Goetech. engg. Ch# 03 settlement analysis signed

71
GEOTECHNICAL ENGINEERING - II Engr. Nauman Ijaz SETTLEMENT ANALYSIS Chapter # 03 UNIVERSITY OF SOUTH ASIA

Transcript of Goetech. engg. Ch# 03 settlement analysis signed

Page 1: Goetech. engg. Ch# 03 settlement analysis signed

GEOTECHNICAL ENGINEERING - II

Engr. Nauman Ijaz

SETTLEMENT ANALYSIS

Chapter # 03

UNIVERSITY OF SOUTH ASIA

Page 2: Goetech. engg. Ch# 03 settlement analysis signed

SETTLEMENT

� When a soil deposit is loaded, deformation will occur due to change in stress. The total vertical downward deformation at the surface resulting from the load is called Settlement.

� Similarly when load is decreased (e.g during � Similarly when load is decreased (e.g during excavation) the deformation may vertically upward and is known as swelling.

� Estimate of settlement and swelling are made using identical procedures.

Page 3: Goetech. engg. Ch# 03 settlement analysis signed

TYPES OF SETTLEMENT� Types with respect to Permanency.a) Permanent settlementb) Temporary Settlement.

� Types with respect to Mode of Occurrence.a) Primary consolidation settlement (Sc)b) Secondary consolidation settlement (Ss)c) Immediate settlement (Si)

� Types with respect to Uniformity.a) Uniform settlementb) Differential settlement

Page 4: Goetech. engg. Ch# 03 settlement analysis signed

Types with respect to Permanency

� Permanent Settlement (Irreversible settlement):

• This type of settlement is caused due to distortion brought about by sliding and rolling of particles under the action of applied stresses.The sliding and rolling will reduce the voids resulting in • The sliding and rolling will reduce the voids resulting in reduction of volume of soil deposit.

• The increased in stresses may also crush the soil particles while alter the material and produce some settlement.

• This type of settlement is permanent and undergoes insignificant recovery upon removal of load.

• Settlement due to consolidation (both primary and Secondary) generally falls under this category.

Page 5: Goetech. engg. Ch# 03 settlement analysis signed

TEMPORARY SETTLEMENT

� Settlement due to elastic compression of soil are usually reversible and recover a major part upon load release.release.

� Immediate settlement falls under this category.

� This settlement is generally small in soils.

Page 6: Goetech. engg. Ch# 03 settlement analysis signed

TYPES WITH RESPECT TO MODE OF

OCCURRENCE:

� PRIMARY CONSOLIDATION SETTLEMENT (Sc):� These settlements are time dependent or

long term settlements and completion time varies from 1- 5 years or more.

� This is also known as Primary consolidation (i.e the settlement caused due to expulsion of water from the pores of saturated fine grained soils (clays).

� This type of settlement is predominant in saturated inorganic fine grained soil (clays).

Page 7: Goetech. engg. Ch# 03 settlement analysis signed

SECONDARY CONSOLIDATION

� This is the consolidation under constant effective stress causing no drainage.

� This is very predominant in certain Organic soils, but insignificant for inorganic soil.

� This is similar to creep in concrete.� This is similar to creep in concrete.

Page 8: Goetech. engg. Ch# 03 settlement analysis signed

IMMEDIATE SETTLMENT

� This type of settlement is predominant in coarse grained soils of high permeability and in unsaturated fine grained soils of low permeability.

� The completion time is usually few days (say about 7 days).

� Usually this type of settlement is completed during construction period and is called build in settlement .

� Also known as short term settlement .

Page 9: Goetech. engg. Ch# 03 settlement analysis signed

� Settlement produced due to inadequate shear strength of the soil mass is caused due to bearing capacity failure of soil.

� Settlement due to lateral expulsion of soils from underneath the foundation is an example of this category.

� This settlement can not be estimated using present knowledge of soil mechanics but can be controlled easily by controlling bearing capacity.

