personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf ·...

151
Neutrino Physics Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universit` a di Torino mailto://[email protected] Neutrino Unbound: http://www.nu.to.infn.it Doctoral Program in Physics, EPFL, Lausanne, May 2011 C. Giunti and C.W. Kim Fundamentals of Neutrino Physics and Astrophysics Oxford University Press 15 March 2007 – 728 pages C. Giunti Neutrino Physics May 2011 1

Transcript of personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf ·...

Page 1: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Neutrino Physics

Carlo Giunti

INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universita di Torino

mailto://[email protected]

Neutrino Unbound: http://www.nu.to.infn.it

Doctoral Program in Physics, EPFL, Lausanne, May 2011

C. Giunti and C.W. KimFundamentals of Neutrino Physicsand AstrophysicsOxford University Press15 March 2007 – 728 pages

C. Giunti Neutrino Physics May 2011 1

Page 2: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Part I: Theory of Neutrino Masses and Mixing

Dirac Neutrino Masses and Mixing

Majorana Neutrino Masses and Mixing

Dirac-Majorana Mass Term

Number of Flavor and Massive Neutrinos?

Sterile Neutrinos

C. Giunti Neutrino Physics May 2011 2

Page 3: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Part II: Neutrino Oscillations

Neutrino Oscillations in Vacuum

CPT, CP and T Symmetries

Two-Neutrino Oscillations

Neutrino Oscillations in Matter

C. Giunti Neutrino Physics May 2011 3

Page 4: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Part III: Phenomenology

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 4

Page 5: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Part III

Phenomenology

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 132

Page 6: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Solar Neutrinos and KamLAND

Solar Neutrinos and KamLANDThe SunStandard Solar Model (SSM)HomestakeGallium ExperimentsSAGE: Soviet-American Gallium ExperimentGALLEX: GALLium EXperimentGNO: Gallium Neutrino ObservatoryKamiokandeSuper-KamiokandeSNO: Sudbury Neutrino ObservatoryKamLANDSterile Neutrinos in Solar Neutrino Flux?Determination of Solar Neutrino FluxesDetails of Solar Neutrino OscillationsBOREXino

Atmospheric and LBL Oscillation ExperimentsC. Giunti Neutrino Physics May 2011 133

Page 7: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

The Sun

Extreme ultraviolet Imaging Telescope (EIT) 304 A images of the Sun

emission in this spectral line (He II) shows the upper chromosphere

at a temperature of about 60,000 K

[The Solar and Heliospheric Observatory (SOHO), http://sohowww.nascom.nasa.gov/]

C. Giunti Neutrino Physics May 2011 134

Page 8: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Standard Solar Model (SSM)

(pp) p+ p! 2H + e+ + e99.6%XXXXXXXXXXXX (pep)p+ e + p! 2H + e0.4%?2H+ p! 3He + 85%?3He + 3He! 4He + 2 pppIXXXXXXXXXXXXXXXXXX 2 105%?3He + p! 4He + e+ + e(hep)?15%3He + 4He! 7Be + 99.87%?7Be + e ! 7Li + e(7Be) ?7Li + p! 2 4HeppIIPPPPPPPPP 0.13%?7Be + p! 8B + ?8B! 8Be + e+ + e (8B)?8Be ! 2 4HeppIII

pp chain and CNO cycle

4 p + 2 e ! 4

He + 2 e + 26:731 MeV12C + p! 13N+ - 13N! 13C + e+ + e (13N)?13C + p! 14N+ ?14N+ p! 15O+ 15O! 15N+ e+ + e(15O) 615N + p! 12C + 4He6 CN- ?6?15N+ p! 16O+ ?16O+ p! 17F + - 17F! 17O+ e+ + e (17F)617O+ p! 14N+ 4He699:9%0:1%

Bahcall SSMs[J.N. Bahcall, http://www.sns.ias.edu/˜jnb]

C. Giunti Neutrino Physics May 2011 135

Page 9: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

[J.N. Bahcall, http://www.sns.ias.edu/~jnb]

C. Giunti Neutrino Physics May 2011 136

Page 10: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

[Castellani, Degl’Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

C. Giunti Neutrino Physics May 2011 137

Page 11: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

[Castellani, Degl’Innocenti, Fiorentini, Lissia, Ricci, Phys. Rept. 281 (1997) 309, astro-ph/9606180]

C. Giunti Neutrino Physics May 2011 138

Page 12: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

[J.N. Bahcall, http://www.sns.ias.edu/~jnb]

predicted versus measured sound speedthe rms fractional difference between the calculated and the measured sound speeds

is 0.10% for all solar radii between between 0:05R and 0:95R andis 0.08% for the deep interior region, r < 0:25R, in which neutrinos are produced

C. Giunti Neutrino Physics May 2011 139

Page 13: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Homestakee + 37Cl! 37Ar + e [Pontecorvo (1946), Alvarez (1949)] radiochemical experimentHomestake Gold Mine (South Dakota)

1478 m deep, 4200 m.w.e. ) Φ ' 4m2 day1

steel tank, 6.1 m diameter, 14.6 m long (6 105 liters)615 tons of tetrachloroethylene (C2Cl4), 2:16 1030 atoms of 37Cl (133 tons)energy threshold: ECl

th = 0:814MeV =) 8B ; 7Be ; pep ; hep ; 13N ; 15O ; 17F

1970–1994, 108 extractions =) RexpCl

RSSMCl

= 0:34 0:03 [APJ 496 (1998) 505]

RexpCl = 2:56 0:23 SNU RSSM

Cl = 7:6+1:31:1 SNU1 SNU = 1036 events atom1 s1

C. Giunti Neutrino Physics May 2011 140

Page 14: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Gallium Experiments

SAGE, GALLEX, GNO

radiochemical experimentse + 71Ga! 71Ge + e [Kuzmin (1965)]

threshold: EGath = 0:233MeV =) pp ; 7Be ; 8B ; pep ; hep ; 13N ; 15O ; 17F

SAGE+GALLEX+GNO =) RexpGa

RSSMGa

= 0:56 0:03R

expGa = 72:4 4:7 SNU RSSM

Ga = 128+97 SNU

C. Giunti Neutrino Physics May 2011 141

Page 15: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

SAGE: Soviet-American Gallium Experiment

Baksan Neutrino Observatory, northern Caucasus

50 tons of metallic 71Ga, 2000 m deep, 4700 m.w.e. ) Φ ' 2:6m2 day1

detector test: 51Cr Source: R = 0:95+0:110:10+0:060:05 [PRC 59 (1999) 2246]

1990 – 2001 =) RSAGEGa

RSSMGa

= 0:54 0:05 [astro-ph/0204245]

0

100

200

300

400

Mean extraction time

Cap

ture

rat

e (S

NU

)

L

K

All

runs

com

bine

d

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

L+K peaksK peak only

C. Giunti Neutrino Physics May 2011 142

Page 16: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

GALLEX: GALLium EXperiment

Gran Sasso Underground Laboratory, Italy, overhead shielding: 3300 m.w.e.

30.3 tons of gallium in 101 tons of gallium chloride (GaCl3-HCl) solution

May 1991 – Jan 1997 =) RGALLEXGa

RSSMGa

= 0:61 0:06 [PLB 477 (1999) 127]

C. Giunti Neutrino Physics May 2011 143

Page 17: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

GNO: Gallium Neutrino Observatory

continuation of GALLEX: 30.3 tons of gallium

May 1998 – Jan 2000 =) RGNOGa

RSSMGa

= 0:51 0:08 [PLB 490 (2000) 16]

RGALLEX+GNOGa

RSSMGa

= 0:58 0:05C. Giunti Neutrino Physics May 2011 144

Page 18: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Kamiokande

water Cherenkov detector + e ! + eSensitive to e , , , but (e) ' 6(; )

Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e.

3000 tons of water, 680 tons fiducial volume, 948 PMTs

threshold: EKamth ' 6:75MeV =) 8B ; hep

Jan 1987 – Feb 1995 (2079 days)

RKameRSSMe = 0:55 0:08 [PRL 77 (1996) 1683]

C. Giunti Neutrino Physics May 2011 145

Page 19: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Super-Kamiokande

continuation of Kamiokande

50 ktons of water, 22.5 ktons fiducial volume, 11146 PMTs

threshold: EKamth ' 4:75MeV =) 8B ; hep

1996 – 2001 (1496 days)

RSKeRSSMe = 0:465 0:015 [SK, PLB 539 (2002) 179]

C. Giunti Neutrino Physics May 2011 146

Page 20: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

the Super-Kamiokande underground water Cherenkov detectorlocated near Higashi-Mozumi, Gifu Prefecture, Japan

access is via a 2 km long truck tunnel[R. J. Wilkes, SK, hep-ex/0212035]

C. Giunti Neutrino Physics May 2011 147

Page 21: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Super-Kamiokande cos sun distribution

cos ΘSun

Even

t/day

/kto

n/bi

n

0

0.05

0.1

0.15

0.2

0.25

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[Smy, hep-ex/0208004]

the points represent observed data,

the histogram shows the best-fit signal

(shaded) plus background, the horizon-

tal dashed line shows the estimated back-

ground

the peak at cos sun = 1 is due to solar

neutrinos

Super-Kamiokande

θsun

C. Giunti Neutrino Physics May 2011 148

Page 22: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Super-Kamiokande energy spectrumnormalized to BP2000 SSM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Com

bine

d

Dat

a/S

SM

recoil electron energy in MeV

D/N

asy

mm

etry

in %

5-20

MeV

-70-60-50-40-30-20-10

0102030

6 8 10 12 14 16 18 20

Day-Night asymmetryas a function of energy

solar zenith angle (z) dependenceof Super-Kamiokande data

z

SKDayNight Man 1Man 2Man 3Man 3 Man 4Man

4 Man 5M

an 5

CoreCore

No SKData

InnerCore

All Day Night

Man

tle 1

Man

tle 2

Man

tle 3

Man

tle 4

Man

tle 5

Cor

e

cosθz

Flu

x in

106 /c

m s

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[Smy, hep-ex/0208004]

C. Giunti Neutrino Physics May 2011 149

Page 23: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Time variation of the Super-Kamiokande data

0 0.5 1

2.2

2.3

2.4

2.5

2.6

2.7

0

1

2

3

4

5

6

0 500 1000 1500 2000

Flux at1 AU

1/r2 correcteddata points

χ2=4.7 (69% C.L.)

(flat χ2=10.3 or 17% C.L.)

Fraction of the Year

1996 1997 1998 1999 2000 2001

SNO CC (±1σ)

SNO NC (±1σ)

SSM (±1σ)

SK

Days since Analysis Start

Flu

x in

106 /c

m s

The gray data points are measured every 10 days.

The black data points are measured every 1.5 months.

The black line indicates the expected annual 7% flux variation.

The right-hand panel combines the 1.5 month bins to search for yearly variations.

The gray data points (open circles) are obtained from the black data points

by subtracting the expected 7% variation.[Smy, hep-ex/0208004]

C. Giunti Neutrino Physics May 2011 150

Page 24: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

SNO: Sudbury Neutrino Observatory

water Cherenkov detector, Sudbury, Ontario, Canada

1 kton of D2O, 9456 20-cm PMTs2073 m underground, 6010 m.w.e.

CC: e + d ! p + p + eNC: + d ! p + n+ ES: + e ! + e

CC threshold: E SNOth (CC) ' 8:2MeV

NC threshold: E SNOth (NC) ' 2:2MeV

ES threshold: E SNOth (ES) ' 7:0MeV

9=; =) 8B, hep

D2O phase: 1999 – 2001RSNOCC

RSSMCC

= 0:35 0:02RSNONC

RSSMNC

= 1:01 0:13RSNOES

RSSMES

= 0:47 0:05[PRL 89 (2002) 011301]

NaCl phase: 2001 – 2002RSNOCC

RSSMCC

= 0:31 0:02RSNONC

RSSMNC

= 1:03 0:09RSNOES

RSSMES

= 0:44 0:06[nucl-ex/0309004]

C. Giunti Neutrino Physics May 2011 151

Page 25: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

ΦSNOe = 1:76 0:11 106 cm2 s1

ΦSNO; = 5:41 0:66 106 cm2 s1

SNO solvedsolar neutrino problem+

Neutrino Physics(April 2002)

[SNO, PRL 89 (2002) 011301, nucl-ex/0204008]e ! ; oscillations+Large Mixing Angle solution

∆m2 ' 7 105 eV2

tan2 # ' 0:45)-1 s-2 cm6 10× (eφ

0 0.5 1 1.5 2 2.5 3 3.5

)-1

s-2

cm

6 1

( τµφ

0

1

2

3

4

5

6

68% C.L.CCSNOφ

68% C.L.NCSNOφ

68% C.L.ESSNOφ

68% C.L.ESSKφ

68% C.L.SSMBS05φ

68%, 95%, 99% C.L.τµNCφ

)2 e

V-5

(10

2 m∆

5

10

15

20(a)

θ2tan0 0.2 0.4 0.6 0.8 1

[SNO, PRC 72 (2005) 055502, nucl-ex/0502021]

C. Giunti Neutrino Physics May 2011 152

Page 26: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

KamLAND

Kamioka Liquid scintillator Anti-Neutrino Detector

long-baseline reactor e experiment

Kamioka mine (200 km west of Tokyo), 1000 m underground, 2700 m.w.e.

