GIAN Compressor intro

18
1 GIAN @ Indian Institute of Technology Madras; October 2017 Norwegian University of Science and Technology (NTNU) Department of Energy and Process Engineering Trondheim, Norway Compressor Development GIAN @ Indian Institute of Technology Madras; October 2017 Positive - Displacement Compressors Reciprocating Single cylinder Orbiting Rotary Multi cylinder Single shaft Trochoidal Scroll Twin shaft Linear Crank shaft Wash plate Rotary vane Twin screw Single screw Rolling piston and swing Single cylinder Twin cylinder Multi vane Single vane GIAN @ Indian Institute of Technology Madras; October 2017 Isentropic exponent, p v c c p p s c T t v v s c T t Calculated at to = 0 o C and tgas = +20 o C Working fluid R32 1.381 R125 1.159 R134a 1.151 R143a 1.203 R290 1.173 R410a 1.284 R407c 1.175 R404a 1.167 R507 1.177 R600a 1.102 R717 1.362 R744 1.694 GIAN @ Indian Institute of Technology Madras; October 2017 Processes in Ts‐diagram Specific entropy, s (J/kgK) Temperature, T (K) Isotherm Isentropic Isobaric Isochoric Isenthalpic Δt Δsisobaric Δsisochoric GIAN @ Indian Institute of Technology Madras; October 2017 Compressor work (ideal gas) GIAN @ Indian Institute of Technology Madras; October 2017 Piston compressors

Transcript of GIAN Compressor intro

Page 1: GIAN Compressor intro

1

GIAN @ Indian Institute of Technology Madras; October 2017

Norwegian University of Science and Technology (NTNU)Department of Energy and Process Engineering

Trondheim, Norway

Compressor Development

GIAN @ Indian Institute of Technology Madras; October 2017

Positive - Displacement Compressors

Reciprocating

Single cylinder

OrbitingRotary

Multi cylinder

Single shaft

TrochoidalScrollTwin shaftLinear

Crank shaft

Wash plate

Rotary vane

Twin screw

Single screw

Rolling piston and

swing

Single cylinder

Twin cylinder

Multi vaneSingle vane

GIAN @ Indian Institute of Technology Madras; October 2017

Isentropic exponent,

p

v

c

c

pp

sc T

t

vv

sc T

t

Calculated at to = 0oC and tgas = +20oC

Working fluid R32 1.381

R125 1.159

R134a 1.151

R143a 1.203

R290 1.173

R410a 1.284

R407c 1.175

R404a 1.167

R507 1.177

R600a 1.102

R717 1.362

R744 1.694

GIAN @ Indian Institute of Technology Madras; October 2017

Processes in Ts‐diagram

Specific entropy, s (J/kgK)

Tem

pe

ratu

re, T

(K

)

Isotherm

Isentropic

Isobaric

Isochoric

Isenthalpic

Δt

Δsisobaric

Δsisochoric

GIAN @ Indian Institute of Technology Madras; October 2017

Compressor work (ideal gas)

GIAN @ Indian Institute of Technology Madras; October 2017

Piston compressors

Page 2: GIAN Compressor intro

2

GIAN @ Indian Institute of Technology Madras; October 2017

Piston compressor, pV - diagram

LPUP

VsVo

V4-1

UP: Upper positionLP: Lower position

Discharge

GIAN @ Indian Institute of Technology Madras; October 2017

Clearance volumetric efficiency, v

GIAN @ Indian Institute of Technology Madras; October 2017

Pressure ratio versus clearance volume efficiency ( = 1,3)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110

Pressure, p (bar)

Cylinder volume, V (%)

p2/p1 = 7 = 0.61p2/p1 = 3.5 = 0.82

Clearance volume V0

0.615*Vs0.820*Vs

00

1011.1%

90s

V

V

GIAN @ Indian Institute of Technology Madras; October 2017

Pressure ratio versus clearance volume efficiency

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9

Efficien

cy, h

v [‐]

Pressure ratio, p [‐]

7 %10 %15 %

00

s

V

V

Clearance volume ratio 0= 10%Different adiabatic exponent from 1.1 to 1.5

Adiabatic exponent =1.3Different compressor clearance volume ratioLarge and semi industrial 0 from 3% to 8%Small 0 from 5% to 15%