� So the total settlement;St = Si + Sc + Ss

Page 10: Goetech. engg. Ch# 03 settlement analysis signed

TYPES WITH RESPECT TO UNIFORMITY

UNIFORM SETTLEMENT:� When all the points settle with an equal amount,

the settlement is known as uniform settlement.� This type of settlement is possibly only under

relatively rigid foundation loaded with uniform relatively rigid foundation loaded with uniform pressure and resting on uniform soil deposit, which is a very rare possibility.

� This type of settlement may not endanger the structure stability but generally affects the utility of the structure by jamming doors/windows, damaging the utility lines ( sewer, water supply mains etc)

Page 11: Goetech. engg. Ch# 03 settlement analysis signed

DIFFERENTIAL SETTLEMENT

� When different parts of a structure settle by different magnitude, the settlement is called differential settlement.

� This is very important as it may endanger the structural stability and may cause the structural stability and may cause catastrophic failure.

� If soil is granular, then differential settlement will be 2/3 of the total maximum settlement.

� In case of cohesive soil, possible differential settlement is about 1/3 of the maximum settlement.

Page 12: Goetech. engg. Ch# 03 settlement analysis signed

SETTLEMENTS OF FOUNDATIONS

NO SETTLEMENT * TOTAL SETTLEMENT * DIFFERENTIAL SETTLEMENT

Uniform settlement is usually of little consequence in a bui lding, butdifferential settlement can cause severe structural damag e

Page 13: Goetech. engg. Ch# 03 settlement analysis signed
Page 14: Goetech. engg. Ch# 03 settlement analysis signed

DIFFERENTIAL SETTLEMENT

Page 15: Goetech. engg. Ch# 03 settlement analysis signed

DIAGONAL CRACKS IN BRICK WORK DUE TO DIFFERENTIAL S ETTLEMENT

Page 16: Goetech. engg. Ch# 03 settlement analysis signed
Page 17: Goetech. engg. Ch# 03 settlement analysis signed

LEANING TOWER OF PISA TOWER

Page 18: Goetech. engg. Ch# 03 settlement analysis signed

PLASTIC AND ELASTIC

DEFORMATION

� All materials deform when subjected to an applied load.

� If all this deformation is retained when load is released, it is said to have experienced Plastic released, it is said to have experienced Plastic deformation.

� Conversely if the material returns to its original size and shape when the load is released, it is said to have experienced elastic deformation.

� Soil exhibits both plastic and elastic deformation.

Page 19: Goetech. engg. Ch# 03 settlement analysis signed

ANGULAR DISTORTION� Angular distortion between two points

under a structure is equal to the differential settlement between the points divided by the distance between them.them.

� Angular distortion is also known as Relative Rotation.Differential settlement = ∆S = Smax – Smin

Angular Distortioin = ∆S /L

Page 20: Goetech. engg. Ch# 03 settlement analysis signed
Page 21: Goetech. engg. Ch# 03 settlement analysis signed

Tolerable differential settlement of buildings, in inches,

recommended maximum values in parentheses.

CRITERION ISOLATED FOUNDATION RAFT

ANGULAR DISTORTION

GREATEST

1/300

1³/4 (11/ ) (CLAYS)

LIMITS OF ALLOWABLE AND TOTAL

DIFFERENTIAL SETLLEMENT

GREATEST DIFFERENTIAL SETTLEMENT

MAXIMUM SETTLEMENT

CLAYS

SANDS

3 (21/2)

2 (11/2)

3- 5 (21/2 - 4)

2-3 (11/2 - 21/2)

1³/4 (11/2) (CLAYS)

1³/4 (1) (SANDS)

Page 22: Goetech. engg. Ch# 03 settlement analysis signed

� For normal structures with isolated foundation, total settlements up to 50mm and differential settlement between adjacent columns up to 20mm is acceptable.

� According to Euro Code 7, the maximum acceptable relative rotation for open frames and load bearing or continuous brick wall are and load bearing or continuous brick wall are likely to range from about 1/2000 to about 1/300 to prevent the occurrence of a serviceability limit state in the structure.

� According to Bjerrum safe limit to avoid cracking in the pannel walls of frame structure ( partition wall) = 1/500

Page 23: Goetech. engg. Ch# 03 settlement analysis signed

� Large total and differential settlement may be acceptable provided the relative rotations remains within acceptable limits and provided total settlement do not cause problems with the services entering the structure or cause titling.

