Ghost-cell Immersed Boundary Method for Inviscid

download Ghost-cell Immersed Boundary Method for Inviscid

of 28

Transcript of Ghost-cell Immersed Boundary Method for Inviscid

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    1/28

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    2/28

    Overview

    Overview

    Introduction and background

    Potential flows

    Euler flows

    Conclusions

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 2 / 22

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    3/28

    Introduction

    Outline

    1   Introduction

    2   Potential flow

    3   Euler flow

    4   Conclusions

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 3 / 22

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    4/28

    Introduction

    Motivation

    ‘Vision 2020’: studying and minimizing the aviation industry’s impact on

    the global climate. Reductions in:Fuel consumptionNoiseEmissions

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 4 / 22

    I d i

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    5/28

    Introduction

    Motivation

    ‘Vision 2020’: studying and minimizing the aviation industry’s impact on

    the global climate. Reductions in:Fuel consumptionNoiseEmissions

    Development of unconventional aircraft configurations

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 4 / 22

    I t d ti

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    6/28

    Introduction

    Goal

    A computational method for preliminary aerodynamic design andoptimization of unconventional aircraft configurations.

    Requirements:

    Fast (solving and mesh generation)

    Accuracy similar/better than codes currently used in optimization

    Handle ‘complex’ geometries

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 5 / 22

    Introduction

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    7/28

    Introduction

    Immersed boundary method

    Ghost-cell method for full-potential equation and Euler equations:

    No mesh generation

    Straightforward implementation

    Fast solution

    Able to describe shock waves

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 6 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    8/28

    Potential flow

    Outline

    1   Introduction

    2   Potential flow

    3   Euler flow

    4   Conclusions

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 7 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    9/28

    Potential flow

    Full potential equation

    Governing equation (conservative):

    (ρφx)x + (ρφy)y  = 0,

    or (non-conservative):

    (a2 − u2)φxx − 2uvφxy + (a2− v2)φyy  = 0.

    Simple test equation for ghost-cell method on compressible flows.

    Error in shock jumps small until  M   ≈ 1.3.

    Fast solution with Approximate Factorization algorithm.

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 8 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    10/28

    Potential flow

    Ghost-cell method

    Identification ghost cells and fluid cells.

    Boundary condition:

    u · n = 0   →∂φ

    ∂n = 0.

    Set value in ghost cell:φi = φ

    m.

    1 1 1 1

    1 1 1

    1

    1

    0

    −1000

    0

    (c)

    1

    2

    3

    4

    φi

    φm

    i

    b

    m nn

    (d)B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 9 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    11/28

    Bilinear interpolation - case I

    Assume  φ(x, y) = a + bx + cy + dxy. With four surrounding points:

    1   x1   y1   x1y11   x2   y2   x2y21   x3   y3   x3y31   x4   y4   x4y4

    abcd

    =

    φ1φ2φ3φ4

    .

    value of  φm   follows from:

    φm = a + bxm + cym + dxmym.

    1

    23

    4

    i

    m

    Case I

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 10 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    12/28

    Bilinear interpolation - case II

    Use   ∂φ

    ∂n

     = 0 in point  b1  by differentiating the bilinear form:

    ∂φ

    ∂n = b

    ∂x

    ∂n + c

    ∂y

    ∂n + d

    xb

    ∂y

    ∂n + yb

    ∂x

    ∂n

    = 0,

    1

    3

    2

    ib1

    m

    Case II

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 11 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    13/28

    Bilinear interpolation - case II

    1   x1   y1   x1y11   x2   y2   x2y21   x3   y3   x3y30∂x∂n

    b1

    ∂y∂n

    b1

    xb1∂y∂n

    b1

    + yb1∂x∂n

    b1

    abcd

    =φ1φ2φ30

    .

    1

    3

    2

    ib1

    m

    Case II

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 11 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    14/28

    Bilinear interpolation - case III

    1   x1   y1   x1y11   x2   y2   x2y20∂x∂n

    b1

    ∂y∂n

    b1

    xb1 ∂y∂n

    b1

    + yb1∂x∂n

    b1

    0∂x∂n

    b2

    ∂y∂n

    b2

    xb2 ∂y∂n

    b2

    + yb2∂x∂n

    b2

    abcd

    =φ1φ200

    .

    12

    ib1

    b2

    m

    Case III

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 12 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    15/28

    Results

    NACA 0012; 400 points to describe surface.