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9

Efficien

cy, 

v[‐]

Pressure ratio,  [‐]

GIAN @ Indian Institute of Technology Madras; October 2017

Volumetric efficiency,

:v:d

Clearance volume efficiency

Other losses like: Leakage losses pasing piston and valves Absorption of gas in oil Losses through valves or ports Heat exchange losses Non-tightness losses of the constructions

GIAN @ Indian Institute of Technology Madras; October 2017

Influence of adiabatic exponent on the compression and expansion work

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100 110

Pre

ssu

re,

P (

bar

)

Cylinder volume, V (%)

1,1

1,2

1,3

1,4

1,5

0.855*Vs

0.820*Vs

0.764*Vs

2 1

1 2

p V

p V

1,1

Working fluid R32 1.381

R125 1.159

R134a 1.151

R143a 1.203

R507 1.177

R410a 1.284

R407c 1.175

R404a 1.167

R290 1.173

R600a 1.102

R717 1.362

R744 1.694

Page 3: GIAN Compressor intro

3

GIAN @ Indian Institute of Technology Madras; October 2017

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100 110

Pressure, P

 (bar)

Cylinder volume, V (%)

1,1

1,2

1,3

1,4

1,5

Isentropic work for κ=1.3

0.855*Vs

0.820*Vs

0.764*Vs

2 1

1 2

p V

p V

GIAN @ Indian Institute of Technology Madras; October 2017

Operating limits : Example (HFC) GEA/Bock

Example:

GIAN @ Indian Institute of Technology Madras; October 2017

Operating limits : Example (R744) GEA/Bock

GIAN @ Indian Institute of Technology Madras; October 2017

Operating limits: Example Bitzer

GIAN @ Indian Institute of Technology Madras; October 2017

Operating limits

Example:

GIAN @ Indian Institute of Technology Madras; October 2017

WORKING FLUIDS

Working Fluid

Chemical formula (weight basis) Name GWP(100) ODPMolar weight

R32 CH2F2 Difluoromethane 650 0 52,0R125 CHF2CF3 Pentafluoroethane 2800 0 120,0R134a CH2FCF3 1,1,1,2‐Tetrafluorethane 1300 0 102,0R143a C2H3F3 1,1,1‐Trifluoroethane 3800 0 84,0R218 C3F8 Octafluoropropane 7000 0 188,0R404a 44% R125, 52% R143a, 4% R134a 3260 0 97,6

R407a 20% R32,40% R125, 40% R134a 1730 0 90,1R407b 10% R32, 70% R125, 20% R134a 2290 0 102,9R407c 23% R32, 25% R125, 52% R134a 1530 0 86,2R410a 50% R32, 50% R125 1730 0 72,6R413a 88% R134a, 9% R218, 3% R600a ISCEON® 49  1770 0 104,0R417a 46,6% R125, 50% R134a, 3,4% R600a ISCEON® 59  1950 0 106,7R507 50% R143a, 50% R125 Suva® 507 3300 0 98,9

R290 C3H8  Propane (20) 0 44,1R600a C4H10 Isobutane (20) 0 58,1R717 NH3 Ammonia 0 0 17,0R744 CO2 Carbon dioxide 1 0 44,0

Page 4: GIAN Compressor intro

4

GIAN @ Indian Institute of Technology Madras; October 2017

Pressure ratio for tc= +40oC

0

2

4

6

8

10

‐25 ‐15 ‐5 5 15

Pressure ratio, [‐]

Evaporation temperature, to [oC]

R717

R410a

R407c

R404a

R134a

R290

R600a

R507

R32

R125

R143a

GIAN @ Indian Institute of Technology Madras; October 2017

Pressure ratio for (tc-to) = 30 K

2.00

2.25

2.50

2.75

3.00

3.25

3.50

‐25 ‐15 ‐5 5 15

Pressure ratio, 

Evaporation temperature, to [oC]

R717

R410a

R407c

R404a

R134a

R290

R600a

R507

R32

R125

R143a

GIAN @ Indian Institute of Technology Madras; October 2017

Isentropic efficiency – piston compressor (NH3)

