GGB DU and DU-B - Plain Bearings & Self-lubricating … · GGB DU®and DU-B Metal-Polymer Self ......

56
an EnPro Industries company The Global Leader in High Performance Bearing Solutions GGB DU ® and DU-B Metal-Polymer Self-lubricating Bearing Solutions

Transcript of GGB DU and DU-B - Plain Bearings & Self-lubricating … · GGB DU®and DU-B Metal-Polymer Self ......

an EnPro Industries company

The Global Leader

in High Performance Bearing Solutions

GGB DU® and DU-B Metal-Polymer Self-lubricating Bearing Solutions

Quality

All the products described in this handbook are manufactured under DIN EN ISO 9001, ISO/TS 16949 and ISO 14001approved quality management systems.

In addition GGB North America has been certified AS9100 revision B complying with the requirements of aerospaceindustry’s quality management system for the manufacture of metal-backed bearings and filament wound bearings andwashers.

AMERICA

FRANCE

GERMANY

BRAZIL SLOVAKIA

CHINA

Technical approvals:

Tested and approved by MPA Stuttgart (for DU ®B) for structural bearings for civil engineering applications.

3

Content

Content

4 Data Sheet . . . . . . . . . . . 22

4.1 Data for bearing designcalculations . . . . . . . . . . . . . . . 22

5 Lubrication . . . . . . . . . . . 23

5.1 Lubricants . . . . . . . . . . . . . . . . . 23

5.2 Tribology . . . . . . . . . . . . . . . . . . 23Hydrodynamic lubrication . . . . . . 23Mixed film lubrication . . . . . . . . . 24Boundary lubrication . . . . . . . . . 24

5.3 Characteristics ofLubricated DU bearings . . . . . . 24

5.4 Design Guidance forLubricated Applications . . . . . 24

5.5 Clearances forlubricated operation . . . . . . . . . 26

5.6 Mating Surface Finish forlubricated operation . . . . . . . . . 26

5.7 Grooving forlubricated operation . . . . . . . . . 26

5.8 Grease Lubrication . . . . . . . . . 26

6 Bearing Assembly . . . . . 27

Dimensions and Tolerances . . . . 27

6.1 Allowance forThermal Expansion . . . . . . . . . 27

6.2 Tolerances forminimum clearance . . . . . . . . . 27Sizing . . . . . . . . . . . . . . . . . . . . . 28

6.3 Counterface Design . . . . . . . . . 28

6.4 Installation . . . . . . . . . . . . . . . . 29Fitting of cylindrical bushes . . . . 29Fitting of flanged bushes . . . . . . 29Insertion Forces . . . . . . . . . . . . . 29Alignment . . . . . . . . . . . . . . . . . . 30Sealing . . . . . . . . . . . . . . . . . . . . 30

6.5 Axial Location . . . . . . . . . . . . . . 30Fitting of Thrust Washers . . . . . . 30Slideways . . . . . . . . . . . . . . . . . . 31

7 Modification . . . . . . . . . . 32

7.1 Cutting and Machining . . . . . . 32Drilling Oil Holes . . . . . . . . . . . . . 32Cutting Strip Material . . . . . . . . . 32

7.2 Electroplating . . . . . . . . . . . . . . 32DU Components . . . . . . . . . . . . . 32Mating Surfaces . . . . . . . . . . . . . 32

1 Introduction . . . . . . . . . . . 5

1.1 Applications . . . . . . . . . . . . . . . . 5

1.2 Characteristics andAdvantages . . . . . . . . . . . . . . . . 5

1.3 Basic Forms Available . . . . . . . 5

1.4 Materials . . . . . . . . . . . . . . . . . . . 6

2 Material . . . . . . . . . . . . . . . 7

2.1 Structure . . . . . . . . . . . . . . . . . . . 7

2.2 Dry Wear Mechanism . . . . . . . . 7

2.3 Physical, Mechanicaland Electrical Properties . . . . . . 9

2.4 Chemical Properties . . . . . . . . 10Electrochemical Corrosion . . . . . 10

2.5 Frictional Properties . . . . . . . . 10

3 Performance . . . . . . . . . 12

3.1 Design Factors . . . . . . . . . . . . . 12Calculation . . . . . . . . . . . . . . . . . 12

3.2 Specific Load p . . . . . . . . . . . . 12

3.3 Specific Load Limit plim . . . . . . 13

3.4 Sliding Speed U . . . . . . . . . . . . 13Continuous Rotation . . . . . . . . . 13Oscillating Movement . . . . . . . . 13

3.5 pU Factor . . . . . . . . . . . . . . . . . 14

3.6 Application Factors . . . . . . . . . 14Temperature . . . . . . . . . . . . . . . 14Mating Surface . . . . . . . . . . . . . . 15Bearing Size . . . . . . . . . . . . . . . 15Bore Burnishing . . . . . . . . . . . . . 16Type of Load . . . . . . . . . . . . . . . 16

3.7 Calculation of Bearing Size . . 17Calculation for Bushes . . . . . . . . 17Calculation for Thrust Washers 17Calculation for Slideways . . . . . 17

3.8 Calculation of BearingService Life . . . . . . . . . . . . . . . . 18Specific load p . . . . . . . . . . . . . . 18High load factor aE . . . . . . . . . . 18Modified pU Factor . . . . . . . . . . 18Estimation of bearing life LH . . . . 19Bore Burnishing . . . . . . . . . . . . . 19Slideways . . . . . . . . . . . . . . . . . . 19

3.9 Worked Examples . . . . . . . . . . 20

4

Content

8 Standard Products . . . . 33

8.1 DU Cylindrical Bushes . . . . . . 33

8.2 DU Flanged Bushes . . . . . . . . 38

8.3 DU Flanged Washers . . . . . . . 40

8.4 DU Thrust Washer . . . . . . . . . 41

8.5 DU-B Cylindrical Bushes . . . . 42

8.6 DU-B Flanged Bushes . . . . . . 44

8.7 DU Cylindrical Bushes - Inch sizes . . . . . . . . . . . . . . . . . 45

8.8 DU Thrust Washers - Inch sizes . . . . . . . . . . . . . . . . . 49

8.9 DU Strip . . . . . . . . . . . . . . . . . . 50

8.10 DU-B Strip . . . . . . . . . . . . . . . . 50

8.11 DU Strip - Inch sizes . . . . . . . . 50

9 Test Methods . . . . . . . . . 51

9.1 Measurement ofWrapped Bushes . . . . . . . . . . . 51Test A of ISO 3547 Part 2 . . . . . 51Test B (alternatively to Test A) . 51Test C . . . . . . . . . . . . . . . . . . . . 51Measurement of Wall Thickness(alternatively to Test C) . . . . . . . 51Test D . . . . . . . . . . . . . . . . . . . . 51

Formula Symbols andDesignations . . . . . . . . . . . . . . . . . . 53

Product Information . . . . . . . . . . . . . 55

5

1Introduction

1 Introduction

The purpose of this handbook is to providecomprehensive technical information onthe characteristics of DU® bearings.

The information given permits designers toestablish the correct size of bearing requi-red and the expected life and performance.

GGB Research and Development servicesare available to assist with unusual designproblems.

Complete information on the range of DUstandard stock products is given togetherwith details of other DU products.

GGB is continually refining and extendingits experimental and theoretical knowledgeand, therefore, when using this brochure itis always worth-while to contact the Com-pany should additional information berequired.

As it is impossible to cover all conditions ofoperation which arise in practice, custo-mers are advised to carry out prototypetesting wherever possible.

1.1 Applications

DU is suitable for

• rotating,

• oscillating,

• reciprocating and

• sliding movements.

Also available are DU related materialcompositions for specific applications, for

example when increased corrosion resi-stance of the bearing material is requireddue to

• atmospheric or environmental consider-ations

• food safety regulations

1.2 Characteristics and Advantages

• DU requires no lubrication

• Provides maintenance free operation

• DU has a high pU capability

• DU exhibits low wear rate

• Seizure resistant

• Suitable for temperatures from-200 to +280 °C

• High static and dynamic load capacity

• Good frictional properties with negli-gible stick-slip

• Resists solvents

• No water absorption and thereforedimensionally stable

• DU is electrically conductive andshows no electrostatic effects

• DU has good embedability and is tol-erant of dusty environments

• Compact and light

• DU bearings are prefinished andrequire no machining after assembly

1.3 Basic Forms Available

Standard Components available from stock.

These products are manufactured to Inter-national, National or GGB standarddesigns.

Metric and Imperial sizes

• Cylindrical Bushes

• Flanged Bushes *

• Thrust Washers

• Flanged Washers *

• Strip Material

* Metric sizes only

6

1 Introduction

Fig. 1: Standard Components

Non-Standard Components not available from stock.