� Average maximum settlement of Structures on Permafrost. (a layer of soil beneath the surface that remains frozen through out the year)

Structure Average Max Settlement (mm)

Reinforced Concrete 150 at 40mm/year

Masonry ,Precast Concrete 200 at 60mm/year

Steel frames 250 at 80mm/year

Timber 400 at 129mm/year

Page 24: Goetech. engg. Ch# 03 settlement analysis signed

CAUSES OF SETTLEMENT

� Following are the major causes of settlement;

� Changes in Stress due:a) Applied structural load or excavation .

Movement of ground water table .b) Movement of ground water table .c) Vibrations due to Machines, Earth quake.

� Desiccation due to surface drying and/or plants life. (Desiccation = Removal of water from soil

Loss (evaporation) of water / effective stress(inter-granular stresses) increase /Mass shrinkage will start ) ( Reason= High fines content,

Volume of water is the direct function of shrinkage)

Page 25: Goetech. engg. Ch# 03 settlement analysis signed

� Changes due to structure of soil. � Adjacent excavation.� Mining Subsidence.� Swelling and Shrinkage.� Lateral expulsion of soil.Lateral expulsion of soil.� Land slides.

Page 26: Goetech. engg. Ch# 03 settlement analysis signed

Remedial Measures� Philosophy of remedial measures is to;a) Reduce or eliminate settlement.b) Design structure to with stand the Settlement.� To reduce or eliminate stresses following

considerations can be followed;considerations can be followed;� Reduce Contact pressure.� Reduce Compressibility of soil deposits using

various ground improvement techniques ( Stabilization, pre-compression, vibro-flotation etc).

� Remove soft compressible material such as peat, muck. etc

Page 27: Goetech. engg. Ch# 03 settlement analysis signed

� Built slowly on cohesive soils to avoid lateral expulsion of soil mass, and to give time for pore pressure dissipation.

� Consider using deep foundation (piles or piers).

� Provide lateral restraint against lateral expulsion.expulsion.

� To achieve uniform settlement one can resolve to;

� Design of footing for uniform pressure.� Use artificial cushion underneath the less

settling foundation parts of the structure.

Page 28: Goetech. engg. Ch# 03 settlement analysis signed

� Built different parts of foundation of different weight on different soil at different depths.

� Built the heavier parts of structure first (such as towers) and lighter parts later.

Page 29: Goetech. engg. Ch# 03 settlement analysis signed

CONSOLIDATION

(OEDOMETER) TEST

� This test is performed to determine the magnitude and rate of change in volume of a laterally confined soil specimen undergoes when subjected to different vertical pressurepressure

� To compute the consolidation settlement in a soil we need to know stress- strain properties. (i.e relationship between( σZ & εz ).

� This normally involves bringing the soil sample to the laboratory, subjecting it to a series of loads and measuring corresponding settlements.

Page 30: Goetech. engg. Ch# 03 settlement analysis signed

� This test is known as consolidation test or Oedometer test.

� We mostly interested in engineering properties of natural soils as they exist in the field, so consolidation tests are usually performed on high quality Undisturbed samples.

� It is also important for samples that were It is also important for samples that were saturated in the field to remain so during storage and testing.

� If the sample is allowed to dry, a process we call Desiccation, negative pore pressure will develop and may cause irreversible changes in the in the soil.

Page 31: Goetech. engg. Ch# 03 settlement analysis signed

Consolidation Apparatus

Page 32: Goetech. engg. Ch# 03 settlement analysis signed

� The test begins by applying vertical normal load P. It produces a vertical effective stress of;

σ’Z = P/A - UWhere;

σ’Z = Vertical effective stress.

P = Applied Load.A = Cross sectional area of soil specimen.A = Cross sectional area of soil specimen.U = pore water pressure inside the soil specimen.

� The water bath barely covers the specimen , so the pore water pressure is very small as compared to the vertical stress and thus may be ignored;

σ’Z = P/A

Page 33: Goetech. engg. Ch# 03 settlement analysis signed

� The vertical strain εz is noted by monitoring the dial gage, for each corresponding increase in load.