150 m3/h cylinder

Pressure ratio, [-]

Ise

ntr

op

ic e

ffic

ien

cy,

is

[-]

GIAN @ Indian Institute of Technology Madras; October 2017

Ideal compressor working process with optimum valve behaviour

hd: discharge valve lift (m)hs: suction valve lift (m)pdo: discharge pressure (bar) pso: suction pressure (bar)pc: cylinder pressure (bar)wp: piston velocity, (m/s): crank angle

Ref: Bredesen,A.M; ”Influence of valve dynamics on compressor performance”, International Journal of Refrigeration, Volume 2, Number 1, January 1979

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

Piston compressor, pV - diagram

Page 5: GIAN Compressor intro

5

GIAN @ Indian Institute of Technology Madras; October 2017

Capacity control piston compressors

By-pass from high pressure side to low pressure side (not to be recommended)

On/off regulation of the compressor

Suction valve unloading (most common method for piston compressors)

Speed control (normally down to 40% rpm)

GIAN @ Indian Institute of Technology Madras; October 2017

Screw compressors

http://www.youtube.com/watch?v=YDh2X0cn-3E

GIAN @ Indian Institute of Technology Madras; October 2017

Twin screw compressors

GIAN @ Indian Institute of Technology Madras; October 2017

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100 110

Pressure, p

 (bar)

Volume, %

k = 1,3

Compression ratio, = 6

V1V2

This example:Built in volume-ratio, = 3.97

p1

p2

Gas flow

GIAN @ Indian Institute of Technology Madras; October 2017

Volume ratio versus Pressure ratio with different

0

1

2

3

4

5

6

7

1 3 5 7 9 11

Volume ratio  

Pressure ratio, 

1,1

1,3

1,5

GIAN @ Indian Institute of Technology Madras; October 2017

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100 110

Pressure, p

 (bar)

Volume, %

k = 1,3

Compression ratio, = 6

V1V2

p1

p2

p0 =5

pc =35

Under compression

This example: Built in volume ratio, = 3.97

Page 6: GIAN Compressor intro

6

GIAN @ Indian Institute of Technology Madras; October 2017

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100 110

Pressure, p (bar)

Volume, %

k = 1,3

Compression ratio, = 6

V1V2p1

p2

p0 =5

pc =25

Over compression

This example:Built in volume ratio, = 3.97

GIAN @ Indian Institute of Technology Madras; October 2017

Typical compressor performance on R717 (NH3 / Ammonia)

100

50

90

80

60

70

1 3

Ise

ntr

op

ic e

ffic

ien

cy,

is

Pressure ratio, 1311975

= 4.9

1

2

V

V

15

Over compression Under compression

GIAN @ Indian Institute of Technology Madras; October 2017

100

50

90

80

60

70

1 3

Eff

icie

nc

y

Pressure ratio, 1311975

= 4.9

= 2.6

= 3.5

= 2.2

Fixed Variable

15

Typical compressor performance on R717 (NH3 / Ammonia)

GIAN @ Indian Institute of Technology Madras; October 2017

Capacity regulating – ScrewUse of slide regulation – step less regulation down to approx. 10%

GIAN @ Indian Institute of Technology Madras; October 2017

Capacity regulation – ScrewUse of slide regulation – step less regulation down to approx. 10%

GIAN @ Indian Institute of Technology Madras; October 2017

1. Single stage, R22, R717, pressure ratio = 2

2. Single stage, R22, R717, pressure ratio = 10

3. Single stage, R22, R717, pressure ratio = 18

4. Economizer, R22, Pressure ratio = 10

5. Economizer, R22, Pressure ratio = 18

6. Economizer, R717, Pressure ratio = 10

7. Economizer, R717, Pressure ratio = 18

The diagram is only intended as a guide

and the figure are approximately only

Screw compressor –Capacity versus slide valve movement

Page 7: GIAN Compressor intro

7

GIAN @ Indian Institute of Technology Madras; October 2017

Part load characteristics

0,0 0,40,2 0,80,6 1,0

1,0

0,8

0,6

0,4

0,2

0,0

IdealPistonIdeal screwReal screw

Relative refrigeration capacity, Qo (‐)

Relative work lo

ad, W

 (‐)