    M ∞ = 0.8,  α = 0◦.Domain 11 × 5, stretched grid.

    x

          y

     4.5 5 5.5 6 6.50

    0.2

    0.4

    0.6

    0.8

    1

    0.4

    0.6

    0.8

    1

    1.2

    Figure:  Mach contour lines, ∆x = ∆y = 1/200.

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 13 / 22

    Potential flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    16/28

    Results

    0 0.2 0.4 0.6 0.8 11

    8

    6

    4

    2

    0

    2

    4

    6

    8

    1

     

    IBM 0.005

    IBM 0.01

    IBM 0.02

    IBM 0.04

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 13 / 22

    http://find/http://goback/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    17/28

    Euler flow

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    18/28

    Governing equations

    Unsteady, 2D inviscid flow:

    ∂ q

    ∂t  +

     ∂ f (q)

    ∂x  +

     ∂ g(q)

    ∂y  = 0 (1)

    Finite-volume discretization:

    Ωijdq

    dt  =F i−1/2,j  − F i+1/2,j

    ∆y j +

    Gi,j−1/2 −Gi,j+1/2

    ∆xi.

    MUSCL with minmod limiter to reconstruct  ql

    i+1/2,j   and  qr

    i+1/2,j .Fluxes with HLL or exact Riemann solver.

    RK3 time discretization (TVD).

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 15 / 22

    Euler flow

    http://find/http://goback/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    19/28

    Ghost-cell method

    Four  boundary conditions are needed (Dadone & Grossman, 2004):

    1 un = 0   −→   un,i = −un,m,

    1

    23

    4

    i

    m

    Case I

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 16 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    20/28

    Ghost-cell method

    Four  boundary conditions are needed (Dadone & Grossman, 2004):

    1 un = 0   −→   un,i = −un,m,2

    ∂p

    ∂n =

    ρu2tR

    b

    −→   pi = pm + 2∆n

    ρu2tR

    b

    ,

    1

    23

    4

    i

    m

    Case I

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 16 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    21/28

    Ghost-cell method

    Four  boundary conditions are needed (Dadone & Grossman, 2004):

    1 un = 0   −→   un,i = −un,m,2

    ∂p

    ∂n =

    ρu2tR

    b

    −→   pi = pm + 2∆n

    ρu2tR

    b

    ,

    3∂s

    ∂n

     = 0   −→   ρi = ρm pi

     pm

    1/γ 

    ,

    1

    23

    4

    i

    m

    Case I

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 16 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    22/28

    Ghost-cell method

    Four  boundary conditions are needed (Dadone & Grossman, 2004):

    1 un = 0   −→   un,i = −un,m,2

    ∂p

    ∂n =

    ρu2tR

    b

    −→   pi = pm + 2∆n

    ρu2tR

    b

    ,

    3∂s

    ∂n = 0   −→   ρi = ρm

     pi pm

    1/γ 

    ,

    4∂H 

    ∂n  = 0   −→   u2t,i = u

    2t,m +

      2γ 

    γ − 1

     pmρm

     piρi

    .

    1

    23

    4

    i

    m

    Case I

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 16 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    23/28

    Results

    NACA 0012; 800 points to describe surface.

    M ∞ = 0.8,  α = 1.25◦

    .Domain 21 × 20, stretched grid.

     −0.5 0 0.5 1 1.5−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 17 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    24/28

    Results

    0 0.2 0.4 0.6 0.8 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

     

    IBM 0.04

    IBM 0.02

    IBM 0.01

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 18 / 22

    Euler flow

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    25/28

    Unsteady supersonic flow over a cylinder at M=2

    6

    3

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 19 / 22

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    26/28

    Conclusions

    C l

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    27/28

    Conclusions

    Ghost-cell immersed boundary method for inviscid flows:

    Useful method for design and optimization.General method for compressible flows in complex geometries.

    Accuracy similar to body-fitted grids.

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 21 / 22

    Conclusions

    I d i

    http://find/

  • 8/9/2019 Ghost-cell Immersed Boundary Method for Inviscid

    28/28

    Improvements and suggestions

    For steady flows: speed-up with multigrid.

    Thin body (e.g. trailing edge) treatment.

    Local grid refinement.Comparison with the same discretization on a body-fitted grid.

    Research into numerical entropy generation and conservationproperties.

    Assess sensitivity needed for optimization.

    B. Sanderse, B. Koren (CWI, TU Delft)   Ghost-cell IBM for compressible flows   June 17, 2009 22 / 22

    http://find/