These products are manufactured tocustomers' requirements with or withoutGGB recommendations, and include forexample

• Modified Standard Components

• Half Bearings

• Flat Components

• Deep Drawn Parts

• Pressings

• Stampings

Fig. 2: Non-Standard Components

1.4 Materials

Table 1: Characteristics of DU and DU-B

Material BackingBearing

Lining

Operating Temperature

[°C]Maximum Load plim

[N/mm2]Minimum Maximum

DU Steel PTFE+Lead -200 +280 250

DUB Bronze PTFE+Lead -200 +280 140

7

2Material

2 Material

2.1 Structure

DU

DU and DU-B take advantage of the out-standing dry bearing properties of Polyte-trafluoroethylene (PTFE) and combinesthem with strength, stability and good wearresistance, excellent heat conductivity andlow thermal expansion.

DU consists of three bonded layers: a steelbacking strip and a porous bronze matrix,impregnated and overlaid with the PTFE/lead bearing material.

Fig. 3: DU Microsection

DU-B

DU-B also consists of three layers, with abronze backing replacing the steel backingstrip. The structure is otherwise the sameas that of DU.

The bronze backing provides a high corro-sion resistance, anti magnetic propertiesand a good thermal conductivity.

Fig. 4: DU-B Microsection

2.2 Dry Wear Mechanism

Fig. 5: Effect of wear on the DU bearing surface under dry operating conditions.

Radia

l wear

[mm

]

Life LH [h]

0.01

0.02

0.04

0 2000 3000 4000

0.03

0

1000 5000

0.05

6000 7000

Bronze beginning to smear near end of material lifeFig. 8

Typical appearance after half material life Fig. 7

Running-in completed low wear rate starts when bronze is exposed Fig. 6

8

2 Material

Running-in

During normal operation, a DU bearingquickly beds in and the PTFE/lead overlaymaterial removed during this period, typi-cally 0.015 mm, is transferred to themating surface and forms a physically bon-ded lubricant film.

The rubbing surface of the bearing oftenacquires a grey-green colour and thebronze matrix can be seen exposed overabout 10 % of the bearing surface. Any

excess of the PTFE/lead surface layer willbe shed as fine feathery particles.

Fig. 6: Running-in

After 50 % of useful life

Following the running-in period the wearrate reduces to a minimum and the per-centage of bronze exposed graduallyincreases.

Fig. 7: After 50 % of useful life

End of useful life

After an extended period of operation thewear rate increases as the componentapproaches the end of its useful life as aself-lubricating bearing. At this stage atleast 70 % of the bearing surface will beexposed bronze, and approximately0.06 mm wear will have occurred.

Fig. 8: End of useful life

Wear of Mating Surfaces

There is no measurable wear of matingsurfaces made from recommended materi-als unless a DU bearing is operated

beyond its useful life or becomes contami-nated with abrasive dirt.

9

2Material

2.3 Physical, Mechanical and Electrical Properties

Table 2: Properties of DU and DU-B

Characteristic SymbolValue

Unit CommentsDU DU-B

Physical

Properties

Thermal Conductivity λ 40 60 W/mK after running in.

Coefficient of linear thermal expansion : measured on strip

1.9 mm thick.

parallel to surface α1 11 18 61/10 K

normal to surface α2 30 36 61/10 K

Maximum Operating Temperature

Tmax +280 +280 °C

Minimum Operating Temperature

Tmin –200 –200 °C

Mechanical Properties Compressive Yield Strength σc 350 300 N/mm²

measured on disc 25 mm diameter x 2.44 mm

thick.

Maximum Load

Static psta,max 250 140 N/mm²

Dynamic pdyn,max 140 140 N/mm²

Electrical Properties

Surface Resistance ROB 1 – 10 1 – 12 Ωdepends on applied pressure and contact area

Nuclear Radiation

Resistance

Maximum Thermal Neutron dose

DNth 2 x 1015 2 x 1015 nvtnvt = thermal neutron flux

Maximum gamma ray dose Dγ 106 106 Gy = J/kg 1 Gray = 1 J/kg

10

2 Material

2.4 Chemical Properties

The following table provides an indicationof the chemical resistance of DU and DU-Bto various chemical media. It is recommen-

ded that the chemical resistance is confir-med by testing if possible.

Table 3: Chemical Resistance of DU and DU-B

Electrochemical Corrosion

DU-B should not be used in conjunctionwith aluminium housings due to the risk of

electrochemical corrosion in the presenceof water or moisture.

2.5 Frictional Properties

DU bearings show negligible 'stick-slip'and provide smooth sliding between adja-cent surfaces. The coefficient of friction ofDU depends upon:

• The specific load p [N/mm²]

• The sliding speed U [m/s]

• The roughness of the mating runningsurface Ra [µm]

• The bearing temperature T [°C].

A typical relationship is shown in Fig. 9,which can be used as a guide to establishthe actual friction under clean, dry conditi-ons after running in.

Exact values may vary by ± 20 % depen-ding on operating conditions.

Chemical % °C DU DU-B

Strong Acids Hydrochloric Acid 5 20 - -

Nitric Acid 5 20 - -

Sulphuric Acid 5 20 - -

Weak Acids Acetic Acid 5 20 - o

Formic Acid 5 20 - o

Bases Ammonia 10 20 o -

Sodium Hydroxide 5 20 o o

Solvents Acetone 20 + +

Carbon

Tetrachloride20 + +

Lubricants and

Fuels

Paraffin 20 + +

Gasolene 20 + +

Kerosene 20 + +

Diesel Fuel 20 + +

Mineral Oil 70 o o

HFA-ISO46 High Water Fluid 70 o o

HFC-Water-Glycol 70 - -

HFD-Phosphate Ester 70 o o

Water 20 o +

Sea Water 20 - o

+Satisfactory:

Corrosion damage is unlikely to occur.

oAcceptable:

Some corrosion damage may occur but this will not be sufficient to impair either the structural integrity or the tribological performance of the material.

-Unsatisfactory:

Corrosion damage will occur and is likely to affect either the structural integrity and/or the tribo-

logical performance of the material.

11

2Material

Before running in, the friction may be up to50 % higher.

With frequent starts and stops, the staticcoefficient of friction is approximately equalto, or even slightly less than the dynamiccoefficient of friction.

After progressively longer periods of dwellunder load (e.g. hours or days) the static

coefficient of friction on the first movementmay be between 1.5 and 3 times greater,particularly before running in.

Friction increases at bearing temperaturesbelow 0 °C.

Where frictional characteristics are criticalto a design they should be established byprototype testing.

Fig. 9: Variation of friction coefficient f with specific load p and sliding speed U at temperature T = 25 °C

Fig. 10: Variation of friction coefficient f with specific load p and temperature T at sliding speed U = 0.01 m/s

0.30

0.25

0.20

0.15

0.10

0.05

0

0.1

1.0

10

100 0.00001

0.0001

0.001

0.01

0.1

1.0

1.5

2.0

2.5

0.25-0.30

0.20-0.25

0.15-0.20

0.10-0.15

0.05-0.10

0.00-0.05

Example

Specific loadp = 2.5 N/mm²Sliding speedU = 0.003 m/sFriction coefficientf = 0.14

Sliding speed U [m/s]

Specific load p [N/mm²]

Friction coefficient f

0.25

0.20

0.15

0.10

0.05

0

0.1

1.0

10

100 0

25

50

75

100

125

150

200

250

Example

Specific loadp = 2.5 N/mm²TemperatureT= 40 °CFriction coefficientf = 0.125

Specific load p [N/mm²]

Friction coefficient f

Temperature T [°C]

0.25-0.30

0.20-0.25

0.15-0.20

0.10-0.15

0.05-0.10

0.00-0.05

12

3 Performance

3 Performance

3.1 Design Factors

The main parameters when determiningthe size or calculating the service life for aDU bearing are:

• Specific Load Limit plim

• pU Factor

• Mating surface roughness Ra

• Mating surface material

• Temperature T

• Other environmental factors e.g. hous-ing design, dirt, lubrication

Calculation

Two design procedures are provided asfollows:

• A bearing service life calculation basedon the permitted bearing dimensions

• A calculation of the necessary bearingdimensions based on the required bear-ing service life

3.2 Specific Load p

For the purpose of assessing bearing per-formance the specific load p is defined asthe working load divided by the projected

area of the bearing and is expressed inN/mm².

Cylindrical Bush

Thrust Washer

Flanged Bush (Axial Loading)

Slideway

Permanent deformation of the DU bearinglining may occur at specific loads above140 N/mm² and under these conditions DUshould only be used with slow intermittentmovements.