GIAN @ Indian Institute of Technology Madras; October 2017

Power demand at capacity regulation of a screw compressor

0 500100 200 300 400

Refrigeration load (kW)

300

200

100

0Co

mp

ress

or

po

wer

/cap

acit

y (

kW)

Power to the compressor shaftOil cooler heat

GIAN @ Indian Institute of Technology Madras; October 2017

Capacity control screw compressors

On/off regulation of the compressor

Slide regulation (by-pass back to the inlet) – variable slide position. Capacity down to 10% of full load

Speed control (normally down to 50% rpm, due to oil lubrication)

GIAN @ Indian Institute of Technology Madras; October 2017

Single screw compressors

GIAN @ Indian Institute of Technology Madras; October 2017

Rolling piston compressors

GIAN @ Indian Institute of Technology Madras; October 2017

Rotary vane compressors

http://www.pneumofore.com/img/technology/anatomy.swf

Page 8: GIAN Compressor intro

8

GIAN @ Indian Institute of Technology Madras; October 2017

Scroll compressors

https://www.youtube.com/watch?v=dsabYhhOko0

GIAN @ Indian Institute of Technology Madras; October 2017

Trochoidal compressors

GIAN @ Indian Institute of Technology Madras; October 2017

Turbo compressor

GIAN @ Indian Institute of Technology Madras; October 2017

1989 - Testing of transcritical system operation and control

Sabroe CO2 compressor 1926 model

GIAN @ Indian Institute of Technology Madras; October 2017

SINTEF/NTNU developed MAC compressor (1990)Based on a Sanden R12 wobble plate compressor

One-stage, open

Stroke: 32 mm

Bore: 18.5 mm

RPM: 2000

Capacity: 3.1 m3/h

Reed valves.

PV-INDICATION, EFFICIENCY, LUBRICANT DISCH., VALVE SIMULATION.

GIAN @ Indian Institute of Technology Madras; October 2017

Page 9: GIAN Compressor intro

9

GIAN @ Indian Institute of Technology Madras; October 2017

Fix Displacement Compressor Development

FDC 15cc (R 744) Scroll 90cc (HFC 134a)

167mm

115

mm

220mm

122m

m

Weight reduction of ~0,68 kg

GIAN @ Indian Institute of Technology Madras; October 2017

Sperre/SINTEF-NTNU (1994)Open, 1 cylinder CO2 compressor

One-stage, open

Stroke: 80 mm Bore: 50 mm

RPM: 1200 Capacity: 11.3 m3/h Ring plate valves

PISTON AND HEAD DESIGN

PV-INDICATION cylinder and chambers,

EFFICIENCY, VALVE SIMULATION.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5Pressure Ratio [-]

Eff

icie

ncy

[-]

Isentropic

Volumetric

GIAN @ Indian Institute of Technology Madras; October 2017

50 kW heat pump water heater laboratory prototype at SINTEF/NTNU (95)

0

1

2

3

4

5

50 60 70 80 90 100

Tap Hot Water Temperature, [°C]

hp

-CO

P, [

-] (

incl

. mot

or)

Inlet Water temperature = 10°C

t0 = 10°C

t0 = 0°C

t0 = -5°C

Measured heating COP

GIAN @ Indian Institute of Technology Madras; October 2017

DorinSemihermetic

One-stage, Semi hermetic

Stroke: 17 / 34 mm

Bore: 34 mm

RPM: 1450

Capacity: 2.7 m3/h

Reed valves

PV-INDICATION, EFFICIENCY, LUBRICANT DISCH., VALVE SIMULATION. LOSS ANALYSIS

GIAN @ Indian Institute of Technology Madras; October 2017

DorinSemi hermetic two stage

TWO-stage, Semi hermetic

Stroke: 34 mm

Bore: 48 mm

RPM: 2900

Capacity: 10.7 m3/h

Reed valves

TUBE PULSATIONS, IN / OUT CHAMBER VOLUMES, EFFICIENCY,

LUBRICANT DISCHARGE,

SPACER RING

EXTENDED LUBRICANT VOLUME

SPACER RING

EXTENDED LUBRICANT VOLUME

GIAN @ Indian Institute of Technology Madras; October 2017

DorinSemi hermetic two stage

TWO-stage, Semi hermetic Stroke: 34 mm Bore: 48 mm RPM: 1450 Capacity: 5.3 m3/h Reed valves