53 nuclear power reactors in Japan and Korea

average distance from reactors: 180 km6.7% of flux from one reactor at 88 km79% of flux from 26 reactors at 138–214 km14.3% of flux from other reactors at >295 km

1 kt liquid scintillator detector: e + p ! e+ + n, energy threshold: E epth = 1:8MeV

data taking: 4 March – 6 October 2002, 145.1 days (162 ton yr)

expected number of reactor neutrino events (no osc.): NKamLANDexpected = 86:8 5:6

expected number of background events: NKamLANDbackground = 0:95 0:99

observed number of neutrino events: NKamLANDobserved = 54

NKamLANDobserved NKamLAND

background

NKamLANDexpected

= 0:611 0:085 0:041 99.95% C.L. evidenceof e disappearance

C. Giunti Neutrino Physics May 2011 153

Page 27: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

confirmation of LMA (December 2002)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Nob

s/N

exp

101 102 103 104 105

Distance to Reactor (m)

ILL Savannah River Bugey Rovno Goesgen Krasnoyarsk Palo Verde Chooz

KamLAND

Shade: 95% C.L. LMA

Curve:

(∆m2 = 5:5 105 eV2

sin2 2# = 0:83 θ22sin0 0.2 0.4 0.6 0.8 1

)2 (

eV2

m∆10

-6

10-5

10-4

10-3

Rate excludedRate+Shape allowedLMAPalo Verde excludedChooz excluded

95% C.L.[KamLAND, PRL 90 (2003) 021802, hep-ex/0212021]

C. Giunti Neutrino Physics May 2011 154

Page 28: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

-110 1

-410

KamLAND95% C.L.99% C.L.99.73% C.L.best fit

Solar95% C.L.99% C.L.99.73% C.L.best fit

10 20 30 40

σ1 σ2 σ3 σ4 σ5 σ6

5

10

15

20

σ1σ2

σ3

σ4

12θ2tan 2χ∆

)2 (

eV212

m∆2 χ∆

[KamLAND, PRL 100 (2008) 221803]

C. Giunti Neutrino Physics May 2011 155

Page 29: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

(km/MeV)eν/E0L

20 30 40 50 60 70 80 90 100

Surv

ival

Pro

babi

lity

0

0.2

0.4

0.6

0.8

1

eνData - BG - Geo Expectation based on osci. parameters

determined by KamLAND

[KamLAND, PRL 100 (2008) 221803]

C. Giunti Neutrino Physics May 2011 156

Page 30: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Sterile Neutrinos in Solar Neutrino Flux?

10-5

10-4

10-3

10-1

1

∆m2 (

eV2 )

tan2θ

90%, 95%, 99%, 99.73% (3) C.L.

[Bahcall, Gonzalez-Garcia, Pena-Garay, JHEP 0302 (2003) 009]

e ! cos a + sin ssin2 < 0:52 (3)

fB,total =Φ8B

ΦSSM8B

= 1:00 0:06C. Giunti Neutrino Physics May 2011 157

Page 31: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Determination of Solar Neutrino Fluxes[Bahcall, Pena-Garay, hep-ph/0305159]

fit of solar and KamLAND neutrino data with fluxes as free parameters

+ luminosity constraint

Xr

r Φr = K (r = pp; pep; hep; 7Be; 8B; 13N; 15O; 17F)K L=4(1a.u.)2 = 8:534 1011 MeVcm2 s1

solar constant

∆m2 = 7:3+0:40:6 eV2 tan2# = 0:42+0:080:06 (+0:390:19)

Φ8B

ΦSSM8B

= 1:01+0:060:06 (+0:220:17)moderate uncertainty

will improve with new SNONC data (salt phase)

Φ7Be

ΦSSM7Be

= 0:97+0:280:54 (+0:850:97)large uncertainty

needs 7Be experiment(KamLAND, Borexino?)

Φpp

ΦSSMpp

= 1:02+0:020:02 (+0:070:07)small uncertainty

CNO luminosity: LCNO=L = 0:0+2:80:0 (+7:30:0)[Bahcall, Gonzalez-Garcia, Pena-Garay, PRL 90 (2003) 131301]

C. Giunti Neutrino Physics May 2011 158

Page 32: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Details of Solar Neutrino Oscillations

best fit of reactor + solar neutrino data: ∆m2 ' 7 105 eV2 tan2 # ' 0:4

Psune!e =

1

2+1

2 Pc

cos2#0

M cos2#Pc =

exp

2 F exp

2 F

sin2 #1 exp

2 F

sin2# =∆m2 sin22#

2E cos2# d lnAdx

R

F = 1 tan2 #ACC ' 2

p2EGFN

ce exp

x

x0

=) d lnA

dx

' 1

x0=

10:54R ' 3 1015 eV

tan2 # ' 0:4 =) sin22# ' 0:82 ; cos2# ' 0:43 ' 2 104

E

MeV

1 1 =) Pc 1 =) Psun,LMAe!e ' 1

2+

1

2cos2#0

M cos2#C. Giunti Neutrino Physics May 2011 159

Page 33: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

cos2#0M =

∆m2 cos 2# A0CCq

∆m2 cos 2# A0CC

2+ (∆m2 sin 2#)2

critical parameter [Bahcall, Pena-Garay, hep-ph/0305159] =A0CC

∆m2 cos 2# =2p2EGFN

0e

∆m2 cos 2# ' 1:2 E

MeV

N0

e

Nce

1 =) #0M ' # =) P

sune!e ' 1 12 sin22# vacuum averaged

survival probability 1 =) #0M ' =2 =) P

sune!e ' sin2# matter dominatedsurvival probability

1 1

EN0e =N e [MeV

os2#0 M

101100101

10.80.60.40.20-0.2-0.4-0.6-0.8-1

matterdominatedva uumaveraged

1 1EN0e =N e [MeV

Psun;LMA e! e

101100101

10.90.80.70.60.50.40.30.20.10C. Giunti Neutrino Physics May 2011 160

Page 34: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

hE ipp ' 0:27MeV ; hr0ipp ' 0:1R =) hE N0e =Nc

e ipp ' 0:094MeVE7Be ' 0:86MeV ; hr0i7Be ' 0:06R =) hE N0

e =Nce i7Be ' 0:46MeVhE i8B ' 6:7MeV ; hr0i8B ' 0:04R =) hE N0

e =Nce i8B ' 4:4MeV

8B7Bepp

EN0e =N e [MeV Psun;LMA e! e

101100101

10.90.80.70.60.50.40.30.20.10each neutrino experiment is mainly sensitive to one flux

each neutrino experiment is mainly sensitive to #accurate pp experiment can improve determination of #

[Bahcall, Pena-Garay, hep-ph/0305159]

C. Giunti Neutrino Physics May 2011 161

Page 35: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

BOREXino

[BOREXino, arXiv:0708.2251]

Real-time measurement of 7Be solar neutrinos (0:862MeV) + e ! + e E = 0:862MeV =) e ' 5:5;Energy [MeV]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Counts/(10 keV × day × 100 tons)

10-3

10-2

10-1

1

10All solar neutrinos

7Be neutrinos

Energy [keV]300 400 500 600 700 800

Counts/(10 keV × day × 100 tons)

0

0.5

1.0

1.5

2.0

2.5Fit: χ2/NDF = 41.9/477Be: 47±7±12 cpd/100 tons210Bi+CNO: 15±4±5 cpd/100 tons85Kr: 22±7±5 cpd/100 tons210Po: 0.9±1.2 cpd/100 tons

nno-oscthe = 75 4 day1 (100 tons)1 nexp = 47 7 12 day1 (100 tons)1

noscthe = 49 4 day1 (100 tons)1 (nno-oscthe nexp)=∆n ' 1:9C. Giunti Neutrino Physics May 2011 162

Page 36: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Atmospheric and LBL Oscillation Experiments

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation ExperimentsAtmospheric NeutrinosSuper-Kamiokande Up-Down AsymmetryFit of Super-Kamiokande Atmospheric DataKamiokande, Soudan-2, MACRO and MINOSK2KMINOSSterile Neutrinos in Atmospheric Neutrino Flux?

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino MixingC. Giunti Neutrino Physics May 2011 163

Page 37: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Atmospheric Neutrinos

νµ

νµ νµ

π+ π

νµ

e−

νe

νe

µ+

µ−

e+

p

0

1

2

3

4

5

0

0.005

0.01

0.015

subGeV

multiGeV

stoppingmuons

through-goingmuons

10 10 10 10 10 10 10-1 0 1 2 3 4 5

E , GeV

dN

/dln

E, (

Kt.

yr)-1

(m .yr.ster)2

-1

ν

N( + )N(e + e) ' 2 at E . 1GeV

uncertainty on ratios: 5%

uncertainty on fluxes: 30%

ratio of ratios

R [N( + )=N(e + e)]data[N( + )=N(e + e)]MC

RKsub-GeV = 0:60 0:07 0:05

[Kamiokande, PLB 280 (1992) 146]

RKmulti-GeV = 0:57 0:08 0:07

[Kamiokande, PLB 335 (1994) 237]

C. Giunti Neutrino Physics May 2011 164

Page 38: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Super-Kamiokande Up-Down Asymmetry

B

A

να

θABz

π − θABz

E & 1GeV ) isotropic flux of cosmic rays(A) (ABz ) = (B) ( ABz ) (A) (ABz ) = (B) (ABz )+(A) (z) = (A) ( z)(December 1998)

Aup-down (SK) =

N

up NdownN

up + Ndown != 0:296 0:048 0:01

[Super-Kamiokande, Phys. Rev. Lett. 81 (1998) 1562, hep-ex/9807003]

6 MODEL INDEPENDENT EVIDENCE OF DISAPPEARANCE!

C. Giunti Neutrino Physics May 2011 165

Page 39: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Fit of Super-Kamiokande Atmospheric Data

10-3

10-2

0.7 0.75 0.8 0.85 0.9 0.95 1

sin22θ

∆m2 (

eV2 )

68% C.L.90% C.L.99% C.L.