The permissible maximum load on a thrustwasher is higher than that on the flange ofa flanged bush, and under conditions ofhigh axial loads a thrust washer should bespecified.

pF

D Bi⋅---------------=

(3.2.1) [N/mm²]

[N/mm²]

p4F

π Do2

Di2

–( )⋅------------------------------=

(3.2.2)

p F

0 04, Dfl2

Di2

–( )⋅-----------------------------------------=

(3.2.3) [N/mm²]

0.04

pF

L W⋅--------------=

(3.2.4) [N/mm²]

13

3Performance

3.3 Specific Load Limit plim

The maximum load which can be appliedto a DU bearing can be expressed in termsof the Specific Load Limit, which dependson the type of the loading. It is highestunder steady loads. Conditions of dynamicload or oscillating movement which pro-duce fatigue stress in the bearing result ina reduction in the permissible SpecificLoad Limit.

In general the specific load on a DU bea-ring should not exceed the Specific LoadLimits given in Table 4.

The values of Specific Load Limit specifiedin Table 4 assume good alignment bet-ween the bearing and mating surface(Fig. 29).

Fig. 11: Projected Area

Maximum specific load plim

Table 4: Maximum specific load plim

3.4 Sliding Speed U

Speeds in excess of 2.5 m/s sometimeslead to overheating, and a running in pro-cedure may be beneficial.

This could consist of a series of short runsprogressively increasing in duration froman initial run of a few seconds.

Calculation of Sliding Speed U [m/s]

Continuous Rotation

Cylindrical Bush Thrust Washer

Oscillating Movement

Cylindrical Bush Thrust Washer

BDi

Projected Area

A = Di x B

Type of loading plim [N/mm2]

steady load, rotating movement 140

steady load, oscillating movement

plim 140 140 115 95 85 80 60 44 30 20

No. of movement cycles Q 1000 2000 4000 6000 8000 410 105 106 107 108

dynamic load, rotating or oscillating movement

plim 60 60 50 46 42 40 30 22 15 10

No. of load cycles Q 1000 2000 4000 6000 8000 410 105 106 107 108

UD πi N⋅ ⋅60 10

3⋅------------------------=

(3.4.1) [m/s]

U

D +Do i

2---------------- π N⋅ ⋅

60 103⋅

-----------------------------------=

(3.4.2) [m/s]

UD⋅πi

60 103⋅

---------------------4ϕ Nosz⋅

360----------------------⋅=

(3.4.3) [m/s]

U

D +Do i

2---------------- ⋅π

60 103⋅

-------------------------4ϕ Nosz⋅

360----------------------⋅=

(3.4.4) [m/s]

14

3 Performance

3.5 pU Factor

The useful operating life of a DU bearing isgoverned by the pU factor, the product ofthe specific load p [N/mm2] and the slidingspeed U [m/s].

For thrust washers and flanged bush thrustfaces the rubbing velocity at the mean dia-meter is used.

pU factors up to 3.6 N/mm2 x m/s can beaccommodated for short periods, whilst forcontinuous rating.

pU factors up to 1.8 N/mm2 x m/s can beused, depending upon the operating liferequired.

Table 5: Typical data p, U and pU

Calculation of pU Factor [N/mm² x m/s]

3.6 Application Factors

The following factors influence the bearingperformance of DU and must be conside-red in calculating the required dimension

or estimating the bearing life for a particu-lar application.

Temperature

The useful life of a DU bearing dependsupon the operating temperature.

Under dry running conditions frictional heatis generated at the rubbing surface of thebearing dependent on the pU condition.For a given pU factor the operating tempe-rature of the bearing depends upon thetemperature of the surrounding environ-

ment and the heat dissipation properties ofthe housing. Intermittent operation affectsthe heat dissipation from the assembly andhence the operating temperature of thebearing.

The effect of temperature on the operatinglife of DU bearings is indicated by the fac-tor aT shown in Table 6.

Table 6: Temperature application factor aT

DU Unit

p 140 N/mm²

U 2.5 m/s

pU continuous 1.8 N/mm² x m/s

pU intermittent 3.6 N/mm² x m/s

pU p U⋅=

(3.5.1) [N/mm² x m/s]

Mode of Operation Nature of housing

Temperature of bearing environment Tamb [°C]

and Temperature application factor aT

25 60 100 150 200 280

Dry continuous operation Average heat dissipating qualities 1.0 0.8 0.6 0.4 0.2 0.1

Dry continuous operation Light pressings or isolated housing with

poor heat dissipating qualities0.5 0.4 0.3 0.2 0.1 -

Dry continuous operation Non-metallic housings with bad heat dissi-

pating qualities0.3 0.3 0.2 0.1 - -

Dry intermittent operation

(duration less than 2 min, followed by a longer dwell period)

Average heat dissipating qualities 2.0 1.6 1.2 0.8 0.4 0.2

Continuously immersed in water 2.0 1.5 0.6 - - -

Alternately immersed in water & dry 0.2 0.1 - - - -

Continuously immersed in non lubricant liquids other than water 1.5 1.2 0.9 0.6 0.3 0.1

Continuously immersed in lubricant 3.0 2.5 2.0 1.5 - -

15

3Performance

Mating Surface

The effect of the mating surface materialtype on the operating life of DU bearings isindicated by the mating surface factor aMand the life correction constant aL shown inTable 7.

Table 7: Mating surface factor aM and

life correction constant aL

Note:

The factor values given assume a matingsurface finish of ≤0.4 µm R a

• A ground surface is preferred to fineturned

• Surfaces should be cleaned of abrasiveparticles after polishing

• Cast iron surfaces should be ground to<0.3 µm Ra

• The grinding cut should be in the samedirection as the bearing motion relativeto the shaft

Bearing Size

The running clearance of a DU bearingincreases with bearing diameter resultingin a proportionally smaller contact areabetween the shaft and bearing. This reduc-tion in contact area has the effect of increa-sing the actual unit load and hence pU

factor. The bearing size factor (Fig. 13) isused in the design calculations to allow forthis effect. The bearing size factor is alsoapplicable to thrust washers, where forother reasons, bearing diameter has aneffect on performance.

Fig. 12: Contact area between bearing and shaft.

Material aM aL

Steel and Cast Iron

Carbon Steel 1 200

Carbon Manganese Steel 1 200

Alloy Steel 1 200

Case Hardened Steel 1 200

Nitrided Steel 1 200

Salt bath nitrocarburised 1 200

Stainless Steel(7-10 % Ni, 17-20 % Cr)

2 200

Sprayed Stainless Steel 1 200

Cast Iron(0.3 µm R )a 1 200

Plated Steel with minimum thickness ofplating 0.013 mm

Cadmium 0.2 600

Hard Chrome 2.0 600

Lead 1.5 600

Nickel 0.2 600

Phosphated 0.2 300

Tin Nickel 1.2 600

Titanium Nitride 1.0 600

Tungsten Carbide

Flame Plated3.0 600

Zinc 0.2 600

Non ferrous metals

Aluminium Alloys 0.4 200

Bronze and Copper Base

Alloys0.1-0.4 200

Hard Anodised Aluminium

(0.025 mm thick)3.0 600

Material aM aL

16

3 Performance

Fig. 13: Bearing size factor aB

Bore Burnishing

Burnishing or machining the bore of a DUbearing results in a reduction in the wearperformance. The application factor aC

given in Table 8 is used in the design cal-culations to allow for this effect.

Table 8: Bore burnishing or machining application factor aC

Type of Load

Fig. 14: Steady load, Bush stationary, Shaft rotating

Fig. 15: Rotating load, Shaft stationary, Bush rotating

Bearing s

ize f

act

or

aB

Shaft diameter DJ [mm]

0.2

0.3

1.0

1

0.5

0.1

0.4

5

0.6

0.7

0.90.8

2.0

6 7 8 9 10 50 100 500

1.5

Degree of sizingApplication factor

aC

Burnishing:Excess of burnishing tool diameter over

mean bore size

0.025 mm 0.8

0.038 mm 0.6

0.050 mm 0.3

Boring: Depth of cut

0.025 mm 0.6

0.038 mm 0.3

0.050 mm 0.1

F2---

F2---

F F2---

F2---

F

17

3Performance

3.7 Calculation of Bearing Size

In designing all bearings, the shaft diame-ter is usually determined by considerationsof physical stability or stiffness and themain variable to be determined is thelength of the bush or the land width of thethrust washer.

The formulae given below enable desi-gners to calculate the length or width

necessary to satisfy both the Specific LoadLimit and the pU/Life relationship.

