Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial...

60
Copyright © 2016 by Luc Anselin, All Rights Reserved Luc Anselin Global Spatial Autocorrelation Clustering http://spatial.uchicago.edu

Transcript of Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial...

Page 1: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Luc Anselin

Global Spatial AutocorrelationClustering

http://spatial.uchicago.edu

Page 2: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• join count statistics

• Moran’s I

• Moran scatter plot

• non-parametric spatial autocorrelation

Page 3: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Join Count Statistics

Page 4: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Recap - Spatial Autocorrelation Statistic

• combination of attribute similarity and locational similarity

• f(xi, xj) and wij

• general form ΣiΣj f(xi,xj)wij

Page 5: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Spatial Autocorrelation for Binary Data

• only two values observed, e.g., presence and absence

• xi = 1, or B(lack)

• xi = 0, or W(hite)

• coding of 1 or 0 is arbitrary, typically choose 1 for the smaller category

• unlike event analysis (point patterns) all locations are observed with either 1 or 0 values

Page 6: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

neighborhoods with burglaries (=1)Walnut Hills, Cincinnati, OH

Page 7: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Match Value-Location

• count the number of times similar values occur for neighbors = joins

• if xi = 1 and xj = 1 for i-j neighbors, count as a BB join

• if xi = 0 and xj = 0 for i-j neighbors, count as a WW join

Page 8: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Positive Spatial Autocorrelation

• similarity of neighbors

• BB = 1 -- 1

• xixj = 1 for a join, 0 otherwise

• WW = 0 -- 0

• (1 - xi)(1 - xj) = 1 for a join, 0 otherwise

Page 9: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Negative Spatial Autocorrelation

• dissimilarity of neighbors

• BW = 1 -- 0 or 0 -- 1

• (xi - xj)2 = 1 for dissimilar neighbors 0 otherwise

Page 10: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Join Count Statistics

• binary spatial weights, wij = 1 or 0

• BB: (1/2) ΣiΣj wij.xi.xj

• WW: (1/2) ΣiΣj wij.(1-xi).(1-xj)

• BW: (1/2) ΣiΣj wij.(xi - xj)2

• BB + WW + BW = (1/2) S0 = (1/2) ΣiΣj wij

Page 11: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

null hypothesis: spatial randomness

Page 12: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Actual Random 1 Random 2

BB 130 95 79

WW 845 808 814

BW 509 581 591

Sum 1484 1484 1484

join count statistics - queen contiguityn = 457, S0 = 2968

Page 13: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Analytical Inference

• based on sampling theory

• binomial distribution, using sampling with replacement or without replacement

• moments (mean, variance, higher) can be computed

• uses a (poor) normal approximation

• Walnut Hills burglary BB = 130

• E[BB] = 91.7, Var[BB] = 77.9

• z-value = 4.34

• p-value < 0.00007

Page 14: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Permutation Inference

• builds a reference distribution

• reshuffle 0-1 values over locations

• recompute statistic (BB)

• compare observed statistic to reference distribution

• pseudo p-value = (M + 1)/(R + 1)

• M = values equal to or greater than statistic

• R = number of replications (e.g., 999)

Page 15: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

reference distribution, BB = 130

Page 16: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

reference distribution for spatially random valuesBB = 95

Page 17: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved6

Moran’s I

Page 18: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Moran’s I

• the most commonly used of many spatial autocorrelation statistics

• I = [ Σi Σj wij zi.zj/S0 ]/[Σi zi2 / N]

• with zi = yi - mx : deviations from mean

• cross product statistic (zi.zj) similar to a correlation coefficient

• value depends on weights (wij)

Page 19: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Moran’s I examined more closely

• scaling factors in numerator and denominator

• in numerator: S0 = Σi Σj wij

• the number of non-zero elements in the weights matrix, or the number of neighbor pairs (x2)

• in denominator: N

• the total number of observations

Page 20: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Inference

• how to assess whether computed value of Moran’s I is significantly different from a value for a spatially random distribution

• compute analytically (assume normal distribution, etc.)