! Best Fit:

∆m2 = 2:1 103 eV2

sin2 2 = 1:01489.2 live-days (Apr 1996 – Jul 2001)

[Super-Kamiokande, PRD 71 (2005) 112005, hep-ex/0501064]

Measure of CC Int. is Difficult:

Eth = 3:5GeV =) 20events=yr -Decay =) Many Final States -Enriched Sample

N the = 7826@∆m2 = 2:4103 eV2

Nexp = 138+5058

N > 0 @ 2:4[Super-Kamiokande, PRL 97(2006) 171801, hep-ex/0607059]

Check: OPERA ( ! )CERN to Gran Sasso (CNGS)L ' 732 km hE i ' 18GeV

[NJP 8 (2006) 303, hep-ex/0611023]

C. Giunti Neutrino Physics May 2011 166

Page 40: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Kamiokande, Soudan-2, MACRO and MINOS

10-4

10-3

10-2

10-1

1

0 0.2 0.4 0.6 0.8 1

Kamiokandecontained

CDHSW

Kamiokandeup µ90%CL

Kamiokandeup µ95%CL

Kamiokandecontained + up µ

sin 2 2θ

∆m2 (

eV2 )

[Kamiokande, hep-ex/9806038] [Soudan 2, hep-ex/0507068]

10-5

10-4

10-3

10-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1: Angular distribution

1+2

2: Energy(Low/High)

sin 22θ

∆m2 (e

V2 )

10-5

10-4

10-3

10-2

10-1

0 0.2 0.4 0.6 0.8 1sin22θ

∆m2 (

eV2 ) 1

68 % C.L.90 % C.L.-∆lnL=2.3Best fit

MINOS Atmospheric ν418 days exposure

[MACRO, hep-ex/0304037] [MINOS, hep-ex/0512036]

C. Giunti Neutrino Physics May 2011 167

Page 41: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

K2Kconfirmation of atmospheric allowed region (June 2002)

KEK to Kamioka(Super-Kamiokande)

250 km ! 10

-4

10-3

10-2

0 0.2 0.4 0.6 0.8 1sin22θ

∆m2 (e

V2 )

[K2K, Phys. Rev. Lett. 90 (2003) 041801]

∆m2

(eV

2 )

68%90%99%

0 10.2 0.4 0.6 0.8sin22θ

10-2

10-3

10-1

[K2K, PRL 94 (2005) 081802, hep-ex/0411038]

C. Giunti Neutrino Physics May 2011 168

Page 42: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MINOSMay 2005 – Feb 2006 http://www-numi.fnal.gov/

Geographical layout of the experiment

The map of the experiment is illustrated in Figure The neutrino beam is produced bythe GeV protons from the Fermilab Main Injector and is aimed at the Soudan mine innorthern Minnesota some km away Because of the earths curvature the parent hadronbeam has to be pointed downward at an angle of mrad

Figure The trajectory of the MINOS neutrino beam between Fermilab and Soudan Thebeam must be aimed into the earth at an angle of mrad to reach Minnesota

The hadron beam decay pipe will be m long a compromise between our desire toobtain the maximum number of and K decays and the cost of the civil construction Thenear detector is located m downstream of the hadron beam absorber This location isalso a compromise between the desire to have the neutrino spectrum be as similar as possibleat the two locations arguing for a large distance and the need to keep the constructioncosts low arguing for a short distance mainly because of the cost of constructing the neardetector cavern deep underground The proposed layout of the MINOS experiment on theFermilab site is shown in Figure

The far detector will be located in the Soudan mine in northern Minnesota This historic iron mine no longer supports active mining but was converted some time ago into aMinnesota State Park The MINOS detector will be constructed m below ground levelin a new cavern to be excavated during The axis of the MINOS cavern willpoint toward Fermilab the new cavern will be constructed next to the existing undergroundlaboratory which houses the operating Soudan detector

Near Detector: 1 km

)23θ(22sin0.2 0.4 0.6 0.8 1.0

)4/c2

| (eV

322m∆|

1.5

2.0

2.5

3.0

3.5

4.0

-310×MINOS Best Fit

MINOS 90% C.L.

MINOS 68% C.L.

K2K 90% C.L.

SK 90% C.L.

SK (L/E) 90% C.L.

)23θ(22sin0.2 0.4 0.6 0.8 1.0

)4/c2

| (eV

322m∆|

1.5

2.0

2.5

3.0

3.5

4.0

-310×

! ∆m2 = 2:74+0:440:26 103 eV2

sin2 2# > 0:87@ 68%CL

[MINOS, PRL 97 (2006) 191801, hep-ex/0607088]

C. Giunti Neutrino Physics May 2011 169

Page 43: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

)θ(22sin0.80 0.85 0.90 0.95 1.00

)2 e

V-3

| (10

2m∆|

1.5

2.0

2.5

3.0

3.5-310×

MINOS best fit MINOS 2008 90%

MINOS 90% Super-K 90%

MINOS 68% Super-K L/E 90% j∆m231j =

2:32+0:120:08 103 eV2

sin2 2#23 > 0:90 (90% C.L.)

[arXiv:1103.0340v1]

C. Giunti Neutrino Physics May 2011 170

Page 44: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Sterile Neutrinos in Atmospheric Neutrino Flux?

[Smy (SK), Moriond 2002]

0.001

0.002

0.003

0.004

0.005

0.006

0.007 0.008 0.009 0.010

0 0.2 0.4 0.6 0.8 1

68 %

90 % 99 %

∆ m 2 (

eV 2 )

sin 2 ξ ν µ → ν τ ν µ → (cos ξν τ + sin ξν s ) ν µ → ν s

Limit On ν µ - ν s Add Mixture

Best Fit χ 2 =172.6/190 (P=81 % ) sin 2 ξ =0.0 sin 2 2 θ =1 ∆ m 2 =2.1 × 10 -3 eV 2

[Nakaya (SK), hep-ex/0209036]

C. Giunti Neutrino Physics May 2011 171

Page 45: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Phenomenology of Three-Neutrino Mixing

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino MixingExperimental Evidences of Neutrino OscillationsThree-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 172

Page 46: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Experimental Evidences of Neutrino Oscillations

Solare ! ; 0BBBBB Homestake

Kamiokande

GALLEX/GNO & SAGE

Super-Kamiokande

SNO

BOREXino

1CCCCCAReactore disappearance

(KamLAND)

9>>>>>>>>=>>>>>>>>;! (∆m2SOL ' (7:6 0:2) 105 eV2

tan2 #SOL ' 0:47 0:06Atmospheric ! 0BBB Kamiokande

IMB

Super-Kamiokande

MACRO

Soudan-2

1CCCAAccelerator disappearance

(K2K & MINOS)

9>>>>>>=>>>>>>;! (∆m2ATM ' (2:4 0:1) 103 eV2

sin2 #ATM ' 0:50 0:07Two scales of ∆m2: ∆m2

ATM ' 30∆m2SOL

Large mixings: #ATM ' 45Æ ; #SOL ' 34ÆC. Giunti Neutrino Physics May 2011 173

Page 47: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Three-Neutrino MixingL =3X

k=1

Uk kL ( = e; ; )three flavor fields: e , , three massive fields: 1, 2, 3

∆m221 +∆m2

32 +∆m213 = m2

2 m21 +m2

3 m22 +m2

1 m23 = 0

∆m2SOL = ∆m2

21 ' (7:6 0:2) 105 eV2

∆m2ATM ' j∆m2

31j ' j∆m232j ' (2:4 0:1) 103 eV2

C. Giunti Neutrino Physics May 2011 174

Page 48: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Allowed Three-Neutrino Schemes

m2ATM

m

m2SUN21

3

”normal”

m

3m2ATM

m2SUN 12

”inverted”

different signs of ∆m231 ' ∆m2

32

absolute scale is not determined by neutrino oscillation data

C. Giunti Neutrino Physics May 2011 175

Page 49: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Mixing Matrix

∆m221 j∆m2

31j Ue1 Ue2

Uµ1 Uµ2

Uτ2

ATM & LBL

Uτ3

Uµ3

Ue3

U =

SOL

Uτ1

CHOOZ:

∆m2

CHOOZ = ∆m231 = ∆m2

ATM

sin2 2#CHOOZ = 4jUe3j2(1 jUe3j2)+jUe3j2 . 5 102

[Bilenky, Giunti, PLB 444 (1998) 379]

SOLAR AND ATMOSPHERIC OSCILLATIONSARE PRACTICALLY DECOUPLED!

Analysis A

10-4

10-3

10-2

10-1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1sin2(2θ)

δm2 (

eV2 )

90% CL Kamiokande (multi-GeV)

90% CL Kamiokande (sub+multi-GeV)

νe → νx

90% CL

95% CL

[CHOOZ, PLB 466 (1999) 415]

[Palo Verde, PRD 64 (2001) 112001]jUe1j2 ' cos2 #SOL jUe2j2 ' sin2 #SOLjU3j2 ' sin2 #ATM jU3j2 ' cos2 #ATM

C. Giunti Neutrino Physics May 2011 176

Page 50: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Effective ATM and LBL Oscillation Probability in Vacuum

P! =

3Xk=1

UkUkeiEk t

2 e iE1t2

=

3Xk=1

UkUkei(EkE1)t

2! 3Xk=1

UkUk exp ∆m2k1L

2E

!2Ek ' E +

m2k

2E

∆m221L

2E 1 ∆m2

31 ! ∆m2

P! =

U1U1 + U2U2 + U3U3 exp ∆m2L

2E

!2U1U1 + U2U2 = Æ U3U3

C. Giunti Neutrino Physics May 2011 177

Page 51: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

P! =

Æ U3U3 "1 exp

∆m2L

2E

!#2= Æ + jU3j2jU3j2 2 2 cos

∆m2L

2E

! 2Æ jU3j2 1 cos∆m2L

2E

!= Æ 2jU3j2 Æ jU3j2 1 cos

∆m2L

2E

!= Æ 4jU3j2 Æ jU3j2 sin2 ∆m2L

4E 6= =) P! = 4jU3j2jU3j2 sin2 ∆m2L

4E

! = =) P! = 1 4jU3j2 1 jU3j2 sin2 ∆m2L

4E

!C. Giunti Neutrino Physics May 2011 178

Page 52: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

P! = sin2 2# sin2 ∆m2L

4E

!( 6= )

sin2 2# = 4jU3j2jU3j2P! = 1 sin2 2# sin2

∆m2L

4E

!sin2 2# = 4jU3j2 1 jU3j2LBL

Ue1 Ue2

Uµ1 Uµ2

Uτ2 Uτ3

Uµ3

Ue3

U =

Uτ1

sin2 2#ee 1+jUe3j2 ' sin2 2#ee

4

C. Giunti Neutrino Physics May 2011 179

Page 53: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

e disappearance experiments:

sin2 2#ee = 4jUe3j2 1 jUe3j2 ' 4jUe3j2 disappearance experiments:

sin2 2# = 4jU3j2 1 jU3j2jU3j2 = 1

2

1q1 sin2 2#

! e experiments:

sin2 2#e = 4jUe3j2jU3j2C. Giunti Neutrino Physics May 2011 180

Page 54: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

U =

0B1 0 00 c23 s230 s23 c23

1CA#23 ' #ATM

0B c13 0 s13eiÆ13

0 1 0s13e iÆ13 0 c13

1CA0B c12 s12 0s12 c12 00 0 1

1CA#12 ' #SOL

0B1 0 00 e i2 00 0 e i3

1CA0=

0B c12c13 s12c13 s13eiÆ13s12c23c12s23s13e

iÆ13 c12c23s12s23s13eiÆ13 s23c13

s12s23c12c23s13eiÆ13 c12s23s12c23s13e

iÆ13 c23c13

1CA0B1 0 0

0 e i2 0

0 0 e i31CA∆m2

21 =7:65+0:230:20 105 eV2 j∆m2

31j = 2:40+0:120:11 103 eV2

sin2 #12 = 0:304+0:0220:016 sin2 #23 = 0:50+0:070:06sin2 #13 < 0:035 (90% C.L.)

[Schwetz, Tortola, Valle, arXiv:0808.2016v3, 11 Feb 2010]

Current Research

measure #13 6= 0 =) CP violation, matter effects, mass hierarchyC. Giunti Neutrino Physics May 2011 181

Page 55: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Bilarge MixingjUe3j2 1

U ' 0B c#S s#S 0s#Sc#A c#Sc#A s#A

s#Ss#A c#Ss#A c#A

1CA =) 8><>: e = c#S1 + s#S2(S)a = s#S1 + c#S2= c#A s#A

sin2 2#A ' 1 =) #A ' 4=) U ' 0B c#S s#S 0s#S=p2 c#S=p2 1=p2

s#S=p2 c#S=p2 1=p2

1CASolar e ! (S)a ' 1p

2( )

ΦSNOCC

ΦSSMe ' 1

3=) Φe ' Φ ' Φ for E & 6MeV

sin2 #S ' 1

3=) U ' 0B p

2=3 1=p3 01=p6 1=p3 1=p2

1=p6 1=p3 1=p2

1CATri-Bimaximal Mixing

[Harrison, Perkins, Scott, hep-ph/0202074]

C. Giunti Neutrino Physics May 2011 182

Page 56: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

10-2

10-1

sin2θ13

1

2

3

4

5∆m

2 31 [1

0-3 e

V2 ]

SK+K2K+MINOS

SOL+KAML+CHOOZ

CHOOZ

GLOBAL

90% CL (2 dof)

0 0.05 0.1

sin2θ13

0

5

10

15

20

∆χ2

90% CL

MINOS app

sola

r + K

amLA

ND

atm

+ L

BL +

CH

OO

Z

glob

al

[Mezzetto, Schwetz, arXiv:1003.5800, 10 Aug 2010]

C. Giunti Neutrino Physics May 2011 183

Page 57: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Hint of #13 > 0[Fogli, Lisi, Marrone, Palazzo, Rotunno, NO-VE, April 2008] [Balantekin, Yilmaz, JPG 35 (2008) 075007]

sin2 #13 = 0:016 0:010 [Fogli, Lisi, Marrone, Palazzo, Rotunno, PRL 101 (2008) 141801]

