GGT-Electronics System design

27
GGT-Electronics System design Alexander Kluge Alexander Kluge CERN-PH/ED CERN-PH/ED April 3 , 2006

description

GGT-Electronics System design. Alexander Kluge CERN-PH/ED April 3 , 2006. General: Chip Specifications. Calculation,simulation. Working parameters. General: Chip Specifications. I/O block diagram of chip. inputs. output. I/O of chip. Which connections to on-detector electronics? - PowerPoint PPT Presentation

Transcript of GGT-Electronics System design

Page 1: GGT-Electronics  System design

GGT-Electronics System design

Alexander Kluge Alexander Kluge CERN-PH/EDCERN-PH/ED

April 3 , 2006

Page 2: GGT-Electronics  System design

April 3, 2006 A. Kluge

General: Chip SpecificationsChip Parameter

Specification

Preliminary Design parameter

Time resolution

160/200 ps 160/200 ps (bin size?)

Beam size(a x b)

48 x 36 mm2 48 x 36 mm2

Pixel size(a x b)

300 x 300 µm2

300 x 300 µm2

Matrix size(a x b)

32 x ?

Active area/per chip(a x b)

9.6 x ? mm2

# chip/module(a x b)

5 x 2 / 5 x 3 / 4 x 3

Calculation,simulationWorking parameters

Page 3: GGT-Electronics  System design

April 3, 2006 A. Kluge

General: Chip Specifications

Chip Parameter

First ideas Specification Preliminary Design parameter

Avg Rate: avg/max

60/173 MHz/cm2 Depends on TDC, segmentation

Efficiency 99%98% for center??

Number of pixels/segment

1 (analog TDC)7-20 (digital TDC)

Dead time of segment

100 ns for 1 TDC/pixel

7 -10 ns for shared TDC

Buffer size per segment

Readout speed/Trans-mission speed

Needs to operate in vacuum

Yes/no ??

Page 4: GGT-Electronics  System design

April 3, 2006 A. Kluge

inputs output

I/O block diagram of chip

Page 5: GGT-Electronics  System design

April 3, 2006 A. Kluge

I/O of chip• Which connections to on-detector electronics?

– 2 Power supplies per chip: • Core supply; analog and digital (1.5V / 1.3A / 2W)• I/O supply (≤ 2.5V / ~0.1A)• Several wire pads (~30) but all to few conductors outside

– Outputs (5 Gbits/s)• Data: ≥ 2 high speed serial outputs (differential 3 Gbit/s)

• Status: 1 low speed serial output pair• (6 pads)

– Inputs• Clock input: 1 differential pair• Configuration & control: 1 low speed serial output pair• 2 single ended control • 8 config • (6 + 8 pads)

Page 6: GGT-Electronics  System design

April 3, 2006 A. Kluge

clk 2

2control

data0 2

2data1

status 2

10testconfig8

control2

5VddCoreAna

5GndCoreAna 5 GndIO

5VddCoreDig5VddIO

5GndCoreDig

2

2

2

1 1 1

1

2

2

2

I/O block diagram of chip

Page 7: GGT-Electronics  System design

April 3, 2006 A. Kluge

Qu

ickTim

e™

an

d a

TIF

F (U

nco

mp

resse

d) d

ecom

pre

sso

rare

nee

de

d to

see th

is p

ictu

re.

Configuration

Page 8: GGT-Electronics  System design

April 3, 2006 A. Kluge

Chip size

Readout and supply

21 mm18 mm

3 mm• Readout needs possibly more space ->not leaving 18mm active area

• Supply from one side has strong power drop

• Thinning of long narrow chips more difficult

Readout and supply

Page 9: GGT-Electronics  System design

April 3, 2006 A. Kluge

Qu

ickTim

e™

an

d a

TIF

F (U

nco

mp

resse

d) d

ecom

pre

sso

rare

nee

de

d to

see th

is p

ictu

re.

Configuration

• Highest rate

Page 10: GGT-Electronics  System design

April 3, 2006 A. Kluge

Qu

ickTim

e™

an

d a

TIF

F (U

nco

mp

resse

d) d

ecom

pre

sso

rare

nee

de

d to

see th

is p

ictu

re.

Configuration

Max rate on one chip, but chip smaller

Page 11: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration: study starting point

Page 12: GGT-Electronics  System design

April 3, 2006 A. Kluge

Components in beam of 48 x 36 mm

Si; 48 x 12 mm2; 200 µm

Si; 9.6 x (12+6) mm2; 100 µm

Carbon; 48 x 36 mm2; 100 µm

48 x 9 mm2;Al; 50 µmKapton; 50 µm + 12 µmAl; 10 µm * 50%Al bonds; 2mm; 25 µmSMD comp 0402 (glued or wire bonded); 1 x 0,5 x 0.5 mm3

Page 13: GGT-Electronics  System design

April 3, 2006 A. Kluge

9 mm

Low mass cable

Page 14: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration

• Center: 0.45% X0

• Off Center1: 0.55% X0

• Off Center2: 0.65% X0

• Border: 0.65% X0

• Sensor&bonds: 0.24% X0

• RO chip: 0.11% X0

• Low mass cable: 0.10% X0

• Structure: 0.10% X0

6 mm: 0.48%3 mm: 0.58%3 mm: 0.69%

3 mm: 0.58%3 mm: 0.69%9 mm: 0.69%

9 mm: 0.69%

Page 15: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration: study starting point