If it is found that the total length exceedstwice the diameter of the shaft, this indica-tes that the conditions envisaged are toosevere for DU material and considerationshould be given to repositioning the bea-rings in order to reduce the load.

Calculation for Bushes

Bush Stationary, Shaft Rotating

Bush Rotating, Shaft Stationary

Calculation for Thrust Washers

Calculation for Slideways

Fig. 16: Slideway

BF N L +aH L( )⋅ ⋅

1 25 107 ⋅a a aT M B⋅ ⋅ ⋅,

---------------------------------------------------------------F

plim⋅Di

-------------------+=

(3.7.1) [mm]

1.25

BF N L +aH L( )⋅ ⋅

2 5 107

a a ⋅aT M B⋅ ⋅ ⋅,------------------------------------------------------------

F

plim⋅Di

-------------------+=

(3.7.2) [mm]

2.5

D –Do i

F N L +aH L( )⋅ ⋅1 25, 10

7a a ⋅aT M B⋅⋅ ⋅

--------------------------------------------------------------- Di2 1 3 F,

plim

--------------+ += –Di

(3.7.3) [mm]

1.25

1.3

A238 F U L +aH L( )⋅ ⋅,

103

a aT M⋅ ⋅------------------------------------------------------ L L+ S( )

L------------------

F

plim

--------+⋅=

(3.7.4) [mm²]2.38

L

LS

W

DU/DU-B Strip

Mating Surface

18

3 Performance

3.8 Calculation of Bearing Service Life

Where the size of a bearing is governedlargely by the space available the followingcalculation can be used to determine whe-

ther its useful life will satisfy the require-ments. If the calculated life is inadequate,a larger bearing should be considered.

Specific load p

Bushes

Flanged Bushes

Thrust Washers

High load factor a E

If aE is negative then the bearing is over-loaded. Increase the bearing diameterand/or length.

Modified pU Factor

Bushes

Flanged Bushes

Thrust Washers

For oscillating movement, calculate theaverage rotational speed.

Fig. 17: Oscillating cycle ϕ

pF

D Bi⋅---------------=

(3.8.1) [N/mm²]

pF

0 04, Dfl2

Di2

–( )⋅-----------------------------------------=

(3.8.2) [N/mm²]

0.04

p4F

p Do2

Di2

–( )⋅------------------------------=

(3.8.3) [N/mm²]

paE

lim p–

plim

--------------=

(3.8.4) [–]

plim see Table 4, Page 13

pU 5 25 105–

, ⋅ F N⋅aE B a a a⋅T M B⋅ ⋅ ⋅--------------------------------------------------=

(3.8.5) [N/mm² x m/s]

5.25

pU6 5 10

4–, ⋅ F N⋅

a DE fl–Di( ) a a ⋅aT M B⋅⋅ ⋅-------------------------------------------------------------------=

(3.8.6) [N/mm² x m/s]

6.5

pU3 34 10

5–⋅, F N⋅a D –DE o i( ) ⋅a a aT M B⋅⋅ ⋅-------------------------------------------------------------------=

(3.8.7) [N/mm² x m/s]

3.34

N4ϕ Nosz⋅

360----------------------=

(3.8.8) [1/min]ϕ ϕ

2 13 4

19

3Performance

Estimation of bearing life L H

Bushes (Steady load)

Bushes (Rotating load)

Flanged Bushes (Axial load)

Thrust Washers

Bore Burnishing

If the DU bush is bore burnished then thismust be allowed for in estimating the bea-

ring life by the application factor aC(Table 8, Page 16).

Estimated Bearing Life

Slideways

Specific load factor

If negative the bearing is overloaded andthe bearing area should be increased.

Speed temperature and materialapplication factors

Relative contact area factor

Estimated bearing life

Estimated bearing lives greater than4000 h are subject to error due to inaccu-racies in the extrapolation of test data.

For Oscillating Movements or Dynamicload: Calculate estimated number of cyclesZ .T

ZT = LH x Nosz x 60 (for Oscillating Move-ments) (3.8.18).

ZT = LH x C x 60 (for dynamic load)(3.8.19).

Check that ZT is less than total number ofcycles Q for the operating specific load p(Table 4, Page 13).

If ZT <Q, LH will be limited by wear after ZTcycles.

If ZT >Q, LH will be limited by fatigue afterZT cycles.

LH615

pU----------= –aL

(3.8.9) [h]

LH1230

pU-------------= –aL

(3.8.10) [h]

LH410

pU----------= –aL

(3.8.11) [h]

LH410

pU----------= –aL

(3.8.12) [h]

L L ⋅aH H C=

(3.8.13) [h]

aE1 A F

plim

--------= –

(3.8.14) [–]

aE2

420 a aT M⋅ ⋅F U⋅

---------------------------------=

(3.8.15) [–]

aE3AAM

-------=

(3.8.16) [–]

L aH E1 aE2 aE3 –aL⋅ ⋅=

(3.8.17) [h]

20

3 Performance

3.9 Worked Examples

Cylindrical BushGiven:

Load Details Steady Load Inside Diameter Di 40 mm

Continuous Rotation Length B 30 mm

Shaft Steel Bearing Load F 5000 N

Unlubricated at 25 °C Rotational Speed N 50 1/min

Calculation Constants and Application Factors

Specific Load Limit plim 140 N/mm² (Table 4, Page 13)

Temperature Application Factor a T 1.0 (Table 6, Page 14)

Material Application Factor aM 1.0 (Table 7, Page 15)

Bearing Size Factor aB 0.85 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Load p [N/mm²]

(3.2.1), Page 12

Sliding Speed U [m/s]

(3.4.1), Page 13

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load FactoraE [-] (must be >0)

(3.8.4), Page 18

Modified pU Factor [N/mm² x m/s]

(3.8.5), Page 18

LifeLH [h]

(3.8.9), Page 19

p FD Bi⋅-------------- 5000

40 30⋅------------------ 4 17,= = = 4.17

UD πi N⋅ ⋅60 10

3⋅----------------------- 40 3 14, 50

60 103⋅

------------------------------------- 0 105,= = =0.1053.14

pU p U⋅

⋅ ⋅

4 17 0 105 0 438,=, ⋅ ,= = 4.17 0.105 0.438

paE

lim p–

plim

--------------- 140 4 17,–140

-------------------------- 0 97,= = =0.974.17

pU 5 25 105–

, ⋅ F N⋅aE B a a ⋅aT M B⋅ ⋅ ⋅------------------------------------------------- 0 53,= =5.25

0.53

LH615

pU----------–aL

6150 53,-------------= 200 960=–=0.53

Cylindrical BushGiven:

Load Details Dynamic Load Inside Diameter Di 30 mm

Continuous Rotation Length B 30 mm

Shaft Steel Bearing Load F 25000 N

Unlubricated at 25 °C Rotational Speed N 15 1/min

Calculation Constants and Application Factors

Specific Load Limit plim 60 N/mm² (Table 4, Page 13)

Temperature Application Factor aT 1.0 (Table 6, Page 14)

Material Application Factor aM 1.0 (Table 7, Page 15)

Bearing Size Factor aB 1 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Load p [N/mm²]

(3.2.1), Page 12

Sliding Speed U [m/s]

(3.4.1), Page 13

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load FactoraE [-] (must be >0)

(3.8.4), Page 18

Modified pU Factor [N/mm² x m/s]

(3.8.5), Page 18

LifeLH [h]

(3.8.9), Page 19

Calculate total load cycles

Table 4, Page 13

Q for 27.78 N/mm² = bearing will fatigue after 105

cycles (= 28 h)

pF

D Bi⋅--------------

2500030 30⋅------------------ 27 78,= = =27.78

UD πi N⋅ ⋅60 10

3⋅----------------------- 30 3 14, 15⋅ ⋅

60 103⋅

------------------------------------- 0 024,= = =3.140.024

pU p U⋅ 27 87 0 024 0 669,=, ⋅ ,= = 0.024 0.66927.78

paE

lim p–

plim

--------------- 60 2778,–60

-------------------------- 0 54,= = =0.54

pU 5 25 105–⋅, F N⋅

aE B a a ⋅aT M B⋅ ⋅ ⋅------------------------------------------------- 1 23,= =5.25

1.23

LH615

pU----------–aL

6151 23,-------------= 200 350– ==1.23

ZT 300 60 60⋅ ⋅ 300 106⋅= =

Cylindrical BushGiven:

Load Details Steady LoadLoad Rotating

Inside Diameter Di 50 mm

Continuous Rotation Length B 50 mm

Shaft Steel Bearing Load F 10000 N

Unlubricated at 100 °C Rotational Speed N 50 1/min

Calculation Constants and Application Factors

Specific Load Limit plim 60 N/mm² (Table 4, Page 13)