εz = Change in Dial Gage Reading

Initial height of the sample� Increase the load to some higher value and allow the soil to

consolidate again, thus obtaining a second value of (σZ ,εz).� This process will continues until we have reached the � This process will continues until we have reached the

desired peak vertical stress; from this loading sequence we obtain the loading curve ABC.

� We then incrementally unload the sample and allow it to rebound thus producing unloading curve CD. Shown in the figure presented in the next slide.

� Data is plotted on logarithmic scale.

Page 34: Goetech. engg. Ch# 03 settlement analysis signed

AB representing the Recompression Curve

BC representing the Virgin Curve ,CD representing t he Rebound Curve

Page 35: Goetech. engg. Ch# 03 settlement analysis signed

SIGNIFICANCE

� The consolidation properties determine from the consolidation test are used to estimate the magnitude of both primary and secondary settlement.

� The consolidation parameters we find out;� The consolidation parameters we find out;1. Compression Index (Cc) .2. Recompression Index (Cr) .3. Coefficient of Volume change (mv) .4. Pre-consolidation pressure .

5. e – field Density .6. Coefficient of Consolidation (Cv) .

Page 36: Goetech. engg. Ch# 03 settlement analysis signed

� The first 4 parameters can be determined from e ~ σ’Z graph.

� Field density is determined by;γd = Gs γw

1 + e

Page 37: Goetech. engg. Ch# 03 settlement analysis signed

Cc = ∆e/ log(σ’Zf / σ’Z0)

Cc = Compression Index

σ’Z0 = Initial vertical effective stress

σ’Zf = Final vertical effective stress

Page 38: Goetech. engg. Ch# 03 settlement analysis signed

Cr = Recompression Index

σ’C = Pre- consolidation pressure

Pre-consolidation pressure is Pre-consolidation pressure is the maximum pressure that the soil has been subjected in the past. It varies with depth and is used to identify over consolidation of specimen.

Page 39: Goetech. engg. Ch# 03 settlement analysis signed

NORMALLY CONSOLIDATED (NCC)

� A soil is said to be normally consolidated when;

σ’C = σ’0Z

σ’C = Pre-consolidation Pressure.

σ’0Z = Present effective overburden pressure.

Page 40: Goetech. engg. Ch# 03 settlement analysis signed

OVER CONSOLIDATED (OCC)

� The soil is said to be over consolidated when;

σ’C > > > σ’0Z

� This shows that soil has been subjected to some over burden � This shows that soil has been subjected to some over burden pressure in the past which has been removed.

� This over burden pressure may be due to;1. Snow loading2. Past Structure which now has been removed.3. Level of ground is lowered.4. Lowering of the ground water table.(In the past ground water

table is high)

Page 41: Goetech. engg. Ch# 03 settlement analysis signed

OVER CONSOLIDATED RATIO (OCR)

� Over consolidated ratio is defined as ratio of pre-consolidation pressure to present overburden pressure.pressure.

OCR = σ’C / σ’0Z

� Greater the value of OCR the more the soil is consolidated

Page 42: Goetech. engg. Ch# 03 settlement analysis signed

HOW TO ACCESS CONSOLIDATION

SETTLEMENT:

Page 43: Goetech. engg. Ch# 03 settlement analysis signed

εf = εL

∆H/H = ∆h/h

As; ∆V/Vo = ∆e/ (1+eo)∆H/H = ∆e/ (1+eo)∆H = H × ∆e/ (1+eo)

we have; Cc = ∆e / log(σ’Zf / σ’Z0)we have; Cc = ∆e / log(σ’Zf / σ’Z0)∆e = Cc H log(σ’Zf / σ’Z0)∆H = Cc H log(σ’Zf / σ’Z0)…….(A)

1+eo (This is the equation for NCC soil)

σ’Z0 = Initial Pressure or present Over burden pressure .

σ’Zf = Final Pressure .

