and payload compression (optional) TCP

     – management of delivery sequence

    L1

    MAC

    RLC

    LLC

    L1

    MAC

    RLC

    LLC

    MS CN

    SNDCP SNDCP

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 96SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Compare SNDCP and PDCP

    • Overhead

     – PDCP 1 Byte

     – SNDCP

     – ACK LLC+ Segment = 3+1= 4

     – none-ACK LLC+Segment=4+3=7

     – LLC

     – ACK LLC =7

     – none_ACK LLC=6

    • example: VoIP, none_ACK LLC without segmentation

    PDCP 1 byte SNDCP/LLC = 4+6=10 bytes

  • 8/9/2019 GPRS Understanding

    49/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 97SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Protocol Layering and Segmentation

     Appli catio n PDU   PayloadHeader 

    PayloadHeader TCP PDU

    PayloadHeader PayloadHeader 

    PayloadHeader 

    IP PDU

    PayloadHeader PayloadHeader PayloadHeader SNDCP PDU

    PayloadHeader PayloadHeader LLC PDU

    PayloadH PayloadH PayloadH PayloadH PayloadHMAC/RLC PDU

    Protocol Header size(octets)

    Resulting PDU size(octets)

    TCP 20 556

    IP 20 576SNDCP 4 580

    LLC 7 587

    Total 51 587

    Maximum TCP segment size: 536 ⇒

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 98SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    TCP Transactions (simplified)

    Data WWW / Bulkobject

     ACK

    Data

    WWW / Bulkobject

    WWW / BulkClient

    TCP Client TCP Server WWW / Bulk

    Server 

     ACK

     ACK

    Data

    Data

    Data

    Data

    Data

    WWW / Bulkobject

    Data

     ACK

    Data

    Data

     ACK

    last Data

     ACK

    WWW / Bulkobject

    delayed ACK(max. 200ms)

  • 8/9/2019 GPRS Understanding

    50/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 99SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    RLC Downlink Transactions

    T i    m e

    Data

    Data

    Data

    Packet Downlink Ack/

    Nack

    Packet Downlink Ack/Nack Final

    RLC-MS   RLC-BSSTCP (Client) TCP (Server)

    Packet Control

     Acknowledgement

    TCPSegment

    TCP Segment

    downlink TBFestablishment

    (60ms)

    Data

    Packet Downlink

     Assignment

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 100SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Downlink TBF Establishment

    • Multi-Slot capability: 4TSsunused (=overhead) RLC Radio Blocks

    PDATime

    20ms 20ms(idle block)

    20ms(uplink PacketControl ACK)

    data

    data

    data

    data

    data

    data

    data

    data

    data

    idle

    idle

    padding

    data transmission

    transmission delay

    TS4

    TS3

    TS2

    TS1

  • 8/9/2019 GPRS Understanding

    51/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 101SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    RLC Uplink Transactions

    T i    m e

    Packet Channel

    Request

    Packet Uplink

     Assginment

    Data

    Packet Uplink Ack/

    Nack

    RLC-MS   RLC-BSSTCP (Client) TCP (Server)

    TCP ACK

    Data

    Data

    Packet Control

     Acknowledgement Final

    Packet Uplink Ack/

    Nack

    TCP ACK

    pendingretransmission

    GPRS/ EDGE

    © 2005 H. H’mim Lecture 7 Slide 102SMU EE 8315 Advanced To ics in Wireless Communications - S rin ’05

    Over Head calculation

    • Example :GPRS

     – one TCP = 536 B

     – TCP+OH=536+51=587B

     – # of RLC= (TCP+OH)/RLC-size

     – total_data=(#of RLC+TBF)*RLC_size

     – OH=(total_data -TCP_size) /total_data

    TBF signaling overhead:

    CS

    CS1

    CS2

    CS3CS4

    RLC (B)

    20

    30

    3650

    #of RLC

    30

    ..

    ..12

    TBF

    22

    22

    Protocol

    TCP

    IP

    SNDCPLLC

    total

    Header 

    20

    20

    47

    51

    Total Data

    640..

    ..700

    OH

    16.2%..

    ..23.5%

  • 8/9/2019 GPRS Understanding

    52/52

    GPRS/ EDGE

    © 2005 H. H’mimy Lecture 7, Slide 103SMU EE 8315 Advanced Topics in Wireless Communications - Spring’05

    Header + Padding Overhead EDGE R99

    ModulationandCodingScheme

     Applica-tion PDUsize(octets)

    RLC PDUpayloadsize(octets)

    Number of RLC PDUs(octets)

    TotalData(octets)

    Over-head

    %

    MCS 1501000

    22551

    1101122

    54.510.9

    MCS 5 501000

    56 22

    1121120

    55.410.7

    MCS 9501000

    14818

    1481184

    66.215.5

    • Overhead Calculation

    Example 1:

     – MCS-1, Bulk PDU 50B

    ⇒ 50bytes

    101 bytes including headers(51 bytes per TCP segment)

    ⇒ 5 RLC PDUs=110 bytes

    including padding

    • Example 2:

     – MCS-9, Bulk PDU 1kB

    ⇒ 1000/536 =1 complete TCP segment + 464 bytes

     

    1000+2*51 =1102 bytes including headers

    ⇒ 1102/148 =8 RLC PDUs=1184 bytes including padding

     – OH= (1184-1000)/1184=15.5%