Temperature Application Factor a T 0.6 (Table 6, Page 14)

Material Application Factor aM 1.0 (Table 7, Page 15)

Bearing Size Factor aB 0.78 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Load p [N/mm²]

(3.2.1), Page 12

Sliding Speed U [m/s]

(3.4.1), Page 13

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load FactoraE [-] (must be >0)

(3.8.4), Page 18

Modified pU Factor [N/mm² x m/s]

(3.8.5), Page 18

LifeLH [h]

(3.8.9), Page 19

pF

D Bi⋅--------------

1000050 50⋅------------------ 4 0,= = =4.0

UD πi N⋅ ⋅60 10

3⋅-----------------------

50 3 14, 50⋅ ⋅60 10

3⋅------------------------------------- 0 131,= = =0.131

3.14

pU p U⋅ 4 0 0 131 0 524,=, ⋅ ,= = 0.5420.1314.0

paE

lim p–

plim

---------------60 4 0,–

60-------------------- 0 93,= = =

4.00.93

pU5 25 10

5–, ⋅ F N⋅

aE B a a ⋅aT M B⋅ ⋅ ⋅------------------------------------------------- 1 20,= = 1.205.25

LH1230

pU-------------–aL

12301 2,-------------= 200 825– ==1.20

Cylindrical BushGiven:

Load Details Steady Load Inside Diameter Di 45 mm

Oscillating Movements Length B 40 mm

Shaft Stainless Steel Bearing Load F 40000 N

Unlubricated at 25 °C Frequency C 150

Continuous operation Amplitudes ϕ 20 °

Calculation Constants and Application Factors

Specific Load Limit plim 140 N/mm² (Table 4, Page 13)

Temperature Application Factor a T 1.0 (Table 6, Page 14)

Material Application Factor aM 2.0 (Table 7, Page 15)

Bearing Size Factor aB 0.81 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Load p [N/mm²]

(3.2.1), Page 12

Sliding Speed U [m/s]

(3.4.1), Page 13

Average speedN [1/min]

(3.8.8), Page 18

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load FactoraE [-] (must be >0)

(3.8.4), Page 18

Modified pU Factor[N/mm² x m/s]

(3.8.5), Page 18

LifeLH [h]

(3.8.9), Page 19

Calculate total load cycles

Table 4, Page 13

Q for 22.22 N/mm² = 108 bearing o.k.!

p FD Bi⋅-------------- 40000

45 40⋅------------------ 22 22,= = = 22.22

U 45 3 14, 33 33,⋅ ⋅60 10

3⋅----------------------------------------------- 0 078,= =

3.14 33.330.078

N4ϕN osz⋅

360---------------------- 4 20 150⋅ ⋅

360------------------------------ 33 33,= = =33.33

pU p U⋅ 22 22 0 078 1 733,=, ⋅ ,= =22.22 0.078 1.733

paE

lim p–

plim

---------------140 22 22,–

140------------------------------ 0 84,= = =

22.220.84

pU 5 25 105–

, ⋅ F N⋅aE B a a ⋅aT M B⋅ ⋅ ⋅------------------------------------------------- 1 29,= =5.25

1.29

LH615pU----------–aL

6151 29,-------------= 200 277– ==

ZT 277 150 60⋅ ⋅2 5, 106⋅= = 2.5

21

3Performance

Thrust WasherGiven:

Load Details Axial Load, Outside Diameter Do 62 mm

Continuous Rotation Inside Diameter Di 38 mm

Shaft Steel Bearing Load F 6500 N

Unlubricated at 25 °C Rotational Speed N 60 1/min

Calculation Constants and Application Factors

Specific Load Limit plim 140 N/mm² (Table 4, Page 13)

Temperature Application Factor a T 1.0 (Table 6, Page 14)

Material Application Factor aM 1.0 (Table 7, Page 15)

Bearing Size Factor aB 0.85 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Loadp [N/mm²]

(3.8.3), Page 18

Sliding Speed U [m/s]

(3.4.2), Page 13

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load Factor aE [-]

(3.8.4), Page 18

Modified pU Factor [N/mm² x m/s]

(3.8.7), Page 18

Life LH [h]

(3.8.12), Page 19

p 4 6500⋅3 14, 62

238

2–( )

-------------------------------------------- 3 45,= =3.14

3.45

U

62 38+( )2

--------------------- 3 14, 60

60 1000⋅---------------------------------------------------- 0 157,= =

3.140.157

pU p U⋅ 3 45 0 157 =, ⋅ ,= =3.45 0.157 0.541

aE140 3 45,–

140-------------------------- 0 98,= =

3.450.98

pU 3 34, 105–⋅ 6500 60⋅

0 87, 62 38–( ) 1 1 0 85,⋅⋅ ⋅ ⋅---------------------------------------------------------------------------- 0 65,= =

3.340.87 0.85

0.650.87

LH410

0 65,------------- 200 431= – =0.65

Flanged BushGiven:

Load Details Axial Load Flange outside Diameter Dfl

23 mm

Continuous Rotation Inside Diameter Di 15 mm

Shaft Steel Bearing Load F 250 N

Unlubricated at 25 °C Rotational Speed N 25 1/min

Calculation Constants and Application Factors

Specific Load Limit plim 140 N/mm² (Table 4, Page 13)

Temperature Application Factor a T 1.0 (Table 6, Page 14)

Material Application Factor aM 1.0 (Table 7, Page 15)

Bearing Size Factor aB 1.0 (Fig. 13, Page 16)

Life Correction Constant aL 200 (Table 7, Page 15)

Calculation Ref Value

Specific Load p [N/mm²]

(3.2.2), Page 12

Sliding Speed U [m/s]

(3.4.2), Page 13

pU Factor (Calculate from Table 5, Page 14)

(3.5.1), Page 14

High Load Factor aE [-]

(3.8.4), Page 18

Modified pU Factor [N/mm² x m/s]

(3.8.6), Page 18

Life LH [h]

(3.8.11), Page 19

p 250

232

152

–( )⋅-------------------------------------------- 20 55,= =0.04

20.55

U

23 15+( )2

--------------------- 3 14, 25⋅ ⋅

60 1000⋅---------------------------------------------------- 0 025,= =

3.140.025

pU p U⋅ 0.025 0 513,=, ⋅= =20.55 0.513

aE140 20 55,–

140------------------------------ 0 85,= =

20.550.85

pU 105–

250⋅ 50⋅0.85 23 15–( ) 1 1 1⋅⋅ ⋅ ⋅----------------------------------------------------------------- 0 59,= =

6.50.59

LH410

0 59,------------- 200 495= – =0.59

⋅ ⋅

22

4 Data Sheet

4 Data Sheet

4.1 Data for bearing design calculations

Quantity

Dimensions in mm

Inside Diameter Di

Length B

Outside Diameter Do

Flange Diameter Dfl

Flange Thickness sfl

Length of slideplate L

Width of slideplate W

Thickness of slideplate sS

Radial load F [N]

or specific load p 2 [N/mm ]

Axial load F [N]

or specific load p 2 [N/mm ]

Oscillating frequency Nosz [1/min]

Rotational speed N [1/min]

Speed U [m/s]

Length of Stroke LS [mm]

Frequency of Stroke [1/min]

Oscillating cycle ϕ[°]

Continuous operation

Load

Service hours per day

Days per year

Operating time

Intermittent operation

Movement

Shaft DJ

Bearing Housing DH

Fits and Tolerances

Ambient temperature Tamb [°]

Operating Environment

Non metal housing with poor heat transfer properties

Light pressing or insulated housing

which poor heat transfer properties

Housing with good heat transfer

properties

Material

Mating surface

Surface finish Ra [µm]

Hardness HB/HRC

Process Fluid

Lubricant

Alternate operation in water and dry

Dry

Lubrication

Process fluid lubrication

Continuous lubrication

Initial lubrication only

Hydrodynamic conditions

Dynamic viscosity η

Required service life LH [h]

Service life

Rotational movement Steady load Rotating load Oscillating movement

Cylindrical Bush Flanged Bush Thrust Washer Slideplate

Existing Design New Design

Special(Sketch)

Linear movement

B

Di (

Di,a)

Do

Di (D

i,a)

Dfl

Di

Do

Do

Ws S

Bsfl sT

L

Customer Data

Company: City:Street: Post Code:

Project:

Name:Tel.:

Date:

Signature:Fax:

Application:

23

5Lubrication

5 Lubrication

Although DU was developed as a dry selflubricating bearing material, DU also provi-des excellent performance in lubricatedapplications.

The following sections describe the basicsof lubrication and provide guidance on theapplication of DU in such environments.