Page 16: GGT-Electronics  System design

April 3, 2006 A. Kluge

• Signal lines 100µm width200µm pitch + separation =>~ 0.7 mm per signal line

• Vdd lines 1mm & separation =>~1.2 mm

• Per chip and side:3 Vdd + 3 signal =>5.7 mm

9 mm

Page 17: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration• Sensor&bonds: 0.24% X0

• RO chip: 0.11% X0

• Low mass cable: 0.10% X0

• Structure: 0.10% X0

Page 18: GGT-Electronics  System design

April 3, 2006 A. Kluge

Conclusion: configuration• What is the required material budget?

• Is the starting point configuration acceptable and if not what are the reasons?– Use reasons to adapt other parameters accordingly - geometric efficiency (areas of complete inefficiency),electronics efficiency, beam geometry

Page 19: GGT-Electronics  System design

April 3, 2006 A. Kluge

Number of components needed

• 3 stations each consisting of:• 1 module & mechanics & cooling• 1 modules consists of:• 3 assemblies

9 assemblies needed for GGT

• 100 days of operation:– Life time of assembly : 14 to 28 days =>

• 4 to 7 exchange cycles• 36 to 63 assemblies needed

– in this scheme 4 low mass cables are needed for 1 module => in total 48 to 84 low mass cables needed

Page 20: GGT-Electronics  System design

April 3, 2006 A. Kluge

Qu

ickTim

e™

an

d a

TIF

F (U

nco

mp

resse

d) d

ecom

pre

sso

rare

nee

de

d to

see th

is p

ictu

re.

Page 21: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration 3 x 5• Assume matrix of 40 rows x 32 columns:

– 12 mm x 9.6 mm = 115.2 mm2

• Chip size– (12 + (2 x 3mm)) x 9.6 mm = 18 x 9.6 mm

• Pixel size 300 um x 300 um – => 40 x 32 pixels = 1280 pixels

• Max. Avg Rate of column in center chip: ~150 MHz/cm2

(for beam with max. 173 MHZ/cm2)– => 135 kHz/pixel– => 173 MHz/chip– => 173 MHz/chip * ~32 bit = 5.5 Gbit/s

Page 22: GGT-Electronics  System design

April 3, 2006 A. Kluge

Configuration 3 x 4• Assume matrix of 40 rows x 40 columns:

– 12 mm x 12 mm = 144 mm2

• Chip size– (12 + (2 x 3mm)) x 12 mm = 18 x 12 mm

• Pixel size 300 um x 300 um – => 40 x 40 pixels = 1600 pixels

• Max. Avg Rate of center chip: ~150 MHz/cm2

(for beam with max. 173 MHZ/cm2)– => 135 kHz/pixel– => 216 MHz/chip– => 216 MHz/chip * ~32 bit = 6.9 Gbit/s

Page 23: GGT-Electronics  System design

April 3, 2006 A. Kluge

Rate and super pixels• Super pixel structure for rate maximum in center

Column of 40 pixels

• 12 mm column centered on beam~150 MHz/cm2 => 135 kHz/pixel => 99%,

• Td = 10ns, N=7, Nseg = 183;• Td = 6 ns, N= 12, Nseg = 107;• Td = 7.4 ns, N= 10, Nseg = 128;

Readout and supply

Readout and supply

Page 24: GGT-Electronics  System design

April 3, 2006 A. Kluge

Rate and super pixels• Super pixel structure for rate maximum in center

Column of 40 pixels

• 12 mm column centered on beam~150 MHz/cm2 => 135 kHz/pixel => 98%,

• Td = 10ns, N=14, Nseg = 91;• Td = 6 ns, N= 24, Nseg = 53;• Td = 7.4 ns, N= 20, Nseg = 64;

Readout and supply

Readout and supply

Page 25: GGT-Electronics  System design

April 3, 2006 A. Kluge

Read out

• 3 planes x 3 x 5 chips x (2 high speed + 2 low speed + 1 clock) optical links = 90 high speed links +90 low speed links+ 45 clock links

Page 26: GGT-Electronics  System design

April 3, 2006 A. Kluge

ALICE pixel trigger processor

BRAINHS0

HS1

HS11

HS108

HS109

HS119

12 x 800 MHzJTAG

parallel bus

DDLEthernet

Multi Gigabitserial link

DAQ data linkcontrol &

datato computer(control room)

CTP

clkSPD RO

TTC

Multi Gigabit serial link

JTAGparallel bus

OPTIN9

FPGA config

Multi Gigabit serial link

JTAG

Control serial link

parallel bus

OPTIN0

FPGA config

Control serial link

Parallel data bus

Parallel data bus TTC

Page 27: GGT-Electronics  System design

April 3, 2006 A. Kluge

Conclusion• Configuration specification have influence on chip and system design

• Full information and choice of options only during design of full chip