0.1 0.2 0.3 0.4 0.5

sin2θ12

0

0.05

0.1

0.15

sin2 θ 13 solar

KamLANDglobal

[Schwetz, Tortola, Valle, arXiv:0808.2016v3, 11 Feb 2010]

0.1 0.2 0.3 0.4 0.5

sin2θ12

0

0.05

0.1

0.15

0.2

sin2 θ 13

Ga+Cl+Be+KamLAND

SK+SNO

global

[Mezzetto, Schwetz, arXiv:1003.5800, 10 Aug 2010]

P()e!()e ' ( 1 sin2 #13

2 1 0:5 sin2 #12

SOL low-energy & KamLAND

1 sin2 #13

2sin2 #12 SOL high-energy (matter effect)

C. Giunti Neutrino Physics May 2011 184

Page 58: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

The Hunt for #13

2006 2008 2010 2012 2014 2016 2018 2020Year

10-3

10-2

10-1

100

sin2

2Θ13

disc

over

yre

achH3ΣL

CHOOZ+Solar excluded

Conventional beams

Superbeams

Reactor experiments

MINOSCNGSD-CHOOZT2KNOîAReactor-IINOîA+FPD

2005 2010 2015 2020 2025 2030Year

10-5

10-4

10-3

10-2

10-1

100

sin2

2Θ13

disc

over

yre

achH3ΣL

CHOOZ+Solar excluded

Branching pointConv. beams

Superbeams+Reactor exps

Superbeam upgrades

Ν-factories

MINOSCNGSD-CHOOZT2KNOîAReactor-IINOîA+FPD2ndGenPDExpNuFact

3 sensitivities. Bands reflect depen-dence of sensitivity on the CP violatingphase Æ13. “Branching point” refers to the decision

between an upgraded superbeam and/ordetector and a neutrino factory program.Neutrino factory is assumed to switchpolarity after 2.5 years.

[Physics at a Fermilab Proton Driver, Albrow et al, hep-ex/0509019]

C. Giunti Neutrino Physics May 2011 185

Page 59: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Effective LBL Oscillation Probabilities

∆ =∆m2

31L

4E =

∆m221

∆m231

A =2EV

∆m231L

V =p2GFNe

sin 13 1 1

PLBLe!e ' 1 sin2 2#13 sin2 ∆ 2∆2 sin2 2#12

PLBL!e ' sin2 2#13 sin2 #23

sin2[(1 A)∆]

(1 A)2

+ sin 2#13 sin 2#12 sin 2#23 cos(∆ + Æ13)sin(A∆)

A

sin[(1 A)∆]

1 A

+ 2 sin2 2#12 cos2 #23

sin2(A∆)

A2

[Mezzetto, Schwetz, arXiv:1003.5800]

C. Giunti Neutrino Physics May 2011 186

Page 60: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MINOS[arXiv:1006.0996v1]

0 0.1 0.2 0.3 0.4

)π (

CP

δ

0.0

0.5

1.0

1.5

2.0

> 02m∆

MINOS Best Fit

68% CL

90% CL

CHOOZ 90% CL

=1 for CHOOZ23θ22sin

0 0.1 0.2 0.3 0.4

)π (

CP

δ

0.0

0.5

1.0

1.5

2.0

23θ2)sin13θ(222sin

0 0.1 0.2 0.3 0.4

)π (C

0.0

0.5

1.0

1.5

2.0

< 02m∆

MINOS POT2010×7.01

23θ2)sin13θ(222sin

0 0.1 0.2 0.3 0.4

)π (C

0.0

0.5

1.0

1.5

2.0

54 e events in FD

background: 49:1 7:0 2:70:7 excess

if Æ13 = 0

2 sin2 2#13 sin2 #23 < (

0:12 (NH)0:20 (IH)

(90% C.L.)

C. Giunti Neutrino Physics May 2011 187

Page 61: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

CP Violation

P! P! = 16J sin ∆m221L

4E

!sin

∆m2

31L

4E

!sin

∆m2

32L

4E

!J = Im(U1U2U1U2) = JJ = s12c12s23c23s13c

213 sin Æ13

Necessary conditions for observation of CP violation:

Sensitivity to small #13

Sensitivity to oscillations due to ∆m221 and ∆m2

31

C. Giunti Neutrino Physics May 2011 188

Page 62: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Mass Hierarchy

e MSW resonance: cos 2#13 =2EV

∆m213

Requires ∆m213 > 0

e MSW resonance: cos 2#13 = 2EV

∆m213

Requires ∆m213 < 0

C. Giunti Neutrino Physics May 2011 189

Page 63: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Off-Axis Experiments

high-intensity WB beamdetector shifted by a small angle from axis of beam

almost monochromatic neutrino energy

π+

cm

µ+

νµ

−~pcm

π+

~pπv = pπ/Eπ

~pcm

lab

µ+

~pνµ

θ

Ecm = pcm = m2

1 m2

m2 ' 29:79MeV =1 v2

1=2= E=m 1

(E = (Ecm + v pzcm)pz = (v Ecm + pzcm)

pz = p cos =) E =Ecm (1 v cos )

C. Giunti Neutrino Physics May 2011 190

Page 64: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

cos ' 1 2=2 and v ' 1

E =Ecm (1 v cos ) ' (1 + v)

1 + 22v (1 + v) =2 Ecm ' 2 1 + 22Ecm

E ' 1 m2m2! E

1 + 2 2 =

1 m2

m2! E m2m2 + E 2 2

= 0 =) E / E WB beam

E m =) E / m2E 2 high-energy + give low-energy

dE

dE ' 1 m2m2! 1 2 2

(1 + 2 2)2dE

dE ' 0 for = 1 =mE =) E ' 1 m2

m2! m2 ' 29:79MeV

C. Giunti Neutrino Physics May 2011 191

Page 65: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

off-axis angle ' m=hEi =) E ' 29:79MeV(a)

Eπ [GeV]

E[G

eV]

4035302520151050

5

4

3

2

1

0

= 0:0Æ; 0:5Æ; 1:0Æ; 1:5Æ; 2:0Æ E can be tuned on oscillation peak Epeak = ∆m2L=2 small E =) short Losc =

4E∆m2

=) sensitivity to small values of ∆m2

C. Giunti Neutrino Physics May 2011 192

Page 66: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

()(0) =1

4

2

1 + 2 22

(b)

Eπ [GeV]

φ(θ

)/φ(0

)

4035302520151050

100

10−1

10−2

10−3

10−4

= 0:0Æ; 0:5Æ; 1:0Æ; 1:5Æ; 2:0Æflux suppression requires superbeam

C. Giunti Neutrino Physics May 2011 193

Page 67: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Absolute Scale of Neutrino Masses

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino MassesMass Hierarchy or Degeneracy?Tritium Beta-DecayNeutrinoless Double-Beta DecayCosmological Bound on Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 194

Page 68: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Mass Hierarchy or Degeneracy?

normal scheme

m3

m2

m1

Lightest Mass: m1 [eV ]

m[e

V]

10010−110−210−310−4

100

10−1

10−2

10−3

10−4

NORMALHIERARCHY

QUASIDEGENERATE

NORMALSCHEME

m22 = m2

1 +∆m221 = m2

1 +∆m2SOL

m23 = m2

1 +∆m231 = m2

1 +∆m2ATM

inverted scheme

m2

m1

m3

Lightest Mass: m3 [eV ]

m[e

V]

10010−110−210−310−4

100

10−1

10−2

10−3

10−4

INVERTEDHIERARCHY

QUASIDEGENERATE

INVERTEDSCHEME

m21 = m2

3 ∆m231 = m2

3 +∆m2ATM

m22 = m2

1 +∆m221 ' m2

3 +∆m2ATM

Quasi-Degenerate for m1 ' m2 ' m3 ' m p∆m2

ATM ' 5 102 eV

C. Giunti Neutrino Physics May 2011 195

Page 69: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Tritium Beta-Decay

3H! 3He + e + e dΓ

dT=

(cos#CGF)2

23jMj2 F (E) pE (Q T )

q(Q T )2 m2e

Q = M3H M3He me = 18:58 keVKurie plot

K(T ) =

vuut dΓ=dT(cos#CGF)

2

23jMj2 F (E) pE =

(Q T )

q(Q T )2 m2e1=2

0

0.1

0.2

0.3

0.4

0.5

18.1 18.2 18.3 18.4 18.5 18.6

K(T

)

T

mνe= 100 eV

QQ−mνe

mνe= 0

me < 2:2 eV (95% C.L.)

Mainz & Troitsk[Weinheimer, hep-ex/0210050]

future: KATRIN (start 2012)

[hep-ex/0109033] [hep-ex/0309007]

sensitivity: me ' 0:2 eVC. Giunti Neutrino Physics May 2011 196

Page 70: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Neutrino Mixing =) K (T ) =

"(Q T )

Xk

jUek j2q(Q T )2 m2

k

#1=200.050.10.150.2

18.4 18.45 18.5 18.55 18.6K(T)

Qm2 Qm1

jUe1j2 = 0:5 m1 = 10 eVjUe2j2 = 0:5 m2 = 100 eV

T

analysis of data isdifferent from theno-mixing case:2N 1 parameters X

k

jUek j2 = 1

!if experiment is not sensitive to masses (mk Q T )

effective mass: m2 =Xk

jUek j2m2k

K2 = (Q T )2

Xk

jUek j2s1 m2k

(Q T )2' (Q T )2

Xk

jUek j2 1 1

2

m2k

(Q T )2

= (Q T )2

1 1

2

m2(Q T )2

' (Q T )

q(Q T )2 m2

C. Giunti Neutrino Physics May 2011 197

Page 71: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

m2 = jUe1j2 m21 + jUe2j2 m2

2 + jUe3j2 m23

m3

m2

m1

NORMAL SCHEME

KATRIN

↓ Mainz & Troitsk ↓

Lightest Mass: m1 [eV ]

[eV

]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

m1,m2

m3

INVERTED SCHEME

KATRIN

↓ Mainz & Troitsk ↓

Lightest Mass: m3 [eV ]

[eV

]10110010−110−210−310−4

101

100

10−1

10−2

10−3

Quasi-Degenerate: m1 ' m2 ' m3 ' m =) m2 ' m2Xk

jUek j2 = m2FUTURE: IF m . 4 102 eV =) NORMAL HIERARCHY

C. Giunti Neutrino Physics May 2011 198

Page 72: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Neutrinoless Double-Beta Decay

7632Ge

7633As

7634Se

0+

2+

0+

β−

β−β−

β+

Effective Majorana Neutrino Mass: m =Xk

U2ek mk

C. Giunti Neutrino Physics May 2011 199

Page 73: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Two-Neutrino Double- Decay: ∆L = 0N (A;Z )! N (A;Z + 2) + e + e

+ e + e(T 2

1=2)1 = G2 jM2 j2second order weak interaction process

in the Standard Model d u

W

W

d ueeee

Neutrinoless Double- Decay: ∆L = 2N (A;Z )! N (A;Z + 2) + e + e(T 0

1=2)1 = G0 jM0 j2 jm j2effectiveMajoranamass

m =Xk

U2ek mk d u

WkmkUek

Uek W

d uee

C. Giunti Neutrino Physics May 2011 200

Page 74: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Effective Majorana Neutrino Mass

m =Xk

U2ek mk complex Uek ) possible cancellations

m = jUe1j2 m1 + jUe2j2 e i2 m2 + jUe3j2 e i3 m32 = 22 3 = 2 (3 Æ13)α3

α2

Im[mββ]

|Ue2|2eiα2m2

|Ue1|2m1

mββ

Re[mββ]

|Ue3|2eiα3m3

α2

α3

Im[mββ]

|Ue2|2eiα2m2

|Ue1|2m1 Re[mββ]

mββ

|Ue3|2eiα3m3

C. Giunti Neutrino Physics May 2011 201

Page 75: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Experimental BoundsCUORICINO (130Te) [arXiv:1012.3266]

T 01=2 > 2:8 1024 y (90% C.L.) =) jm j . 0:3 0:7 eV

Heidelberg-Moscow (76Ge) [EPJA 12 (2001) 147]

T 01=2 > 1:9 1025 y (90% C.L.) =) jm j . 0:32 1:0 eV

IGEX (76Ge) [PRD 65 (2002) 092007]

T 01=2 > 1:57 1025 y (90% C.L.) =) jm j . 0:33 1:35 eV

NEMO 3 (100Mo) [PRL 95 (2005) 182302]