• computationally, compare value to a reference distribution obtained from a series of randomly permuted patterns

Page 21: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Approximate Inference

• assumes either normal distribution or randomization (each value equally likely to occur at any location)

• analytical derivation of moments (mean, variance) of the statistic under the null hypothesis (spatial randomness)

• z = (I - E[I]) / SD[I]

• approximate the resulting z-value by a standard normal distribution

Page 22: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Cleveland 2015 q4 house sales prices (in $1,000)

Page 23: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Normal Randomization

MI 0.282 0.282

E[MI] -0.0049 -0.0049

Var[MI] 0.00178 0.00158

z-value 6.81 7.22

p-value << 0.000001 << 0.000001

normal vs randomization inference for Moran’s Iqueen weights

Page 24: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Queen K6 Distance

MI 0.282 0.343 0.335

E[MI] -0.0049 -0.0049 -0.0049

Var[MI] 0.00158 0.00124 0.00110

z-value 7.22 9.88 10.3

p-value << 0.000001 << 0.000001 << 0.000001

Moran’s Iinference under randomization, different spatial weights

Page 25: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Permutation Approach

• as such, even a high Moran’s I does not indicate significance

• need to construct a reference distribution

• randomly reshuffle observations and recompute Moran’s I each time

• compare observed value to reference distribution

Page 26: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Standardized z-value

• standardize by subtracting mean and dividing by standard deviation, computed from the reference distribution

• z = [Observed I - Mean(I)] / Standard Deviation(I)

• z-values are comparable across variables and across spatial weights

Page 27: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

999 permutations and reference distribution (queen weights)

MI = 0.282 Mean = -0.0045 s.d. = 0.0401z-value = 7.15

Page 28: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Interpretation of Moran’s I

Page 29: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Sign of Moran’s I

• theoretical mean is - 1/(N - 1),

• essentially zero for large N

• positive and significant = clustering of like value

• NOT clustering of high or low

• could be either or a combination

• negative and significant = alternating values

• presence of spatial outliers

• spatial heterogeneity (checkerboard pattern)

Page 30: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Significance of Moran’s I

• compute pseudo p-value

• compare standard z-value to standard normal (approximate only)

• only if Moran’s I is significant is sign of coefficient meaningful

Page 31: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Comparing Moran’s I

• Moran’s I depends on spatial weights

• relative magnitude for same weights and different variables is meaningful

• but NOT for different spatial weights

• instead, use standardized z-value to compare

Page 32: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Queen K6 Distance

MI 0.282 0.343 0.335

E[MI] -0.0049 -0.0049 -0.0049

Var[MI] 0.00158 0.00124 0.00110

z-value 7.22 9.88 10.3

p-value << 0.000001 << 0.000001 << 0.000001

Moran’s I, different spatial weightsMI is largest for K6, but z is largest for Distance

Page 33: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Clustering vs Clusters

• Moran’s I is a global statistic, i.e., a single value for the whole spatial pattern

• Moran’s I does NOT provide the location of clusters

• cluster detection requires a local statistic

Page 34: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• True vs Apparent Contagion

• the indication of clustering does not provide an explanation for why the clustering occurs

• different processes can result in the same pattern

• true contagion: evidence of clustering due to spatial interaction (peer effects, mimicking, etc.)

• apparent contagion: evidence of clustering due to spatial heterogeneity (different spatial structures create local similarity)

Page 35: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Geary’s c

Page 36: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Focus on Dissimilarity

• squared difference as measure of dissimilarity

• similar to notion of variogram (geostatistics)

• values between 0 and 2

Page 37: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Geary’s c Statistic

• c = (N-1) Σi Σj wij (xi - xj)2 / 2S0 Σ zi2

• alternativelyc = [ Σi Σj wij (xi - xj)2 / 2S0 ] / [ Σ zi2 / (N-1) ]