Page 44: Goetech. engg. Ch# 03 settlement analysis signed

CASE # 01

FOR OCC

For over consolidated soil we have two cases;

When ;

Cr = Coefficient of Recompression

σ’Z0 < σ’zf < σ’C

∆H = Cr H log(σ’Zf / σ’Z0)…(B)

1 + eo

Page 45: Goetech. engg. Ch# 03 settlement analysis signed

Cr = Coefficient of RecompressionCASE # 02

When;

σ’Z0 < σ’C < σ’zf

∆H = Cr H log(σ’c / σ’Z0 ) + Cc H log(σ’Zf / σ’Z0)

1+eo 1+eo

Page 46: Goetech. engg. Ch# 03 settlement analysis signed

OVER CONSOLIDATION MARGIN

� The σ’C values from the laboratory represent the pre-consolidation stress at the sample depth.

� However we have to compute σ’C at other depths. To do so compute the overconsolidationmargin σ’ , using σ’ at the sample depth and margin σ’m, using σ’z0 at the sample depth and the following equation;

σ’m = σ’C - σ’z0

Page 47: Goetech. engg. Ch# 03 settlement analysis signed

EXAMPLE

� A 3m deep compacted fill is to be placed over the profile shown in the figure. A consolidated test on a sample from point A produced the following results;

C = 0.40Cc = 0.40Cr = 0.08eo = 1.10σ’C = 70.0 Kpa

� Compute the ultimate consolidation settlement due to weight of this fill.

Page 48: Goetech. engg. Ch# 03 settlement analysis signed

Dr = 40%

Cc/1+e0 = 0.008

Page 49: Goetech. engg. Ch# 03 settlement analysis signed

� σ’Zf = σ’Z0 + γfill Hfill

� σ’Zf = σ’Z0 + (19.2KN/m³) (3.0m)

� σ’Zf = σ’Z0 + 57.6Kpa

� Compute the initial vertical stress at sample locat ion.

� σ’Z0 =Σ γH - U � σ’Z0 = (18.5KN/m³) (1.5m) + (19.5KN/m ³) (2.0m)

+ (16.0KN/m³) (4.0m) – (9.8KN/m³) (6.0m)+ (16.0KN/m³) (4.0m) – (9.8KN/m³) (6.0m)� σ’Z0 = 72.0 Kpa.� At the sample σ’C ͌ σ’Z0 Clay is Normally consolidated

� Cc/ (1+e0) = 0.40/(1+1.10) = 0.190� For sand ; Cc/ (1+e0) = 0.008 (this value is taken from table

corresponding to the value of Dr)

Page 50: Goetech. engg. Ch# 03 settlement analysis signed

Layer H(m) σ’Z0

(Kpa)σ’Zf (Kpa) Cc/ (1+e0) δc (mm)

1 1.5 13.9 71.5 0.008 8

2 2.0 37.4 95.0 0.008 6

3 3.0 56.4 114.0 0.190 174

At Mid Of layer

4 3.0 75.0 132.6 0.190 141

5 4.0 96.7 154.3 0.190 154

δc, ult 483mm

δc = 480mm Round off

Using the equation for NCC

∆H = Cc H log(σ’Zf / σ’Z0)…(B)

1 + eo

Page 51: Goetech. engg. Ch# 03 settlement analysis signed

EXAMPLE #02

� An 8.5m deep compacted fill is to be placed over the soil profile shown in the figure. Consolidation test on samples from point A and B produced the following resultsthe following results

Sample A Sample B

Cc 0.25 0.20

Cr 0.08 0.06

e0 0.66 0.45

σ’C 101kpa 510kpa

Page 52: Goetech. engg. Ch# 03 settlement analysis signed
Page 53: Goetech. engg. Ch# 03 settlement analysis signed

� σ’Zf = σ’Z0 + γfill Hfill

� σ’Zf = σ’Z0 + (20.3KN/m³) (8.5m)

� σ’Zf = σ’Z0 + 172.6 Kpa

� Compute the initial vertical stress at sample locat ion.