T 01=2 > 4:6 1023 y (90% C.L.) =) jm j . 0:7 2:8 eV

FUTURE EXPERIMENTSCOBRA, XMASS, CAMEO, CANDLESjm j few 101 eV

EXO, MOON, Super-NEMO, CUORE, Majorana, GEM, GERDAjm j few 102 eV

C. Giunti Neutrino Physics May 2011 202

Page 76: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Bounds from Neutrino Oscillations

m = jUe1j2 m1 + jUe2j2 e i21 m2 + jUe3j2 e i31 m3

CP conservation21 = 0 ; 31 = 0 ; C. Giunti Neutrino Physics May 2011 203

Page 77: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

CP Conservation: Normal Scheme

m3

m2

m1

↓ EXP ↓

λ21 =α212= 0 λ31 =

α312= 0

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m3

m2

m1

↓ EXP ↓

λ21 =α212= 0 λ31 =

α312=

π

2

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m3

m2

m1

↓ EXP ↓

λ21 =α212=

π

2λ31 =

α312=

π

2

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m3

m2

m1

↓ EXP ↓

λ21 =α212=

π

2λ31 =

α312= 0

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

C. Giunti Neutrino Physics May 2011 204

Page 78: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

CP Conservation: Inverted Scheme

m2

m1

m3

↓ EXP ↓

λ21 =α212= 0 λ31 =

α312= 0

m3 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m2

m1

m3

↓ EXP ↓

λ21 =α212= 0 λ31 =

α312=

π

2

m3 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m2

m1

m3

↓ EXP ↓

λ21 =α212=

π

2λ31 =

α312=

π

2

m3 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

m2

m1

m3

↓ EXP ↓

λ21 =α212=

π

2λ31 =

α312= 0

m3 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

C. Giunti Neutrino Physics May 2011 205

Page 79: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

m = jUe1j2 m1 + jUe2j2 e i21 m2 + jUe3j2 e i31 m3

NORMAL SCHEME

↓ EXP ↓

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

NORMAL SCHEME

↓ EXP ↓

m1 [eV]

|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

CP violation −→

INVERTED SCHEME

↓ EXP ↓

m3 [eV]|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

INVERTED SCHEME

↓ EXP ↓

m3 [eV]|mββ|

[eV]

10110010−110−210−310−4

101

100

10−1

10−2

10−3

10−4

CP violation −→

FUTURE: IF jm j . 102 eV =) NORMAL HIERARCHY

C. Giunti Neutrino Physics May 2011 206

Page 80: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Experimental Positive Indication

[Klapdor et al., MPLA 16 (2001) 2409]

T 01=2 = (2:23+0:440:31) 1025 y 6:5 evidence [MPLA 21 (2006) 1547]

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

Energy ,keV

Cou

nts

/ keV

SSE2n2b Rosen − Primakov Approximation

Q=2039 keV

[PLB 586 (2004) 198]

2000 2010 2020 2030 2040 2050 2060

0

1

2

3

4

5

6

7

8

[MPLA 21 (2006) 1547]

the indication must be checked by other experimentsjm j = 0:32 0:03 eV [MPLA 21 (2006) 1547]

if confirmed, very exciting (Majorana and large mass scale)

C. Giunti Neutrino Physics May 2011 207

Page 81: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

0 Decay , Majorana Neutrino Mass

d

d u

u

e−

e−

ββ0ν=) d

d u

u

e−

W+

W+

e−ββ0ν

νe ≡ νe(h = +1)

νe ≡ νe(h = −1)

[Schechter, Valle, PRD 25 (1982) 2951] [Takasugi, PLB 149 (1984) 372]

Majorana Mass TermLMeL = 12 mee

ceL eL + eL ceLC. Giunti Neutrino Physics May 2011 208

Page 82: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Cosmological Bound on Neutrino Masses

[WMAP, http://map.gsfc.nasa.gov]

[Springel, Frenk, White, Nature 440 (2006) 1137]

Supernova Cosmology Project

34

36

38

40

42

44

WM=0.3, WL=0.7

WM=0.3, WL=0.0

WM=1.0, WL=0.0

m-M

(m

ag)

High-Z SN Search Team

0.01 0.10 1.00z

-1.0

-0.5

0.0

0.5

1.0

D(m

-M)

(mag

)

[http://cfa-www.harvard.edu/supernova/]

C. Giunti Neutrino Physics May 2011 209

Page 83: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Lyman-alpha Forest

[Springel, Frenk, White, astro-ph/0604561]

Rest-frame Lyman , , wavelengths: 0 = 1215:67 A, 0 = 1025:72 A, 0 = 972:54 A

Lyman- forest: The region in which only Ly photons can be absorbed: [(1 + zq)0 ; (1 + zq)0 ]

C. Giunti Neutrino Physics May 2011 210

Page 84: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Relic Neutrinos

neutrinos are in equilibrium in primeval plasma through weak interaction reactions e+e () e () e () N

() N en pe ep ne+ n peeweak interactions freeze out

Γweak = Nv G 2FT

5T 2=MP pGNT 4 pGN H =) Tdec 1MeVneutrino decoupling

Relic Neutrinos: T =

4

11

13

T ' 1:945K =) k T ' 1:676 104 eV(T =2:7250:001 K)

number density: nf =3

4

(3)2gf T

3f =) nk ;k ' 0:1827T 3 ' 112 cm3

density contribution:c=3H2

8GN

Ωk =nk ;k mkc ' 1

h2mk

94:14 eV =) Ω h2 = Pk mk

94:14 eV[Gershtein, Zeldovich, JETP Lett. 4 (1966) 120] [Cowsik, McClelland, PRL 29 (1972) 669]

h 0:7, Ω . 0:3 =) Xk

mk . 14 eV

C. Giunti Neutrino Physics May 2011 211

Page 85: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Power Spectrum of Density Fluctuations

[Tegmark, hep-ph/0503257]

Solid Curve: flat ΛCDM model

(Ω0M

= 0:28 ; h = 0:72 ; Ω0B=Ω0

M= 0:16)

Dashed Curve:

3Xk=1

mk = 1 eV

hot dark matterprevents early galaxy formationÆ(~x) (~x) hÆ(~x1)Æ(~x2)i = Z d3k

(2)3 e i~k~x P(~k)small scale suppression

∆P(k)

P(k) 8 Ω

Ωm 0:8Pk mk

1 eV

0:1

Ωm h2

for

k & knr 0:026r m1 eV

pΩm hMpc1

[Hu, Eisenstein, Tegmark, PRL 80 (1998) 5255]

C. Giunti Neutrino Physics May 2011 212

Page 86: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

WMAP (First Year), AJ SS 148 (2003) 175, astro-ph/0302209

CMB (WMAP, . . . ) + LSS (2dFGRS) + HST + SN-Ia =) Flat ΛCDM

T0 = 13:7 0:2Gyr h = 0:71+0:040:03Ω0 = 1:02 0:02 Ωb = 0:044 0:004 Ωm = 0:27 0:04

Ωh2 < 0:0076 (95% conf.) =) 3Xk=1

mk < 0:71 eVWMAP (Five Years), AJS 180 (2009) 330, astro-ph/0803.0547

CMB + HST + SN-Ia + BAO

T0 = 13:72 0:12Gyr h = 0:705 0:0130:0179 < Ω0 1 < 0:0081 (95% C.L.)

Ωb = 0:0456 0:0015 Ωm = 0:274 0:0133X

k=1

mk < 0:67 eV (95% C.L.) Neff = 4:4 1:5C. Giunti Neutrino Physics May 2011 213

Page 87: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Fogli, Lisi, Marrone, Melchiorri, Palazzo, Rotunno, Serra, Silk, Slosar[PRD 78 (2008) 033010, hep-ph/0805.2517]

Flat ΛCDM

Case Cosmological data set Σ (at 2)1 CMB < 1:19 eV2 CMB + LSS < 0:71 eV3 CMB + HST + SN-Ia < 0:75 eV4 CMB + HST + SN-Ia + BAO < 0:60 eV5 CMB + HST + SN-Ia + BAO + Ly < 0:19 eV

2 (95% C.L.) constraints on the sum of masses Σ.

C. Giunti Neutrino Physics May 2011 214

Page 88: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

3Xk=1

mk . 0:6 eV ( 2) CMB + HST + SN-Ia + BAO

3Xk=1

mk . 0:2 eV ( 2) CMB + HST + SN-Ia + BAO + Ly←

↓ CMB+HST+SN-Ia+BAO+Lyα ↓

↓ CMB+HST+SN-Ia+BAO ↓

NORMAL SCHEME

∑kmk

m3

m2

m1

Lightest Mass: m1 [eV ]

m[eV]

10010−110−210−3

100

10−1

10−2

10−3

↓ CMB+HST+SN-Ia+BAO+Lyα ↓

↓ CMB+HST+SN-Ia+BAO ↓

INVERTED SCHEME

∑kmk

m2

m1

m3

Lightest Mass: m3 [eV ]

m[eV]

10010−110−210−3

100

10−1

10−2

10−3

FUTURE: IF3X

k=1

mk . 9 102 eV =) NORMAL HIERARCHY

C. Giunti Neutrino Physics May 2011 215

Page 89: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Indication of 0 Decay: 0:22 eV . jm j . 1:6 eV ( 3 range)[Klapdor et al., MPLA 16 (2001) 2409; FP 32 (2002) 1181; NIMA 522 (2004) 371; PLB 586 (2004) 198]

OSC.CMB+LSS+SNIa+BAO+Lyα

CMB+LSS+SNIa+BAO

ββ0ν

NORMAL SCHEME

Lightest Mass: m1 [eV]

|mββ|

[eV]

10110010−110−2

101

100

10−1

10−2

OSCCMB+LSS+SNIa+BAO+Lyα

CMB+LSS+SNIa+BAO

ββ0ν

INVERTED SCHEME

Lightest Mass: m3 [eV]|mββ|

[eV]

10110010−110−2

101

100

10−1

10−2

tension among oscillation data, CMB+LSS+BAO(+Ly) and 0 signal

C. Giunti Neutrino Physics May 2011 216

Page 90: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

95% allowed regions (2 dof)

95% upper bounds onP

m[Gonzalez-Garcia, Maltoni, Salvado,

JHEP08 (2010) 117, arXiv:1006.3795v2]

C. Giunti Neutrino Physics May 2011 217

Page 91: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Anomalies Beyond Three-Neutrino Mixing

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 218

Page 92: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

LSND[LSND, PRL 75 (1995) 2650; PRC 54 (1996) 2685; PRL 77 (1996) 3082; PRD 64 (2001) 112007] ! e L ' 30m 20MeV E 200MeV

other

p(ν_

e,e+)n

p(ν_

µ→ν_

e,e+)n

L/Eν (meters/MeV)

Bea

m E

xces

s

Beam Excess

0

2.5

5

7.5

10

12.5

15

17.5

0.4 0.6 0.8 1 1.2 1.4 10-2

10-1

1

10

10 2

10-3

10-2

10-1

1sin2 2θ

∆m2 (

eV2 /c

4 )

BugeyKarmen

NOMAD

CCFR

90% (Lmax-L < 2.3)99% (Lmax-L < 4.6)

∆m2LSND & 0:2 eV2 ( ∆m2

ATM ∆m2SOL)

C. Giunti Neutrino Physics May 2011 219

Page 93: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MiniBooNE Neutrinos[PRL 98 (2007) 231801; PRL 102 (2009) 101802] ! e L ' 541m 475MeV E . 3GeV

(GeV)QEνE

Eve

nts

/ MeV

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2

2.5

3

Dataµ from eν

+ from Keν 0 from Keν

misid 0πγ N→ ∆

dirtother Total Background

1.5 3.

(GeV)QEνE

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Exc

ess

Eve

nts

/ MeV

-0.2

0

0.2

0.4

0.6

0.8 data - expected background

eν→µνbest-fit

2=1.0eV2 m∆=0.004, θ22sin

2=0.1eV2 m∆=0.2, θ22sin

1.5 3.

[MiniBooNE, PRL 102 (2009) 101802, arXiv:0812.2243][Djurcic, arXiv:0901.1648]

Low-Energy Anomaly!