5.1 Lubricants

DU can be used with most fluids including

• water

• lubricating oils

• engine oil

• turbine oil

• hydraulic fluid

• solvent

• refrigerants

In general, the fluid will be acceptable if itdoes not chemically attack the PTFE/leadoverlay or the porous bronze interlayer.Where there is doubt about the suitabilityof a fluid, a simple test is to submerge a

sample of DU material in the fluid for two tothree weeks at 15-20 °C above the opera-ting temperature.

The following will usually indicate that thefluid is not suitable for use with DU:

• A significant change in the thickness ofthe DU material,

• A visible change in the bearing surfaceother than some discolouration or stain-ing

• A visible change in the microstructure ofthe bronze interlayer

5.2 Tribology

There are three modes of lubricated bea-ring operation which relate to the thicknessof the developed lubricant film between thebearing and the mating surface.

These three modes of operation dependupon:

• Bearing dimensions

• Clearance

• Load

• Speed

• Lubricant Viscosity

• Lubricant Flow

Hydrodynamic lubrication

Characterised by:

• Complete separation of the shaft fromthe bearing by the lubricant film

• Very low friction and no wear of the bear-ing or shaft since there is no contact.

• Coefficients of friction of 0.001 to 0.01

Hydrodynamic conditions occur whenFig. 18: Hydrodynamic lubrication

pU⋅η7·5------------ B

Di

-----≤ ⋅

(5.2.1) [N/mm²]

24

5 Lubrication

Mixed film lubrication

Characterised by:

• Combination of hydrodynamic andboundary lubrication.

• Part of the load is carried by localisedareas of self pressurised lubricant andthe remainder supported by boundarylubrication.

• Friction and wear depend upon thedegree of hydrodynamic support devel-oped.

• DU provides low friction and high wearresistance to support the boundary lubri-cated element of the load.

Fig. 19: Mixed film lubrication

Boundary lubrication

Characterised by:

• Rubbing of the shaft against the bearingwith virtually no lubricant separating thetwo surfaces.

• Bearing material selection is critical toperformance

• Shaft wear is likely due to contactbetween bearing and shaft.

• The excellent self lubricating propertiesof DU material minimises wear underthese conditions.

• The coefficient of friction with DU is typi-cally 0.02 to 0.06 under boundary lubri-cation conditions.

Fig. 20: Boundary lubrication

5.3 Characteristics of Lubricated DU bearings

DU is particularly effective in the mostdemanding of lubricated applications

where full hydrodynamic operation cannotbe maintained, for example:

• High load conditions

In highly loaded applications operatingunder boundary or mixed film conditionsDU shows excellent wear resistance andlow friction.

• Start up and shut down under load

With insufficient speed to generate ahydrodynamic film the bearing will oper-ate under boundary or mixed film condi-tions. DU minimises wear and requiresless start up torque than conventionalmetallic bearings.

• Sparse lubrication

Many applications require the bearing tooperate with less than the ideal lubricantsupply, typically with splash or mist lubri-cation only. DU provides excellent selflubricating properties.

• Dry operation after running in water

If a DU bearing is required to run dryafter running in water under non hydro-dynamic conditions then the wear resist-ance will be substantially reduced due toan increased amount of bedding in wear.

5.4 Design Guidance for Lubricated Applications

Fig. 21 shows the three lubrication regimesdiscussed above. In order to use Fig. 21,using the formula on page 12 and page 13:

• Calculate the specific load p,

• Calculate the shaft surface speed U.

Using the viscosity temperature relati-onships presented in Table 9.

• Determine the lubricant viscosity incentipoise, of the lubricant.

If the operating temperature of the fluid isunknown, a provisional temperature of25 °C above ambient can be used.

25

5Lubrication

Area 1

The bearing will operate with boundarylubrication and pU factor will be the majordeterminant of bearing life. The DU bea-ring performance can be calculated using

the method given in Section 3, althoughthe result will probably underestimate thebearing life

Area 2

The bearing will operate with mixed filmlubrication and the pU factor is no longer asignificant parameter in determining the

bearing life. The DU bearing performancewill depend upon the nature of the fluid andthe actual service conditions.

Area 3

The bearing will operate with hydrodyna-mic lubrication. The bearing wear will bedetermined only by the cleanliness of the

lubricant and the frequency of start up andshut down.

Area 4

These are the most demanding operatingconditions. The bearing is operated undereither high speed or high bearing load toviscosity ratio, or a combination of both.

These conditions may cause:

• excessive operating temperature and/or

• high wear rate.

The bearing performance may be impro-ved by adding one or more grooves to thebearing and a shaft surface finish<0.05 µm R .a

Fig. 21: Design guide for lubricated application

Table 9: Viscosity data

Speci

fic b

earing

load

p [N

/mm

²]

Journal surface speed U [m/s]

0.1

1.0

10

0.01 0.1 1.0 10

Increased clearances may be necessary

Detail bearing design may be necessary - consult the company

Area 1Effectively dry rubbing

Area 2Mixed film lubrication

Area 3Full hydrodynamic lubrication

Area 4

Vis

cosi

ty η

[cP

]

Conditions:

- Steady unidirectional loading- Continuous, non reversing shaft rotation- Sufficient clearance between shaft and bearing- Sufficient lubricant flow

Viscosity cP

Temperature [°C] 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Lubricant

ISO VG 32 310 146 77 44 27 18 13 9.3 7.0 5.5 4.4 3.6 3.0 2.5 2.2

ISO VG 46 570 247 121 67 40 25 17 12 9.0 6.9 5.4 4.4 3.6 3.0 2.6

ISO VG 68 940 395 190 102 59 37 24 17 12 9.3 7.2 5.8 4.7 3.9 3.3

ISO VG 100 2110 780 335 164 89 52 33 22 15 11.3 8.6 6.7 5.3 4.3 3.6

ISO VG 150 3600 1290 540 255 134 77 48 31 21 15 11 8.8 7.0 5.6 4.6

Diesel oil 4.6 4.0 3.4 3.0 2.6 2.3 2.0 1.7 1.4 1.1 0.95

Petrol 0.6 0.56 0.52 0.48 0.44 0.40 0.36 0.33 0.31

Kerosene 2.0 1.7 1.5 1.3 1.1 0.95 0.85 0.75 0.65 0.60 0.55

Water 1.79 1.30 1.0 0.84 0.69 0.55 0.48 0.41 0.34 0.32 0.28

26

5 Lubrication

5.5 Clearances for lubricated operation

The recommended shaft and housing dia-meters given for standard DU bushes willprovide sufficient clearance for applicati-ons operating with boundary lubrication.

For bearings operating with mixed film orhydrodynamic lubrication it may be neces-

sary to improve the fluid flow through thebearing by reducing the recommendedshaft diameter by approximately 0.1 %,particularly when the shaft surface speedexceeds 2.5 m/s.

5.6 Mating Surface Finish for lubricated operation

• R a ≤0.4 µm Boundary lubrication

• Ra = 0.1-0.2 µm Mixed film or hydrody-namic conditions

• R a ≤ 0.05 µm for the most demandingoperating conditions

5.7 Grooving for lubricated operation

In demanding applications an axial oilgroove will improve the performance ofDU. Fig. 22 shows the recommended formand location of a single groove with

respect to the applied load and the bearingsplit. GGB can manufacture special DUbearings with embossed or milled grooveson request.

Fig. 22: Location of oil holes and grooves

5.8 Grease Lubrication

DU is not generally recommended for usewith grease lubrication. In particular the fol-lowing must be avoided:

• Dynamic loads - which can result in ero-sion of the PTFE/lead bearing surface.

• Greases with EP additives or fillers suchas graphite or MoS2 which can causerapid wear of DU.

gap

20° -60°0° -45°

0.25-0.40

10-15 % of inside diameter of bearing0° -45°

Groove Detail Z

Z

F

27

6Bearing Assembly

6 Bearing Assembly

Dimensions and Tolerances

DU bushes are prefinished in the bore, andexcept in very exceptional circumstances,must not be burnished, broached or other-wise modified. It is essential that the cor-rect running clearance is used and thatboth the diameter of the shaft and the boreof the housing are finished to the limitsgiven in the tables. Under dry running con-ditions any increase in the clearancesgiven will result in a proportional reductionin performance.

If the bearing housing is unusually flexiblethe bush will not close in by the calculated

amount and the running clearance will bemore than the optimum. In these circum-stances the housing should be boredslightly undersize or the journal diameterincreased, the correct size being determi-ned by experiment.

Where free running is essential, or wherelight loads (less than 0.1 N/mm²) prevailand the available torque is low, increasedclearance is required and it is recommen-ded that the shaft size quoted in the tablebe reduced by 0.025 mm.