• with zi in deviations from the mean

• S0 = Σi Σj wij sum of all the weights

Page 38: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Interpretation

• positive spatial autocorrelationc < 1 or z < 0

• negative spatial autocorrelationc > 1 or z > 0

• opposite sign of Moran’s I

Page 39: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Inference

• same approach as for Moran’s I

• analytical

• approximate (normal, randomization)

• permutation

Page 40: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Queen K6 Distance

c 0.716 0.496 0.544

E[c] 1.0 1.0 1.0

Var[c] 0.00381 0.00545 0.00285

z-value -4.61 -6.82 -8.55

p-value < 0.000004 << 0.000001 << 0.000001

geary’s cinference under randomization, different spatial weights

Page 41: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

999 permutations and reference distribution (queen weights)

c = 0.716 Mean = 0.998 s.d. = 0.062z-value = -4.58

Page 42: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved6

Moran Scatter Plot

Page 43: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Recap: Moran’s I

• I = [ Σi Σj wij zi.zj/S0 ]/[Σi zi2 / N]

• with zi = yi - mx : deviations from mean

• for row-standardized weights S0 = N

• I = Σi Σj wij zi.zj / Σi zi2 = Σi zi (Σj wij.zj) / Σi zi2

• Moran’s I is slope in a regression of Σj wij.zj on zi

Page 44: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Moran Scatter Plot

• scatter plot of [ zi , Σj wij.zj ]

• the value at i on the x-axis, its spatial lag (weighted average of neighboring values) on the y-axis

• slope of linear fit is Moran’s I

• use local regression (Lowess) to identify possible structural breaks

Page 45: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Moran scatter plot - Cleveland house prices - queen weights

outliers

Page 46: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

outliers (in red)

Page 47: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Moran scatter plot without outliers

Page 48: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Categories of Local Spatial Autocorrelation

• four quadrants of the scatter plot

• upper right and lower left

• positive spatial autocorrelation

• clusters of like values

• locations are similar to their neighbors

• lower right and upper left

• negative spatial autocorrelation

• spatial outliers

• locations are different from their neighbors

Page 49: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Positive Spatial Autocorrelation

• all comparisons relative to the mean

• not absolute high or low

high-high low-low

Page 50: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Negative Spatial Autocorrelation

• spatial outliers

high-low low-high

Page 51: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

Moran scatter plot with Lowess smoother

Page 52: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved6

Nonparametric Spatial Covariance Function

Page 53: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Alternative Perspective - Nonparametric

• non-parametric approach

• no model for covariance

• let the data suggest the functional form

• based on sample autocorrelation

• covariance function must be positive definite

Page 54: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Sample Autocorrelation

• computed for each pair i, j

• ρij = ρ(zi,zj) = zi*zj* / (1/n) Σh (zh - zm)2

• zi* = zi - zm deviations from mean

• in practice, easier to use standardized zi

• incidental parameter problem

• one parameter for each pair i-j

• n(n-1)/2 individual values of ρij

Page 55: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Non-Parametric Principle

• spatial autocorrelation as an unspecified function of distance

• ρij = g(dij)

• how to fit the function? use kernel estimator

Page 56: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Kernel Estimator

• Hall-Patil (1994)

• ρ(d) = Σi Σj K(dij/h)(zi.zj) / Σi Σj K(dij/h)

• K is the kernel function (many choices)

• h is the bandwidth

• results depends critically on h, less so on K

Page 57: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Kernel Regression

• zizj = g(dij)

• local regression

• depends on choice of kernel function and bandwidth

• values of the estimated g(dij) do not necessarily result in a valid (positive semi-definite) variance-covariance matrix

Page 58: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

correlogram - full distance range

Page 59: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

correlogram - 20,000 ft max distance

Page 60: Global Spatial Autocorrelation Clustering · 2019-05-22 · • Categories of Local Spatial Autocorrelation • four quadrants of the scatter plot • upper right and lower left •

Copyright © 2016 by Luc Anselin, All Rights Reserved

• Interpretation

• range of spatial autocorrelation

• alternative to specifying spatial weights

• sensitive to kernel fit

• may violate Tobler’s law