C. Giunti Neutrino Physics May 2011 220

Page 94: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MiniBooNE Antineutrinos[PRL 103 (2009) 111801; PRL 105 (2010) 181801] ! e L ' 541m 475MeV E . 3GeV

Eve

nts/

MeV

0.2

0.4

0.6

Eve

nts/

MeV

0.2

0.4

0.6 +/-µ from eν & eν+/- from Keν & eν0 from Keν & eν

misid0πγ N→ ∆

dirtotherConstr. Syst. ErrorBest Fit (E>475MeV)

Fit Region

(GeV)QEνE

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Eve

nts/

MeV

-0.1

0.0

0.1

0.2

0.3

3.01.5

Data - expected background

Best Fit2=1.0eV2m∆=0.004, θ22sin

2=0.3eV2m∆=0.03, θ22sin

[MiniBooNE, PRL 105 (2010) 181801, arXiv:1007.1150]

)θ(22sin

-310 -210 -110 1)4

/c2| (

eV2

m∆|

-210

-110

1

10

210

LSND 90% CL

LSND 99% CL

68% CL

90% CL

99% CL

KARMEN2 90% CL

BUGEY 90% CL

Agreement with LSND ! e signal!

Similar L=E but different L and E =) Oscillations!

C. Giunti Neutrino Physics May 2011 221

Page 95: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Beyond Three-Neutrino Mixing

ν1

m21

∆m2SOL

logm2m22

ν2 ν3

m23

∆m2ATM

νe

νµ

ντνs1 · · ·

3ν-mixing

ν4 ν5 · · ·

m24 m2

5

νs2

∆m2SBL

C. Giunti Neutrino Physics May 2011 222

Page 96: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Standard Model

Neutrinos are the only massless fermions

Neutrinos are the only fermions with only left-handed component LExtension of the SM: Massive Neutrinos

Simplest extension: introduce right-handed component R Dirac mass mDRL + Majorana mass mMcRR eL ; L ; L + eR ; R ; R =) 6 massive Majorana neutrinos

C. Giunti Neutrino Physics May 2011 223

Page 97: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Sterile Neutrinos

Light anti-R are called sterile neutrinoscR!s (left-handed)

Sterile means no standard model interactions

Active neutrinos (e ; ; ) can oscillate into sterile neutrinos (s) Observables:

Disappearance of active neutrinos

Indirect evidence through combined fit of data (current indication)

Powerful window on new physics beyond the Standard Model

C. Giunti Neutrino Physics May 2011 224

Page 98: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Cosmology

Ns = number of thermalized sterile neutrinos (not necessarily integer)

CMB and LSS in ΛCDM:

[Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301, arXiv:1006.5276]

Ns = 1:61 0:92 ms < 0:70 eV (95% C.L.)[Giusarma, Corsi, Archidiacono, de Putter, Melchiorri, Mena, Pandolfi, arXiv:1102.4774]

BBN:Ns = 0:22 0:59 [Cyburt, Fields, Olive, Skillman, AP 23 (2005) 313, astro-ph/0408033]

Ns = 0:64+0:400:35 [Izotov, Thuan, ApJL 710 (2010) L67, arXiv:1001.4440]

C. Giunti Neutrino Physics May 2011 225

Page 99: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Direct Searches of Active-Sterile Transitions

C. Giunti Neutrino Physics May 2011 226

Page 100: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

CCFR[PRD 59 (1999) 031101, arXiv:hep-ex/9809023]

NC interactions E 100GeV L ' 1:4 kmC. Giunti Neutrino Physics May 2011 227

Page 101: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MINOSNC sample: 89% efficiency and 61% purity97% of e -induced CC events misidentified as NC

[arXiv:1104.3922]

(GeV)recoE0 2 4 6 8 10 12 14 16 18 20

Eve

nts/

GeV

410

0

10

20

30

40

50

60

Near Detector Data

Monte Carlo Prediction

CC Backgroundµν

(GeV)recoE0 2 4 6 8 10 12 14 16 18 20

Eve

nts/

GeV

410

0

10

20

30

40

50

60

(GeV)recoE0 2 4 6 8 10 12 14 16 18 20

Eve

nts/

GeV

0

20

40

60

80

100

120

140

Far Detector Data

° = 013θ>032

2m∆, π = δ, ° = 11.513θ

CC Backgroundµν2 eV-310×| = 2.322

32m∆| = 123θ22sin

(GeV)recoE0 2 4 6 8 10 12 14 16 18 20

Eve

nts/

GeV

0

20

40

60

80

100

120

140

LND = 1:04 km LFD = 735 km

Model #13 2/D.O.F. #23 #24 #34 fs

m4 = m10 130.4/123 45:0+77 - 0:0+170:0 0.22

11:5 128.5/123 45:6+77 - 0:0+250:0 0.40

m4 m30 130.4/122 45:0+77 0:0+50:0 0:0+170:0 0.22

11:5 128.5/122 45:6+77 0:0+50:0 0:0+250:0 0.40

90% C.L.

C. Giunti Neutrino Physics May 2011 228

Page 102: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

New Calculation of Reactor e Flux

Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M.Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F.Yermia, Improved Predictions of Reactor Antineutrino Spectra,arXiv:1101.2663

detected flux normalization is increased by about 3%

(MeV)νE2 3 4 5 6 7 8 9

Arb

itrar

y U

nits

Emitted spectrum

Cross-section

Detected spectrum

C. Giunti Neutrino Physics May 2011 229

Page 103: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M.Cribier, A. Letourneau, The Reactor Antineutrino Anomaly,arXiv:1101.2755

ratio of observed and predicted event rates: 0:937 0:027 deviation from unity at 98.4% C.L.: reactor antineutrino anomaly

NO

BS/(

NE

XP) pr

ed,n

ew

Distance to Reactor (m)

Bug

ey−

3/4

RO

VN

O

Bug

ey−

3/4

Bug

ey3

Bug

ey3

Goe

sgen

Goe

sgen

Goe

sgen

ILL

Kra

snoy

arsk

Kra

snoy

arsk

−2

Kra

snoy

arsk

−3

Pal

oVer

de

CH

OO

Z

101

102

103

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

C. Giunti Neutrino Physics May 2011 230

Page 104: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Reactor Antineutrino Anomaly

Standard Reactor e Fluxes

0 20 40 60 80 100

0.7

0.8

0.9

1.0

1.1

1.2

L [m]

R

Reactor Rates

Bugey3−15Bugey3−40Bugey3−95Bugey4ROVNOGosgen−38

Gosgen−45Gosgen−65ILLKrasno−33Krasno−92Krasno−57

Average Rate

R = 0:992 0:024

New Reactor e Fluxes

0 20 40 60 80 100

0.7

0.8

0.9

1.0

1.1

1.2

L [m]

R

Reactor Rates

Bugey3−15Bugey3−40Bugey3−95Bugey4ROVNOGosgen−38

Gosgen−45Gosgen−65ILLKrasno−33Krasno−92Krasno−57

Average Rate

R = 0:946 0:024C. Giunti Neutrino Physics May 2011 231

Page 105: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

New reactor neutrino flux has several implications: fit of solar andKamLAND data, determination of #13, short-baseline e disappearance,. . .

Chooz limit on #13

[Chooz, EPJC 27 (2003) 331]

10−2

10−1

100

10−3

10−2

10−1

100

sin 2(2θ13

)

∆m312

(eV

2 )

2 3 4 5 6 7 8 2 3 4 5 6 7 8

6

8

2

4

6

8

2

4

6

8

2

4

6

82 dof ∆χ2 contours

CHOOZ simulationNew spectra ( σ

fpred )

New spectra ( σfano)

CHOOZ (2003)

[Mention et al., arXiv:1101.2755]

Hint of #13 > 0[Fogli et al., PRL 101 (2008) 141801]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

tan2θ12

sin

2 θ 13

2 dof ∆χ2 contours

Old spectraNew spectra ( σ

fpred )

New spectra ( σfano)

KamLAND (2010)Solar

[Mention et al., arXiv:1101.2755]

C. Giunti Neutrino Physics May 2011 232

Page 106: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Four-Neutrino Schemes: 2+2 and 3+1

ν1

ν2

m2

∆m2SBL

ν4

ν3

”2+2”

ν1

ν2

m2

ν4

∆m2SBL

ν3

”3+1”

C. Giunti Neutrino Physics May 2011 233

Page 107: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

2+2 Four-Neutrino Schemes

ν1

ν2

m2

∆m2SOL

∆m2SBL

ν4

ν3

∆m2ATM

”normal”

m2

∆m2SBL

∆m2SOL

ν1

ν2

ν4

ν3

∆m2ATM

”inverted”

C. Giunti Neutrino Physics May 2011 234

Page 108: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

2+2 Schemes are strongly disfavored by solar and atmospheric data

0 0.2 0.4 0.6 0.8 1

ηs

0

10

20

30

40

50

∆χ2

99% CL (1 dof)

sola

r + K

amLA

ND

sola

r

solar

(pre

SNO sa

lt)

0 0.2 0.4 0.6 0.8 1

ηs

χ2PG

χ2PCatm + K2K + SBL

global

sola

r + K

amLA

ND

0

matter effects + SNO NC matter effectss = jUs1j2 + jUs2j21 s = jUs3j2 + jUs4j2

99% CL:

( s < 0:25 (solar + KamLAND)s > 0:75 (atmospheric + K2K)[Maltoni, Schwetz, Tortola, Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172]

C. Giunti Neutrino Physics May 2011 235

Page 109: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

3+1 Four-Neutrino Schemes

ν1

ν2

ν3

m2

ν4

∆m2ATM

∆m2SOL

∆m2SBL

”normal”

ν3

ν2

m2

ν4

∆m2ATM

∆m2SBL

∆m2SOL

ν1

”3-inverted”

m2

∆m2SBL

∆m2ATM

ν1

ν2

ν3

ν4

∆m2SOL

”4-inverted”

m2

∆m2SBL

ν4

∆m2SOL

ν1

ν2

ν3

∆m2ATM

”fully-inverted”

Perturbation of 3- MixingjUe4j2 1 jU4j2 1 jU4j2 1 jUs4j2 ' 1C. Giunti Neutrino Physics May 2011 236

Page 110: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Effective SBL Oscillation Probabilities in 3+1 Schemes

P! =

4Xk=1

UkUkeiEk t

2 e iE1t2

=

4Xk=1

UkUkei(EkE1)t

2! 4Xk=1

UkUk exp ∆m2k1L

2E

!2Ek ' E +

m2k

2E

∆m221L

2E 1

∆m231L

2E 1 ∆m2

41 ! ∆m2

P! =

U1U1 + U2U2 + U3U3 + U4U4 exp ∆m2L

2E

!2U1U1 + U2U2 + U3U3 = Æ U4U4

C. Giunti Neutrino Physics May 2011 237

Page 111: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

P! =

Æ U4U4 "1 exp

∆m2L

2E

!#2= Æ + jU4j2jU4j2 2 2 cos

∆m2L

2E

! 2Æ jU4j2 1 cos∆m2L

2E

!= Æ 2jU4j2 Æ jU4j2 1 cos

∆m2L

2E

!= Æ 4jU4j2 Æ jU4j2 sin2 ∆m2L

2E 6= =) P! = 4jU4j2jU4j2 sin2 ∆m2L

4E

! = =) P! = 1 4jU4j2 1 jU4j2 sin2 ∆m2L

4E

!C. Giunti Neutrino Physics May 2011 238

Page 112: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

P! = sin2 2# sin2 ∆m2L

4E

!sin2 2# = 4jU4j2jU4j2

No CP Violation!

P! = 1 sin2 2# sin2 ∆m2L

4E

!sin2 2# = 4jU4j2 1 jU4j2

Perturbation of 3 MixingjUe4j2 1 ; jU4j2 1 ; jU4j2 1 ; jUs4j2 ' 1

Ue4

Uµ4

Uτ4

Us4

Uτ3

Ue3

Uµ3

Us3

Uµ2

Uτ2

Ue2

Us2

Uτ1

Ue1

Uµ1

Us1

U =

SBL

sin2 2# 1+jU4j2 ' sin2 2#4

C. Giunti Neutrino Physics May 2011 239

Page 113: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

sin22ϑeµ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1 1

10−2

10−1

1

10

102

95.00% C.L.νµ−>νe: LSND+KARMEN+MiniBooNEνµ−>νe: MiniBooNE

95.00% C.L.νµ−>νe: LSND+KARMEN+MiniBooNEνµ−>νe: MiniBooNE

3+1 Schemes

GoF = 32%

PGoF = 0:89% Tension between LSND + KARMEN + MiniBooNE ! e and

MiniBooNE ! e =) CP Violation? 3+2 =) CP Violation OK [Sorel, Conrad, Shaevitz, PRD 70 (2004) 073004, hep-ph/0305255; Maltoni,

Schwetz, PRD 76, 093005 (2007), arXiv:0705.0107; Karagiorgi et al, PRD 80 (2009) 073001, arXiv:0906.1997]

3+1+NSI =) CP Violation OK [Akhmedov, Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171]

C. Giunti Neutrino Physics May 2011 240

Page 114: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

e Disappearance

sin22ϑee

∆m2

[eV

2 ]

10−2 10−1 1

10−2

10−1

1

10

102

Reactor Rates − 99.00% C.L.