TUBE PULSATIONS, IN / OUT CHAMBER VOLUMES,VOLUME RATIOS, EFFICIENCY, LUBRICANT DISCHARGE,

Page 10: GIAN Compressor intro

10

GIAN @ Indian Institute of Technology Madras; October 2017

DorinSemi hermetic small capacity

One-stage, Semi hermetic Stroke: 17 mm Bore: 22 mm RPM: 2900 Capacity: 2.3 m3/h Reed / ”ringplate” valves

PV-INDICATION, FLOW / ENERGY LOSS, EFFICIENCY, LUBRICANT DISCH., VALVE SIMULATION.

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7

Cylinder volume, (cm3)

Pre

ssu

re (

ba

r)

Test 2

GIAN @ Indian Institute of Technology Madras; October 2017

SANYOHermetic, two stage, rolling piston

Two-stage, Hermetic Displacement: 3.16 and 3.33 cm3

RPM: 7200 Capacity: 0.7 m3/h TUBE PULSATIONS, EFFICIENCY, OPERATING RANGE, TEMPERATURE PROFILE, LUBRICANT DISCHARGE,

GIAN @ Indian Institute of Technology Madras; October 2017

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5

C y l i n d r e v o l u m e ( c m 3 )

80_2

0 p

ress

ure

s (b

ar)

D i s c h a r g e c h a m b e r p r e s s u r e C y l i n d r e p r e s s u r e C y l i n d r e p r e s s u r e

D i s c h a r g e c h a m b e r p r e s s u r e S u c t i o n c h a m b e r p r e s s u r e

Dynamic pressure recordings, Two stage compressor, Dorin

GIAN @ Indian Institute of Technology Madras; October 2017

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

0 5 1 0 1 5 2 0

C y lin d e r v o lu m e [ c m 3 ]

Gas

pre

ssu

re [

bar

]

Dynamic pressure recordings, Single stage compressor, Dorin

GIAN @ Indian Institute of Technology Madras; October 2017

Current CO2 Compressor technology

GIAN @ Indian Institute of Technology Madras; October 2017

2013: SINTEF / NTNU 380ccm compressor

Page 11: GIAN Compressor intro

11

GIAN @ Indian Institute of Technology Madras; October 2017

2013: SINTEF / NTNU 380 ccm compressor

GIAN @ Indian Institute of Technology Madras; October 2017

380 ccm compressoroverall efficiency

45 bar suction pressure (tsat = 10 °C)

26 bar suction pressure (tsat = -9 °C)

35 bar suction pressure (tsat = 0 °C)

High side pressures

GIAN @ Indian Institute of Technology Madras; October 2017

380 ccm compressorvolumetric efficiency

45 bar suction pressure (tsat = 10 °C)

High side pressures

35 bar suction pressure (tsat = 0 °C)

26 bar suction pressure (tsat = -9 °C)

GIAN @ Indian Institute of Technology Madras; October 2017

On the market (some examples)

• Bitzer

• GEA/Bock

• Dorin

BITZER CO2 COMPRESSORS FORTRANSCRITICAL APPLICATIONS

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 66 © BITZER Kühlmaschinenbau GmbH

Optimized stroke-bore ratio– 3 piston rings – low dead volume– optimized flow cross

sections – low discharge pulsation

Special adaptation of motor layout and suction gas cooling– 4-pole design for

VSD up to 70 Hz

Highly efficient and robust working valves– large cross sections– optimized shape

and position Extra low oil carry-over– special centrifugal lubrication

THE WELL-PROVEN 4 CYLINDER COMPRESSORS FOR TRANSCRITICAL CO2 APPLICATIONS

High strength pressure: MOP HP up to 160 bar MOP LP up to 100 bar

Separated HP/LP chambers – reduced heat transfer– no external piping

Page 12: GIAN Compressor intro

12

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 67 © BITZER Kühlmaschinenbau GmbH