� σ’Z0 =Σ γH - U � σ’Z0 = (18.3KN/m³) (2.0m) + (19.0KN/m³) (2.0m)

– (9.8KN/m³) (2.0m)– (9.8KN/m³) (2.0m)� σ’Z0 = 55.0 Kpa.� σ’Zf = σ’Z0 + 172.6 Kpa

� σ’Zf = 55.0 Kpa + 172.6 Kpa = 227.6Kpa

� σ’Z0 < σ’C < σ’zf 55kpa < 101Kpa < 227.6 Kpa

� (Over consolidated Case#2)We will use this equation ∆H = Cr H log(σ’c / σ’Z0 ) + Cc H log(σ’Zf / σ’Z0)}

1+eo 1+eo

Page 54: Goetech. engg. Ch# 03 settlement analysis signed

� σ’m = σ’c - σ’Z0

� σ’m = 101 – 55 = 46Kpa

� Therefore σ’c at any depth in the stiff silty clay stratum is equal to

σ’z0 + 46Kpa .

� For sample B:

� σ’Z0 =Σ γH - U � σ’Z0 = (18.3KN/m³) (2.0m) + (19.0KN/m³) (7.0m) + (19.5KN /m³)

(10m) – (9.8KN/m³) (17m)� σ’Z0 = 198.0 Kpa.� σ’Zf = σ’Z0 + 172.6 Kpa� σ’Zf = 198.0Kpa + 172.6 Kpa� σ’Zf = 370.6 Kpa

� σ’Z0 < σ’zf < σ’C 198kpa < 370Kpa < 510 Kpa

� (Over consolidated Case#1 ) ∆H = Cr H log(σ’Zf / σ’Z0)� 1 + eo

Page 55: Goetech. engg. Ch# 03 settlement analysis signed

Layer H(m) σ’Z0

(Kpa)σ’c

(Kpa)σ’Zf

(Kpa)

Cr/ (1+e0)

Cc/ (1+e0)

δc (mm)

1 2.0 18.3 64.3 190.9 0.05 0.15 196

2 3.0 50.4 96.4 223.0 0.05 0.15 206

3 4.0 82.6 128.6 255.2 0.05 0.15 217

At Mid Of layer

4 4.0 120.4 293.0 0.04 0.14 62

5 4.0 159.2 331.8 0.04 0.14 51

6 5.0 202.8 375.4 0.04 0.14 53

7 5.0 251.4 424.0 0.04 0.14 45

δc, ult 830mm

Page 56: Goetech. engg. Ch# 03 settlement analysis signed

SETTLEMENT DUE TO SECONDARY

CONSOLIDATION

� Secondary consolidation is also known as creep settlement and it is actually a continuation of the volume change that started during primary consolidation.

� This settlement takes place at constant effective stress (i.e after all the pore pressure has been dissipated).

� Co-efficient of secondary consolidation is defined as the vertical strain which occurs during one log cycle of time following completion of primary consolidation and is given by;primary consolidation and is given by;

� Cα = ∆H/Ho = (D1 – D2)/Ho

� where; � ∆H = the change in sample height during consolidation following the

completion of primary consolidation.� Ho = Consolidation sample height under a given pressure.� D1 & D2 = dial gage reading along secondary compression curve

against any time t1 and t2 where t2 = 10t1

Page 57: Goetech. engg. Ch# 03 settlement analysis signed

� Settlement due to secondary consolidation is now computed as follow;

Sc = (Cα) (Ho) (log t sc/tp)� Where;� Ho = thickness of compressible stratum.� tp & tsc = the time for completion of primary

consolidation and time for which secondary consolidation is to be calculated.

� In sand, settlement caused by secondary compression is negligible, but in peat, it is very significant.

Page 58: Goetech. engg. Ch# 03 settlement analysis signed

FOOTINGS ON SANDS AND GRAVEL

� In theory the method used to predict settlement of spread footings on clays and silts also could be used for sands and gravels but to use this method we need to compute Cc and Cr in these soils, which is compute Cc and Cr in these soils, which is very difficult or impossible because of the difficulties in obtaining undisturbed samples.

� Because of this limitation we will use a different approach in computing settlement in sands and gravels.

Page 59: Goetech. engg. Ch# 03 settlement analysis signed

� Settlement in sands and gravel are generally much smaller than those in soft or medium clays.