Bugey−3 (1995)Bugey−4 (1994) + Rovno (1991)Gosgen (1986) + ILL (1995)Krasnoyarsk (1994)

Reactor Rates − 99.00% C.L.

Bugey−3 (1995)Bugey−4 (1994) + Rovno (1991)Gosgen (1986) + ILL (1995)Krasnoyarsk (1994)

New Reactor e Fluxes[Mueller et al., arXiv:1101.2663]

[Mention et al., arXiv:1101.2755]

and Disappearance

sin22ϑµµ

∆m2

[eV

2 ]10−2 10−1 1

10−2

10−1

1

10

102

99.00% C.L.

CDHSW (1984): νµATM: νµ + νµ

99.00% C.L.

CDHSW (1984): νµATM: νµ + νµ

ATM constraint on jU4j2[Maltoni, Schwetz, PRD 76 (2007) 093005, arXiv:0705.0107]

C. Giunti Neutrino Physics May 2011 241

Page 115: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

e disappearance experiments:

sin2 2#ee = 4jUe4j2 1 jUe4j2 ' 4jUe4j2 disappearance experiments:

sin2 2# = 4jU4j2 1 jU4j2 ' 4jU4j2 ! e experiments:

sin2 2#e = 4jUe4j2jU4j2 ' 1

4sin2 2#ee sin

2 2# Upper bounds on sin2 2#ee and sin2 2# =) strong limit on sin2 2#e

[Okada, Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411]

[Bilenky, Giunti, Grimus, Eur. Phys. J. C1 (1998) 247, arXiv:hep-ph/9607372]

C. Giunti Neutrino Physics May 2011 242

Page 116: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

3+1 Schemes

sin22ϑeµ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1 1

10−2

10−1

1

10

102

99.00% C.L.

ReactorsCDHSW + AtmDisappearanceLSND + MBν

99.00% C.L.

ReactorsCDHSW + AtmDisappearanceLSND + MBν

C. Giunti Neutrino Physics May 2011 243

Page 117: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

sin22ϑeµ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1 1

10−2

10−1

1

10

102

99.00% C.L.

MBν + LSNDνDis + KARMEN + MBν

99.00% C.L.

MBν + LSNDνDis + KARMEN + MBν

PGoF = 0:006% Strong tension between ! e appearance and disappearance limits

(e ! e and mainly ! ) Tension reduced in 3+2, 3+1+NSI

CPT Violation? [Barger, Marfatia, Whisnant, PLB 576 (2003) 303]

[Giunti, Laveder, PRD 82 (2010) 093016, PRD 83 (2011) 053006]

C. Giunti Neutrino Physics May 2011 244

Page 118: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MINOS Hint of CPT Violation?

LBL and disappearance E 3GeV

Near Detector at 1.04 km Far Detector at 735 km

)θ(22) and sinθ(22sin0.5 0.6 0.7 0.8 0.9 1

)2 e

V­3

| (10

2m ∆

| and

|2

m∆|

2

4

6

8­310×

90% C.L.µνMINOS

68% C.L.µνMINOS

fitµνBest

POT20 10×1.71

Prior limits 90% C.L. [16]

90% C.L.µνMINOS

68% C.L.µνMINOS

fitµνBest

POT20 10×7.25

j∆m2j = 2:32+0:120:08 103 eV2

sin2 2# > 0:90 (90% C.L.)

[arXiv:1103.0340v1]j∆m2j = 3:36+0:460:40 103 eV2

sin2 2# = 0:86+0:110:12[arXiv:1104.0344v2]

C. Giunti Neutrino Physics May 2011 245

Page 119: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

CDF Hint of CPT Violation?

Measurement of the mass difference between t and t quarks,

arXiv:1103.2782v1 [hep-ex]

mt mt = 3:3 1:4 1:0GeV“approximately two standard deviations away from the CPT hypothesis of

zero mass difference”

C. Giunti Neutrino Physics May 2011 246

Page 120: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Phenomenological Approach: Consider ’s Only

C. Giunti Neutrino Physics May 2011 247

Page 121: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

! e

sin22ϑ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1

10−2

10−1

1

10

+

02

46

810

∆χ2

0 2 4 6 8 10

∆χ2

MBν + LSNDν + KARMEN

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

MBν + LSNDν + KARMEN

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

2min = 29:8

NdF = 26

GoF = 28%

sin2 2# = 1:00∆m2 = 0:052 eV2

ParameterGoodness-of-Fit

∆2min = 5:9

NdF = 4

GoF = 21%

[Giunti, Laveder, PRD 82 (2010)

093016, arXiv:1010.1395]

C. Giunti Neutrino Physics May 2011 248

Page 122: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Conservation of ProbabilityX P!e = 1

Pe!e + P!e + P!e + Ps!e = 1

P!e = 1 Pe!e P!e Ps!eP!e 1 Pe!e

Reactor e disappearance bound is unavoidable!

C. Giunti Neutrino Physics May 2011 249

Page 123: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

! e and e ! e

sin22ϑ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1

10−2

10−1

1

10

+

02

46

810

∆χ2

0 2 4 6 8 10

∆χ2

MB + LS + KA + Re

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

MB + LS + KA + Re

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

2min = 81:4

NdF = 82

GoF = 50%

sin2 2# = 0:014∆m2 = 0:46 eV2

ParameterGoodness-of-Fit

∆2min = 3:0

NdF = 2

GoF = 22%

[Giunti, Laveder, PRD 82 (2010)

093016, arXiv:1010.1395]

C. Giunti Neutrino Physics May 2011 250

Page 124: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Antineutrino Oscillations in 3+1 Schemes

sin22ϑeµ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1

10−2

10−1

1

10

+

ν−(3+1)

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

ν−(3+1)

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

sin22ϑµµ

∆m2

[eV

2 ]

10−4 10−3 10−2 10−1

10−2

10−1

1

10

+

ν−(3+1)

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

ν−(3+1)

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)2

min = 87:0 NdF = 83 GoF = 36%

∆m2 = 0:42 eV2 sin2 2#e = 0:016 sin2 2#ee = 0:020 sin2 2# = 0:65Prediction: large SBL disappearance at ∆m2 & 0:1 eV2

[Giunti, Laveder, PRD 83 (2011) 053006, arXiv:1012.0267]

C. Giunti Neutrino Physics May 2011 251

Page 125: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Gallium Anomaly

Gallium Radioactive Source Experiments

Tests of the solar neutrino detectors GALLEX (Cr1, Cr2) and SAGE (Cr, Ar)

Detection Process: e + 71Ga! 71Ge + ee Sources: e + 51Cr! 51V + e e + 37Ar! 37Cl + e51Cr 37Ar

E [keV] 747 752 427 432 811 813B.R. 0:8163 0:0849 0:0895 0:0093 0:902 0:098

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]

37Cl (stable)

37Ar (35.04 days)

813 keV ν ( 9.8%)811 keV ν (90.2%)

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

C. Giunti Neutrino Physics May 2011 252

Page 126: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

[SAGE, PRC 59 (1999) 2246, hep-ph/9803418]hLiGALLEX = 1:9mhLiSAGE = 0:6m

0.7

0.8

0.9

1.0

1.1

p(m

easu

red)

/p(p

redi

cted

)

GALLEX Cr1

GALLEX Cr2

SAGE Cr

SAGE Ar

[SAGE, PRC 73 (2006) 045805, nucl-ex/0512041]

RGallex-Cr1B = 0:953 0:11

RGallex-Cr2B = 0:812+0:100:11RSAGE-CrB = 0:95 0:12

RSAGE-ArB = 0:791+0:0840:078

RGaB = 0:86 0:05

Bahcall cross section

Only exp uncertainties!

C. Giunti Neutrino Physics May 2011 253

Page 127: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Deficit could be due to overestimate of(e + 71Ga! 71Ge + e) Calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

71Ge

3/2−

1/2−

5/2−

3/2−

71Ga

0.175 MeV

0.500 MeV

0.233 MeV

G.S. related to measured (e + 71Ge! 71Ga + e):G.S.(51Cr) = 55:3 1046 cm2 (1 0:004)3 (51Cr) = G.S.(51Cr)1 + 0:669 BGT175 keV

BGTG.S.+ 0:220 BGT500 keV

BGTG.S.

Contribution of Excited States only 5%!

C. Giunti Neutrino Physics May 2011 254

Page 128: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Bahcall: [Bahcall, PRC 56 (1997) 3391, hep-ph/9710491]

from p + 71Ga! 71Ge + n measurements [Krofcheck et al., PRL 55 (1985) 1051]

BGT175 keV

BGTG.S.< 0:056) BGT175 keV

BGTG.S.=

0:0562

BGT500 keV

BGTG.S.= 0:146

3 lower limit:BGT175 keV

BGTG.S.=

BGT500 keV

BGTG.S.= 0

3 upper limit:BGT175 keV

BGTG.S.< 0:056 2

BGT500 keV

BGTG.S.= 0:146 2(51Cr) = 58:1 1046 cm2

1+0:0360:0281 =) RGa

B = 0:86 0:06 Haxton: [Hata, Haxton, PLB 353 (1995) 422, nucl-th/9503017; Haxton, PLB 431 (1998) 110, nucl-th/9804011]

“a sophisticated shell model calculation is performed ... for the transitionto the first excited state in 71Ge. The calculation predicts destructiveinterference between the (p; n) spin and spin-tensor matrix elements.”(51Cr) = 63:9 1046 cm2 (1 0:106)1 =) RGa

H = 0:78 0:13C. Giunti Neutrino Physics May 2011 255

Page 129: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

RGaH = 0:78 0:13 exp and the uncertainties added in quadrature

RGa = RGaexp=RGa

the probability distribution of ratio is not Gaussian

0.4 0.6 0.8 1.0 1.2 1.4

02

46

8

r

p(r

)

pRGa

pRBGa Gallium

GALLEX−Cr1GALLEX−Cr2SAGE−CrSAGE−Ar

pRGa(r) =

Z 1RGags

pRGaexp(rs) pRGa

the(s) s ds

RGa = 0:76+0:090:08RGallex-Cr1 = 0:84+0:130:12RGallex-Cr2 = 0:71+0:120:11RSAGE-Cr = 0:84+0:140:13RSAGE-Ar = 0:70+0:100:09

[Giunti, Laveder, arXiv:1006.3244]

C. Giunti Neutrino Physics May 2011 256

Page 130: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Gallium Radioactive Source Experimentsare

Short-BaseLine Neutrino Oscillation Experiments

[Bahcall, Krastev, Lisi, PLB 348 (1995) 121]

C. Giunti Neutrino Physics May 2011 257

Page 131: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

PSBLe!e(L;E ) = 1 sin2 2# sin2 ∆m2L

4E

!Rk(sin2 2#;∆m2) =

Rk dV L2P

i bki k

i PSBLe!e (L;Ei )P

i bki k

i

Rk dV L2

k = GALLEX-Cr1 ; GALLEX-Cr2 ; SAGE-Cr ; SAGE-ArRk = Rk

exp=Rkthe fully correlated theoretical uncertainty!

p~R(~r) = Z 1Rkgs

"Yk

pRkexp(rk s)

#pRk

the(s) s4 dsL(sin2 2#;∆m2) = p~R(~R(sin2 2#;∆m2))2(sin2 2#;∆m2) = 2 lnL(sin2 2#;∆m2) + constant

C. Giunti Neutrino Physics May 2011 258

Page 132: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

sin22ϑ

∆m2

[eV

2 ]

10−2 10−1

10−1

1

+

02

46

810

∆χ2

0 2 4 6 8 10

∆χ2

Gallium

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

Gallium

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

∆2No Osc. = 9:7

No Osc. disfavoredat 99.23 % C.L

(2:7)Osc.

sin2 2#bf = 0:51∆m2

bf = 2:24 eV2

[Giunti, Laveder, arXiv:1006.3244]

C. Giunti Neutrino Physics May 2011 259

Page 133: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Reactor Antineutrino Anomaly

0 20 40 60 80 100

0.7

0.8

0.9

1.0

1.1

1.2

L [m]

R

Reactor Rates

Bugey3−15Bugey3−40Bugey3−95Bugey4ROVNOGosgen−38

Gosgen−45Gosgen−65ILLKrasno−33Krasno−92Krasno−57

Best Fits

Reactor RatesBugey−3 SpectraCombined

1 2 3 4 5 6

0.80

0.90

1.00

Ee+ [MeV]

R

New Reactor Neutrino Flux − Bugey−3 Spectra − L = 15 m

1 2 3 4 5 6

0.75

0.85

0.95

1.05

Ee+ [MeV]

R

New Reactor Neutrino Flux − Bugey−3 Spectra − L = 40 m

1 2 3 4 5 60.