6.1 Allowance for Thermal Expansion

For operation in high temperature environ-ments the clearance should be increasedby the amounts indicated by Fig. 23 to

compensate for the inward thermal expan-sion of the bearing lining.

Fig. 23: Increase in diametral clearance

If the housing is non-ferrous then the boreshould be reduced by the amounts given inTable 10, in order to give an increased

interference fit to the bush, with a similarreduction in the journal diameter additionalto that indicated by Fig. 23.

Table 10: Allowance for high temperature

6.2 Tolerances for minimum clearance

Where it is required to keep the variation ofassembled clearance to a minimum, closertolerances can be specified towards theupper end of the journal tolerance and thelower end of the housing tolerance.

If housings to H6 tolerance are used, thenthe journals should be finished to the follo-wing limits.

The sizes in Table 11 give the followingnominal clearance range.

Table 11: Shaft tolarances for use with H6 housings

Table 12: Clearance vs bearing diameter

Incr

ease

in m

inim

um

dia

metr

al c

leara

nce

[m

m]

Environmental temperature Tamb [°C]

0.01

0.02

0 40 60 80

0

20 100 120 140

Housing materialReduction in housing diameter

per 100 °C rise

Reduction in shaft diameter

per100 °C rise

Aluminium alloys 0.1 % 0.1 % + values from Fig. 23

Copper base alloys 0.05 % 0.05 % + values from Fig. 23

Steel and cast iron – values from Fig. 23

Zinc base alloys 0.15 % 0.15 % + values from Fig. 23

Di DJ

<25 mm -0.019 to -0.029

>25 mm < 50 mm -0.021 to -0.035

Di CD

10 mm 0.005 to 0.078

50 mm 0.005 to 0.130

28

6 Bearing Assembly

Sizing

Fig. 24: Burnishing tool

The burnishing or fine boring of the bore ofan assembled DU bush in order to achievea smaller clearance tolerance is only per-missible if a substantial reduction in perfor-mance is acceptable. Fig. 24 shows arecommended burnishing tool for thesizing of DU bushes.

The coining section of the burnishing toolshould be case hardened (case depth 0.6-1.2 mm, HRC 60±2) and polished (RZ ≈1 µm).

Note: Ball burnishing of DU bushes is notrecommended.

Table 13: Burnishing tool tolerances

The values given in Table 13 indicate thedimensions of the burnishing tool requiredto give specific increases in the bearingbore diameter.

Exact values must be determined by test.

The reduction in bearing performance as aresult of burnishing is allowed for in thebearing life calculation by the applicationfactor aC (Table 8, Page 16).

6.3 Counterface Design

The suitability of mating surface materialsand recommendations of mating surfacefinish for use with DU are discussed indetail on page 15.

DU is normally used in conjunction withferrous journals and thrust faces, but indamp or corrosive surroundings, particu-larly without the protection of oil or grease,stainless steel, hard chromium plated mildsteel, or hard anodised aluminium isrecommended. When plated mating sur-faces are specified the plating should pos-sess adequate strength and adhesion,particularly if the bearing is to operate withhigh fluctuating loads.

The shaft or thrust collar used in con-junction with the DU bush or thrust washermust extend beyond the bearing surface inorder to avoid cutting into it. The matingsurface must also be free from grooves orflats, the end of the shaft should be given alead-in chamfer and all sharp edges orprojections which may damage the softoverlay of the DU must be removed. Fig. 25: Counterface Design

0.5°

6±2

Di

B +

10

BDC

R 1.5

Assembled bush

Inside-∅

Required bush

Inside-∅

Required burnishing

tool diameterDC

Di,a Di,a + 0.025 Di,a + 0.06

Di,a Di,a + 0.038 Di,a + 0.08

Di,a Di,a + 0.050 Di,a + 0.1

incorrect correct

29

6Bearing Assembly

6.4 Installation

Fitting of cylindrical bushes

Fig. 26: Fitting of cylindrical bushes

Fitting of flanged bushes

Fig. 27: Fitting of flanged bushes

Insertion Forces

Fig. 28: Maximum Insertion Force

Do <55 mm Do >55 mm Do >120 mm

15° -30°

Mounting Ring

Note:Lightly oil back of bush to assist assembly.

for

DH

≤125 =

0.8

for

DH

> 1

25 =

2

for

DH

≤125 =

0.8

for

DH

> 1

25

= 2

Di

Di

DH

DH

cham

fer

min

= r

max

x 45

°

Z

Z

0.5

x 1

r max see pages 38/44

Maxi

mum

inse

rtio

n forc

e [N

/mm

unit le

ngth

]

Bush bore diameter Di [mm]

200

400

1000

0 30 40 50

800

0

20 100

600

10

30

6 Bearing Assembly

Alignment

Accurate alignment is an important consi-deration for all bearing assemblies, but isparticularly so for dry bearings becausethere is no lubricant to spread the load.

With DU bearings misalignment over thelength of a bush (or pair of bushes), or overthe diameter of a thrust washer should notexceed 0.020 mm as illustrated in Fig. 29.

Fig. 29: Alignment

Sealing

While DU can tolerate the ingress of somecontaminant materials into the bearing wit-hout loss of performance, where there isthe possibility of highly abrasive material

entering the bearing, a suitable sealingarrangement, as illustrated in Fig. 30should be provided.

Fig. 30: Recommended sealing arrangements

6.5 Axial Location

Where axial location is necessary, it isadvisable to fit DU thrust washers in con-

junction with DU bushes, even when theaxial loads are low.

Fitting of Thrust Washers

DU thrust washers should be located in arecess as shown in Fig. 31. The recessdiameter should be 0.125 mm larger thenthe washer diameter and the depth asgiven in the product tables.

If a recess is not possible one of the follo-wing methods may be used:

• Two dowel pins

• Two screws

• Adhesive

• Soldering

31

6Bearing Assembly

Important Note

• Ensure the washer ID does not touch theshaft after assembly

• Ensure that the washer is mounted withthe steel backing to the housing

• Dowels pins should be recessed0.25 mm below the bearing surface

• Screws should be countersunk 0.25 mm

below the bearing surface

• DU must not be heated above 320 °C

• Contact adhesive manufacturers forguidance selection of suitable adhesives

• Protect the bearing surface to preventcontact with adhesive

Fig. 31: Installation of Thrust-Washer

Grooves for Wear Debris Removal

Tests with thrust washers have demonstra-ted that for optimum dry wear performanceat specific loads in excess of 35 N/mm2,four wear debris removal grooves should

be machined in the bearing surface asshown in Fig. 32.

Grooves in bushes have not been found tobe beneficial in this respect.

Fig. 32: Debris removal Grooves

Slideways

DU strip material for use as slideway bea-rings should be installed using one of thefollowing methods:

• Countersunk screws

• Adhesives

• Mechanical location as shown in Fig. 33

Fig. 33: Mechanical location of DU slideplates

0.1 x Di 0.4 deep

32

7 Modification

7 Modification

7.1 Cutting and Machining

The modification of DU bearing compon-ents requires no special procedures. Ingeneral it is more satisfactory to performmachining or drilling operations from thePTFE side in order to avoid burrs. Whencutting is done from the steel side, the

minimum cutting pressure should be usedand care taken to ensure that any steel orbronze particles protruding into the remai-ning bearing material, and all burrs, areremoved.

Drilling Oil Holes

Bushes should be adequately supportedduring the drilling operation to ensure that

no distortion is caused by the drilling pres-sure.

Cutting Strip Material

DU strip material may be cut to size by anyone of the following methods.

Care must be taken to protect the bearingsurface from damage and to ensure thatno deformation of the strip occurs:

• Using side and face cutter, or slittingsaw, with the strip held flat and securely

on a horizontal milling machine.

• Cropping

• Guillotine(For widths less than 90 mm only)

• Water-jet cutting

• Laser cutting (see Health Warning)

7.2 Electroplating

DU Components

In order to provide some protection inmildly corrosive environments the steelback and end faces of standard range DUbearings are tin flashed.

If exposed to corrosive liquids furtherprotection should be provided and in very corrosive conditions DU-B should beconsidered.

DU can be electroplated with most of theconventional electroplating metals inclu-ding the following:

• zinc ISO 2081-2

• cadmium ISO 2081-2

• nickel ISO 1456-8

• hard chromium ISO 1456-8

For the harder materials if the specifiedplating thickness exceeds approximately 5µm then the housing diameter should beincreased by twice the plating thickness inorder to maintain the correct assembledbearing bore size.