THE NEW 6 CYLINDER COMPRESSORS FOR TRANSCRITICAL CO2 APPLICATIONS

Further optimized cylinder head design, separated HP/LP chambers

/ 26,1 / 30,3 / 38,2 m³/h @ 50 Hz

/ Highest efficiency and reliability

Optimized oil management

Highly efficient and robust working valves Optimized stroke-bore ratio

– 3 piston rings – low dead volume– optimized flow cross

sections – low pulsation and vibration

Special motor layout and suction gas cooling– 4-pole design for

VSD up to 70 Hz

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 68 © BITZER Kühlmaschinenbau GmbH

THE NEW 2 CYLINDER COMPRESSORS FOR TRANSCRITICAL CO2 APPLICATIONS

Optimized cylinder head design, separated HP/LP chambers

/ 3,3 and 4,8 m³/h @ 50 Hz

/ Medium temp & heat pump applications

/ Highest efficiency and reliability

Optimized oil management

Highly efficient and robust working valves

New suction gas flow

Special motor layout and suction gas cooling– 4-pole design for

VSD up to 70 Hz– 2 motor versions

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 69 © BITZER Kühlmaschinenbau GmbH

BITZER COMPRESSORS FOR TRANSCRITICAL APPLICATIONS WITH CO2: APPLICATION RANGES

2

1: Limitation 4PTC2: Limitation 6DTE-50K(Z)

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 70 © BITZER Kühlmaschinenbau GmbH

BITZER COMPRESSORS FOR TRANSCRITICAL APPLICATIONS WITH CO2: CAPACITY RANGE

V geo = 3,3 m³/h V geo = 38,2 m³/h

THE NEW ECOLINE+ COMPRESSOR SERIES

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 72 © BITZER Kühlmaschinenbau GmbH

BITZER PUSHES AHEAD WITH INNOVATION

In an ideal situation, highest annual energy efficiencies are achieved with a natural refrigerant in a simple and cost effective way!

All these attributes are combined with the next generation of energy efficient products:

ECOLINE+

Page 13: GIAN Compressor intro

13

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 73 © BITZER Kühlmaschinenbau GmbH

Optimized efficiency for full and part

load

Lowest CO2footprint,

simple, smart, cost-effective

LSPM motor: Efficiency & robustness

IQ module:Operating of integrated functions

New oil return management

CRII for CO2:World novelty,

step less, easy, flexible

Highest eco-efficiency

ECOLINE+ IS THE NEXT GENERATION OF ENERGY EFFICIENT COMPRESSORS!

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 74 © BITZER Kühlmaschinenbau GmbH

LSPMLine Start Permanent Magnet

/ Stator generates rotating field

/ Start: Squirrel cage generates magnetic field (asynchronous start)

/ Operation: Magnetic field in rotor is generated by permanent magnet

/ No current dependent losses in squirrel cage due to heating effect caused by induced current = higher efficiency

/ Synchronous speed, not dependent on torque requirement

/ Higher breaking torque, theoretically acts like a generator at coast down

/ Combines efficiency and robustness, flexible operation on mains and VSD

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 75 © BITZER Kühlmaschinenbau GmbH

NEW MOTOR TECHNOLOGY: GAIN IN EFFICIENCY

Higher COP

/ Increased efficiency is based on

Higher motor efficiency

Higher mass flow rates due to synchronous speed

Higher mass flow rates due to higher suction gas density

Focus on annual energy efficiency is most important

/ Benefit dependent on

Motor size and torque requirement

System configuration (number and size of comp., VSD, etc.)

Climate and load profile of the supermarket

BITZER // Reciprocating Compr. for sub- and trans-critical CO2 Applications // Page 76 © BITZER Kühlmaschinenbau GmbH

SEPR – EN13215:4DTC-25K (ASM) vs. 4DTEU-25LK (LSPM)

8976 kWh

+ 13 %

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

OTHERS

Page 14: GIAN Compressor intro

14

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

Page 15: GIAN Compressor intro

15

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

Page 16: GIAN Compressor intro

16

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

Page 17: GIAN Compressor intro

17

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

Page 18: GIAN Compressor intro

18

GIAN @ Indian Institute of Technology Madras; October 2017

Dorin

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017

GIAN @ Indian Institute of Technology Madras; October 2017