00.

51.

01.

52.

0

Ee+ [MeV]

R

New Reactor Neutrino Flux − Bugey−3 Spectra − L = 95 m

R rates = 0:946 0:024 Improved hint of oscillations given by Bugey energy spectrum with old

reactor fluxes [Acero, Giunti, Laveder, PRD 78 (2008) 073009, arXiv:0711.4222]

sin2 2#bf = 0:059 ∆m2bf = 1:89 eV2

C. Giunti Neutrino Physics May 2011 260

Page 134: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Reactor Antineutrino Anomaly

sin22ϑ

∆m2

[eV

2 ]

10−2 10−1 1

10−1

1

10

+

Reactors

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

Reactors

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

sin2 2#bf = 0:059∆m2

bf = 1:89 eV2

Gallium Neutrino Anomaly

sin22ϑ∆m

2 [e

V2 ]

10−2 10−1 1

10−1

1

10

+

Gallium

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

Gallium

68.27% C.L. (1σ)90.00% C.L.95.45% C.L. (2σ)99.00% C.L.99.73% C.L. (3σ)

sin2 2#bf = 0:51∆m2

bf = 2:24 eV2

C. Giunti Neutrino Physics May 2011 261

Page 135: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Gallium Anomaly + Reactor Anomaly

sin22ϑ

∆m2

[eV

2 ]

++++++

10−2 10−1 1

10−1

1

10

95.00% C.L.

GalliumReactorsCombined

95.00% C.L.

GalliumReactorsCombined

2min = 59:6

NdF = 71

GoF = 83%

sin2 2# = 0:11∆m2 = 2:95 eV2

PGoF = 4:6%C. Giunti Neutrino Physics May 2011 262

Page 136: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Old Reactor e Fluxes

02

46

810

sin22ϑ

∆χ2

10−3 10−2 10−1 1

68.27%

90%

95.45%

99%

99.73%

GalliumReactorsGallium + Reactors

PGoF = 2:3%

New Reactor e Fluxes

02

46

810

sin22ϑ

∆χ2

10−3 10−2 10−1 1

68.27%

90%

95.45%

99%

99.73%

GalliumReactorsGallium + Reactors

PGoF = 4:6%C. Giunti Neutrino Physics May 2011 263

Page 137: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Implications of Gallium and Reactor Anomalies Decay0

24

68

10

|Ue4| ∆m2 [eV]

∆χ2

10−2 10−1 1

68.27%

90%

95.45%

99%

99.73%

GalliumReactorsTritiumCombined

m2 =Xk

jUek j2m2k

()0 Decay

02

46

810

|Ue4|2 ∆m2 [eV]

∆χ2

10−3 10−2 10−1 1

68.27%

90%

95.45%

99%

99.73%

GalliumReactorsTritiumCombined

m =

Xk

U2ek mk

[Giunti, Laveder, In Preparation]

C. Giunti Neutrino Physics May 2011 264

Page 138: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MiniBooNE Low-Energy Anomaly

(GeV)QEνE

Eve

nts

/ MeV

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2

2.5

3

Dataµ from eν

+ from Keν 0 from Keν

misid 0πγ N→ ∆

dirtother Total Background

1.5 3.

[PRL 102 (2009) 101802, arXiv:0812.2243]

Our Hypothesis: Nthe;j = f Pe!eNcale ;j + Ncal;j[Giunti, Laveder, PRD 77 (2008) 093002, arXiv:0707.4593; PRD 80 (2009) 013005, arXiv:0902.1992]

C. Giunti Neutrino Physics May 2011 265

Page 139: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Nthe;j = f Pe!eNcale ;j + Ncal;j Estimated 15% uncertainty of the calculated neutrino flux [MiniBooNE, PRD 79

(2009) 072002, arXiv:0806.1449] is consistent with measured ratio 1:21 0:24 ofdetected and predicted charged-current quasi-elastic events [MiniBooNE,

PRL 100 (2008) 032301, arXiv:0706.0926]

We fit MiniBooNE e and data using the info athttp://www-boone.fnal.gov/for_physicists/data_release/lowe/

C. Giunti Neutrino Physics May 2011 266

Page 140: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

0.0

0.5

1.0

1.5

2.0

2.5

E [MeV]

even

ts /

MeV

200 400 600 800 1000 1200 1400 3000

(b)

MiniBooNE − νe

Nνe,jνe,the = f ν Pνe→νe

(j) Nνe,jνe,cal

Nνe,jνµ,the

= f ν Nνe,jνµ,cal

Nνe,jthe = Nνe,j

νe,the + Nνe,jνµ,the

No Osc. & f = 12min = 14:3 + 5:4

NdF = 3 + 16

GoF = 41%

Our Hypothesis2min = 2:0 + 7:6

NdF = 16

GoF = 89%

f = 1:26sin2 2# = 0:32∆m2 = 1:84 eV2

[Giunti, Laveder, PRD 82 (2010) 053005, arXiv:1005.4599]

C. Giunti Neutrino Physics May 2011 267

Page 141: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MiniBooNE + Gallium

sin22ϑ

∆m2

[eV

2 ]

10−2 10−1

10−1

1

10

+

02

46

810

∆χ2

0 2 4 6 8 10

∆χ2

MB + Ga

68.27% C.L. (1σ)95.45% C.L. (2σ)99.73% C.L. (3σ)

MB + Ga

68.27% C.L. (1σ)95.45% C.L. (2σ)99.73% C.L. (3σ)

2min = 2:3 + 9:2

NdF = 20

GoF = 93%

sin2 2# = 0:27∆m2 = 1:92 eV2

PGoF = 93%

[Giunti, Laveder, PRD 82 (2010) 053005, arXiv:1005.4599]

C. Giunti Neutrino Physics May 2011 268

Page 142: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

MiniBooNE + Gallium + Reactors

sin 2(2θnew

)

∆mne

w2

(eV

2 )

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8

2

4

68

2

4

68

2

4

68

2

4

68

2 dof ∆χ2 contours

10−3

10−2

10−1

100

10−2

10−1

100

101

102

∆χ2

1 dof ∆χ2 profile

5

10

∆χ2

1 dof ∆χ2 profile

5 10

90.00 %95.00 %99.00 %

[Mention et al., arXiv:1101.2755]

C. Giunti Neutrino Physics May 2011 269

Page 143: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Future

MiniBooNE is continuing to take antineutrino data. ! e + ! ICARUS@CERN-PS: L 1km E 1GeV [C. Rubbia et al, CERN-SPSC-2011-012]

() !()e +() !() +

()e !()e MicroBooNE will test the MiniBooNE low-energy anomaly by measuring0 ! 2 background.

C. Giunti Neutrino Physics May 2011 270

Page 144: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

e disappearance: new SAGE Gallium source experiments with 2spherical shells [Gavrin et al, arXiv:1006.2103]

CPT test: e and e disappearance

Beta-Beam experiments: [Antusch, Fernandez-Martinez, PLB 665 (2008) 190, arXiv:0804.2820]

N(A;Z )! N(A;Z + 1) + e + e ()N(A;Z )! N(A;Z 1) + e+ + e (+)

Neutrino Factory experiments: [Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]+ ! + e+ + e ! + e + eC. Giunti Neutrino Physics May 2011 271

Page 145: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Neutrino Factory

Circumference: 1609 m

Decay Straight

755 m

s=600 m d=2000 m

Near−

Near D

et.

Far−

Near D

et.

To F

ar Det.

Alternative Locations

d=50 m

νµ + νe

νµ + νe

µ−

µ+

[Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

Near Detectors: Scintillator or Iron Calorimeterwith perfect flavor identification

Systematic Uncertainties: Cross Section, Detector Normalization,Energy Resolution and Calibration,Backgrounds

C. Giunti Neutrino Physics May 2011 272

Page 146: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

e Disappearance

10-5 10-4 10-3 10-2 10-1 100

sin2 2Θ

10-1

100

101

102

103

Dm

2

d=50m H200kgL + d=2km H32tL

FD+NDFD onlyND onlyFD+ND, no sys.Ref. beta beamCurrent limit

GLo

BE

S20

09

[Giunti, Laveder, Winter, PRD 80 (2009) 073005, arXiv:0907.5487]

C. Giunti Neutrino Physics May 2011 273

Page 147: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

New e and e radioactive source experiments with low-thresholdneutrino elastic scattering detectors.

Borexino:()e + e !()e + e [Pallavicini, talk at BEYOND3NU]

[Ianni, Montanino, Scioscia, EPJC 8 (1999) 609, arXiv:hep-ex/9901012]

LENS (Low Energy Neutrino Spectroscopy): [Agarwalla, Raghavan, arXiv:1011.4509]e + 115In! 115Sn + e + 2 Eth = 0:1MeVe + p ! n+ e+ Eth = 1:8MeV

Spherical Gaseous TPC: [Vergados, Giomataris, Novikov, arXiv:1103.5307]

Targets: 131Xe, 40Ar, 20Ne, 4He.

Sources: 37Ar, 51Cr, 65Zn, 32P.

C. Giunti Neutrino Physics May 2011 274

Page 148: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Conclusions

Solar Neutrinos and KamLAND

Atmospheric and LBL Oscillation Experiments

Phenomenology of Three-Neutrino Mixing

Absolute Scale of Neutrino Masses

Anomalies Beyond Three-Neutrino Mixing

Conclusions

C. Giunti Neutrino Physics May 2011 275

Page 149: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Conclusions - Three-Neutrino Mixinge ! ; with ∆m2SOL ' 8:3 105 eV2 (SOL, KamLAND) ! with ∆m2

ATM ' 2:4 103 eV2 (ATM, K2K, MINOS)+Bilarge 3-Mixing with jUe3j2 1 (CHOOZ) & 0 Decay and Cosmology =) m . 1 eV

To DoTheory: Why lepton mixing 6= quark mixing?

(Due to Majorana nature of ’s?)Why only jUe3j2 1?

Exp.: Measure jUe3j > 0 ) CP viol., matter effects, mass hierarchy.Find absolute mass scale.

C. Giunti Neutrino Physics May 2011 276

Page 150: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Conclusions - Anomalies - 1

Suggestive LSND and MiniBooNE agreement on SBL ! e Hint in favor of sterile neutrinos is compatible with cosmological data,

but mass is limited

Two experimental tensions:

LSND and MiniBooNE ! e vs MiniBooNE ! e (CP violation?)

LSND and MiniBooNE ! e vs e and disappearance limits

CPT-invariant 3+1 Four-Neutrino Mixing is strongly disfavored (no CPviolation and tension between appearance and disappearance)

3+2 can explain CP violation and reduce tension between appearanceand disappearance with New Reactor e Fluxes

3+1+NSI has CP violation and reduced appearance-disappearancetension

CPT-violating 3+1 Mixing =) testable large SBL disappearance

C. Giunti Neutrino Physics May 2011 277

Page 151: personalpages.to.infn.itpersonalpages.to.infn.it/~giunti/slides/2011/giunti-1105-epfl-3.pdf · Solar Neutrinos and KamLAND Solar Neutrinos and KamLAND The Sun Standard Solar Model

Conclusions - Anomalies - 2

Interesting possible agreement of

Gallium Anomaly (SBL e disappearance)

Reactor Anomaly (SBL e disappearance)

Testable Predictions:

m 0:12 0:71 eV (2) m 0:011 0:15 eV (2)

Exciting experimental results in favor of sterile neutrinos.

More work to do because interpretation is not clear:

Explanation of all data needs at least two new physical effects.

Without CPT violation tensions do not disappear completely.

Possible that some experiments are giving misleading information.

New short-baseline neutrino oscillation experiments are needed!

C. Giunti Neutrino Physics May 2011 278