� The most common method used is that developed by Schmertmann.developed by Schmertmann.

Page 60: Goetech. engg. Ch# 03 settlement analysis signed

SCHMERTMANN'S METHOD

Σ For Square Footing

Σ For Strip Footing

q = P/A + γCDf - Uq’ o =γsoil Df

Page 61: Goetech. engg. Ch# 03 settlement analysis signed

SCHMERTMANN'S METHOD

� C1 = Correction factor for footing depth. .

C2 = Correction factor for Creep.

t = Time in years

� Modulus of Elasticity Es

t = Time in years for which

settlement is required

Page 62: Goetech. engg. Ch# 03 settlement analysis signed

Square

Modified triangular vertical strain influence factor distribution

diagram

The strain influence factor accounts for both the d istribution of stresses below the footing and nonlinear soil behavior immed iately below the footing. The peak value is shown in the graph.

Strip

Page 63: Goetech. engg. Ch# 03 settlement analysis signed

� For Square footing (L/B =1)� Iz = 0.1 + (Zc/0.5B) ( Ipeak – 0.1) (For Z < 0.5B)

� Iz = (2/3) Ipeak (2 – Zc/B) (For Z> 0.5B)

For a strip Footing (L/B > 10)� For a strip Footing (L/B > 10)� Iz = 0.2 + (Zc/B) ( Ipeak – 0.2) (For Z < B)

� Iz = (1/3) Ipeak (4 – Zc/B) (For Z > B)

Page 64: Goetech. engg. Ch# 03 settlement analysis signed

� Primarily used to estimate immediate settlement of foundations in sand.

� Specially useful when CPT data are available.

� Results are compatible with field measurements.

IMPORTANT CONSIDERATIONS

measurements.

� Based on analysis of vertical strain distribution with a linear elastic half space subjected to a uniform pressure

Page 65: Goetech. engg. Ch# 03 settlement analysis signed

Example

� A strip footing 2.0 × 23 m is subjected to load 450KN/m. The depth of footing is 2m. There is a deep deposit of sand of unit weight 16KN/m³, the water table is deep below the surface.

� The variation of cone penetration � The variation of cone penetration resistance (qc) with depth (z) is shown in the next figure.

Page 66: Goetech. engg. Ch# 03 settlement analysis signed
Page 67: Goetech. engg. Ch# 03 settlement analysis signed

SOLUTION

� As it is a strip footing;� For strip footing;

Σ

Net foundation base pressure = qn = q – q’o

Total foundation pressure = q = P/A + γCDf – U = (450/2) + 2×23.5 – 0 = 272KN/m²

Effective overburden pressure at foundation level = q’o = γsoil Df = 16 × 2 = 32KN/m²

Net foundation base pressure = q n = q – q’ o = 272 – 32 = 240 KN/m²

Page 68: Goetech. engg. Ch# 03 settlement analysis signed

� Now we calculate;

� Now we calculate C2;

C1 = 1 – 0.5 (32/240) = 0.0933

C2 = 1 + 0.2 log(5/0.1) = 1.339

Page 69: Goetech. engg. Ch# 03 settlement analysis signed
Page 70: Goetech. engg. Ch# 03 settlement analysis signed

� Now we calculate Ipeak;

� = 0.5 + 0.1 undr Root(240/64)

=0.7015P’ = 2× 16 + 2× 16 = 64KN/m² P’o = 2× 16 + 2× 16 = 64KN/m²

As we know that for a strip Footing (L/B > 10).

IIIIz = 0.2 + (Zc/B) ( Ipeak – 0.2) (For Z < B)

IIIIz = (1/3) Ipeak (4 – Zc/B) (For Z > B)

Page 71: Goetech. engg. Ch# 03 settlement analysis signed

Layer ∆z (m) qc KN/m²

Es=3.5qc Zc Iz (Iz/Es)× ∆z

1 1 4000 14000 0.5

2 2 6000 21000 2

3 3 8000 28000 4.5

4 2 10000 35000 7

ΣΣ

Σ

m.irfan B-15952