Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are...

31
Goals for today Review of translational dynamical variables: position, velocity Review of rotational dynamical variables: angle, angular velocity Electrical dynamical variables: charge, current, voltage Basic electrical components Resistance Capacitance Inductance DC Motor: an electro-mechanical element basic physics & modeling equation of motion transfer function Experiment: step and ramp response of the flywheel driven by the DC motor open loop (no feedback) 2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 1

Transcript of Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are...

Page 1: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Goals for today

• Review of translational dynamical variables: position, velocity

• Review of rotational dynamical variables: angle, angular velocity

• Electrical dynamical variables: charge, current, voltage

• Basic electrical components

– Resistance

– Capacitance

– Inductance

• DC Motor: an electro-mechanical element

– basic physics & modeling

– equation of motion

– transfer function

• Experiment: step and ramp response of the flywheel driven by the

DC motor open loop (no feedback)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 1

Page 2: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Impedances: translational mechanical

Nise Table 2.4

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 2

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 3: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Impedances: rotational mechanical

Nise Table 2.5

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 3

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 4: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Electrical dynamical variables: charge, current, voltage

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 4

Page 5: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Electrical resistance

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 5

Page 6: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Capacitance /1

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 6

Page 7: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Capacitance /2

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 7

Page 8: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Inductance

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 8

Page 9: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Summary: passive electrical elements; Sources

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14

9

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 10: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Combining electrical elements: networks

Nise Figure 2.6

Network analysis relies on two physical principles

• Kirchhoff Current Law (KCL) • Kirchhoff Voltage Law (KVL)

– charge conservation – energy conservation

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 10

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 11: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Impedances in series and in parallel

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 11

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 12: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

The voltage divider

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 12

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 13: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Example: the RC circuit

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 13

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 14: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Interpretation of the RC step response

+

+

+ +

+

+

+

+++

+

+ +

++ + + +

+

++ +

+

+

+

+

+

−−

−−−−

−−− − − −

−−−

−−

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 14

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 15: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Example: RLC circuit with voltage source

Nise Figure 2.3

Nise Figure 2.4

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 15

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 16: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Quick summary of electrical systems

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 16

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 17: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Power dissipation in electrical systems

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 17

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 18: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC Motor as a system

Transducer:

Converts energy from one domain (electrical) to another (mechanical)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 18

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 19: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Physical laws applicable to the DC motor

Lorentz law: Faraday law:magnetic field applies force to a current moving in a magnetic field results (Lorentz force) in potential (back EMF)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 19

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 20: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor: principle and simplified equations of motion

multiple windings N: continuity of torque

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 20

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 21: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor: equations of motion in matrix form

multiple windings N: continuity of torque

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 21

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 22: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor: why is Km=Kv?

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 22

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 23: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor with mechanical load and realistic electrical properties (R, L)

inductance dissipation (due to windings) (resistance of windings)

dissipation load (viscous friction (inertia)

in motor bearings)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 23

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 24: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor with mechanical load and realistic electrical properties (R, L)

inductance dissipation (due to windings) (resistance of windings)

dissipation load (viscous friction (inertia)

in motor bearings)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 24

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 25: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

DC motor with mechanical load and realistic electrical properties (R, L)

inductance (due to windings)

dissipation (resistance of windings)

dissipation load (viscous friction (inertia)

in motor bearings)

2.04A Spring ’13 Lecture 06 – Thursday, Feb. 14 25

����������� ������������������������������������������������������������������������������������������������ ��������!"##��$�������#��!#��%&���&���#�

Page 26: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Lab 06: Running the flywheel with DC motor open loop

• Observe motor behavior under different driving voltages.

• Examine transient response of a DC motor

Important: always be ready to turn off the break of power amplifier when motor is spinning too fast!!

Experimental Setup: Open-loop

Signal Generator

Power

Amplifier CH1 DC motor-

flywheel system

ETACH2 ACH2 PC Data-

Acquisition

ACH 1

2.004 Spring ’13 Lecture 06 – Thursday, Feb. 14 26

Page 27: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Procedure

• Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC data acquisition system as shown in the previous slide.

• Add one magnet to the flywheel damper, open Chart Recorder to record ACH1 and ACH2; turn on function generator, power amplifier and start experiment.

• Obtain system response for a ramp function with Freq: 0.2 Hz, Amp: 0.5 V, offset: 0 V. Repeat experiment using a sine function with same parameters. Record your response. Referring to materials we learned from last lecture, comment on the behavior of DC motor- flywheel system.

• Use a DC signal with 0.2 V offset. Start experiment and record DC motor transient response data. Convert voltage signal to motor speed (you will need to make use of gear ratio). Generate appropriate plots of motor speed & amplified current V.S time. Compute mechanical power of the DC motor.

• Set your function generator to generate a square function(SQUA), set frequency to 0.04 Hz, amplitude to 0.200V and offset to 0.100V. Collect a full period of flywheel response and function generator signal. (You can take a screen shots of the plot in Chart Recorder)

2.004 Spring ’13 Lecture 06 – Thursday, Feb. 14 27

Page 28: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

n1=

n2 180

44

Some Hints…

Gear Ratio:

Gear 2

F

Gear 1

Unit Conversion: Power Conservation:

Ka = 2.0 A/V, Km = 0.0292 N-m

Pmechanical(t) = T (t)× Ω(t)= Km × i(t)× Ω(

/A

t)

2.004 Spring ’13 Lecture 06 – Thursday, Feb. 14 28

Page 29: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Lab assignment p.1

• Comment on how today’s experiments involving step input are interpreted differently than we did in Lab 05.

• When the DC motor is driven by a step function, how many poles/ zeros do we need to consider, and where are they? How do the magnets (“eddy brakes”) influence their locations?

2.04A Spring ’13 Lab assignment 06 – Thursday, Feb. 14 - PLEASE RETURN TO THE T.A. 29

Page 30: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

Lab assignment p.2

• When the DC motor is driven by a ramp function, how many poles/ zeros do we need to consider, and where are they? How do the magnets (“eddy brakes”) influence their locations?

• Comment on the qualitative and quantitative agreement of your derivations with experiment. Attach sheets with your experimental results.

2.04A Spring ’13 Lab assignment 06 – Thursday, Feb. 14 - PLEASE RETURN TO THE T.A. 30

Page 31: Goals for today - MIT OpenCourseWare · 2020. 12. 31. · Procedure • Make sure all devices are powered off; connect function generator, power amplifier, flywheel system and PC

��������� ���� �������������������

������� ����������� �!��� �"���#$

%� ��&� �������'��������"����������� ��!��� ��� ��� ����&�(��)�*��������������������������� ���