With light deposits of materials such ascadmium, no special precautions arenecessary. Harder materials such as nickelhowever, may strike through the PTFE/lead surface layer of DU and it is advisableto use an appropriate method of maskingthe bearing surface.

Where electrolytic attack is possible testsshould be conducted to ensure that all thematerials in the bearing environment aremutually compatible.

Mating Surfaces

DU can be used against some platedmaterials as indicated on page 15.

Care should be taken to ensure that therecommended shaft sizes and surfacefinish are achieved after the plating pro-cess.

33

8Standard Products

8 Standard Products

8.1 DU Cylindrical Bushes

All dimensions in mm

0.3

min

.

s 3D

i(D

i,a)

Do

Co

Ci

B

Z

20° ±8°

Detail Z

Split

Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

0203DU2 3.5

0.7500.730

3.252.75

h6

2.0001.994

H6

3.5083.500

2.0482.000

0.0540.000

0205DU5.254.75

0303DU

3 4.5

3.252.75

3.0002.994

4.5084.500

3.0483.000

0305DU5.254.75

0306DU6.255.75

0403DU

4 5.5

3.252.75

4.0003.992

5.5085.500

4.0484.000

0.0560.000

0404DU4.253.75

0406DU6.255.75

0410DU10.259.75

0505DU

5 7

1.0050.980

5.254.75

f7

4.9904.978

H7

7.0157.000

5.0554.990

0.0770.000

0508DU8.257.75

0510DU10.259.75

0604DU

6 8

4.253.75

5.9905.978

8.0158.000

6.0555.990

0606DU6.255.75

0608DU8.257.75

0610DU10.259.75

0705DU7 9

5.254.75 6.987

6.9729.0159.000

7.0556.990

0.0830.003

0710DU10.259.75

Outside Co and Inside Ci chamfers

a = Chamfer Co machined or rolled at the opinion of the manufacturer

b = Ci can be a radius or a chamfer in accordance with ISO 13715

Wall thickness Cos3

(a)Ci (b)

machined rolled

0.75 0.5 ±0.3 0.5 ±0.3 -0.1 to -0.4

1 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.5

1.5 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.7

Wall thickness Cos3

(a)Ci (b)

machined rolled

2 1.2 ± 0.4 1.0 ± 0.4 -0.1 to -0.7

2.5 1.8 ± 0.6 1.2 ± 0.4 -0.2 to -1.0

34

8 Standard Products

0806DU

8 10

1.0050.980

6.255.75

f7

7.9877.972

H7

10.01510.000

8.0557.990

0.0830.003

0808DU8.257.75

0810DU10.259.75

0812DU12.2511.75

1006DU

10 12

6.255.75

9.9879.972

12.01812.000

10.0589.990

0.0860.003

1008DU8.257.75

1010DU10.259.75

1012DU12.2511.75

1015DU15.2514.75

1020DU20.2519.75

1208DU

12 14

8.257.75

11.98411.966

14.01814.000

12.05811.990

0.0920.006

1210DU10.259.75

1212DU12.2511.75

1215DU15.2514.75

1220DU20.2519.75

1225DU25.2524.75

1310DU13 15

10.259.75 12.984

12.96615.01815.000

13.05812.990

1320DU20.2519.75

1405DU

14 16

5.254.75

13.98413.966

16.01816.000

14.05813.990

1410DU10.259.75

1412DU12.2511.75

1415DU15.2514.75

1420DU20.2519.75

1425DU25.2524.75

1510DU

15 17

10.259.75

14.98414.966

17.01817.000

15.05814.990

1512DU12.2511.75

1515DU15.2514.75

1520DU20.2519.75

1525DU25.2524.75

1610DU

16 18

10.259.75

15.98415.966

18.01818.000

16.05815.990

1612DU12.2511.75

1615DU15.2514.75

1620DU20.2519.75

1625DU25.2524.75

1720DU 17 1920.2519.75

16.98416.966

19.02119.000

17.06116.990

0.0950.006

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

35

8Standard Products

1810DU

18 201.0050.980

10.259.75

f7

17.98417.966

H7

20.02120.000

18.06117.990

0.0950.006

1815DU15.2514.75

1820DU20.2519.75

1825DU25.2524.75

2010DU

20 23

1.5051.475

10.259.75

19.98019.959

23.02123.000

20.07119.990

0.1120.010

2015DU15.2514.75

2020DU20.2519.75

2025DU25.2524.75

2030DU30.2529.75

2215DU

22 25

15.2514.75

21.98021.959

25.02125.000

22.07121.990

2220DU20.2519.75

2225DU25.2524.75

2230DU30.2529.75

2415DU

24 27

15.2514.75

23.98023.959

27.02127.000

24.07123.990

2420DU20.2519.75

2425DU25.2524.75

2430DU30.2529.75

2515DU

25 28

15.2514.75

24.98024.959

28.02128.000

25.07124.990

2520DU20.2519.75

2525DU25.2524.75

2530DU30.2529.75

2550DU50.2549.75

2815DU

28 32

2.0051.970

15.2514.75

27.98027.959

32.02532.000

28.08527.990

0.1260.010

2820DU20.2519.75

2825DU25.2524.75

2830DU30.2529.75

3010DU

30 34

10.259.75

29.98029.959

34.02534.000

30.08529.990

3015DU15.2514.75

3020DU20.2519.75

3025DU25.2524.75

3030DU30.2529.75

3040DU40.2539.75

3220DU

32 36

20.2519.75

31.97531.950

36.02536.000

32.08531.990

0.1350.015

3230DU30.2529.75

3240DU40.2539.75

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

36

8 Standard Products

3520DU

35 39

2.0051.970

20.2519.75

f7

34.97534.950

H7

39.02539.000

35.08534.990

0.1350.015

3530DU30.2529.75

3535DU35.2534.75

3540DU40.2539.75

3550DU50.2549.75

3720DU 37 4120.2519.75

36.97536.950

41.02541.000

37.08536.990

4020DU

40 44

20.2519.75

39.97539.950

44.02544.000

40.08539.990

4030DU30.2529.75

4040DU40.2539.75

4050DU50.2549.75

4520DU

45 50

2.5052.460

20.2519.75

44.97544.950

50.02550.000

45.10544.990

0.1550.015

4530DU30.2529.75

4540DU40.2539.75

4545DU45.2544.75

4550DU50.2549.75

5020DU

50 55

20.2519.75

49.97549.950

55.03055.000

50.11049.990

0.1600.015

5030DU30.2529.75

5040DU40.2539.75

5050DU50.2549.75

5060DU60.2559.75

5520DU

55 60

20.2519.75

54.97054.940

60.03060.000

55.11054.990

0.1700.020

5525DU25.2524.75

5530DU30.2529.75

5540DU40.2539.75

5550DU50.2549.75

5555DU55.2554.75

5560DU60.2559.75

6020DU

60 652.5052.460

20.2519.75

59.97059.940

65.03065.000

60.11059.990

0.1700.020

6030DU30.2529.75

6040DU40.2539.75

6050DU50.2549.75

6060DU60.2559.75

6070DU70.2569.75

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

37

8Standard Products

6530DU

65 70

2.5052.460

30.2529.75

f7

64.97064.940

H7

70.03070.000

65.11064.990

0.1700.020

6550DU50.2549.75

6570DU70.2569.75

7040DU

70 75

40.2539.75

69.97069.940

75.03075.000

70.11069.990

7050DU50.2549.75

7070DU70.2569.75

7560DU75 80

60.2559.75 74.970

74.94080.03080.000

75.11074.990

7580DU80.2579.75

8040DU

80 85

2.4902.440

40.5039.50

h8

80.00079.946

85.03585.000

80.15580.020

0.2090.020

8060DU60.5059.50

8080DU80.5079.50

80100DU100.5099.50

8530DU

85 90

30.5029.50

85.00084.946

90.03590.000

85.15585.020

8560DU60.5059.50

85100DU100.5099.50

9060DU90 95

60.5059.50 90.000

89.94695.03595.000

90.15590.020

90100DU100.5099.50

9560DU95 100

60.5059.50 95.000

94.946100.035100.000

95.15595.020

95100DU100.5099.50

10050DU

100 105

50.5049.50

100.00099.946

105.035105.000

100.155100.020

10060DU60.5059.50

100115DU115.50114.50

10560DU105 110

60.5059.50 105.000

104.946110.035110.000

105.155105.020

105115DU115.50114.50

11060DU110 115

60.5059.50 110.000

109.946115.035115.000

110.155110.020

110115DU115.50114.50

11550DU115 120

50.5049.50 115.000

114.946120.035120.000

115.155115.020

11570DU70.5069.50

12050DU

120 125

2.4652.415

50.5049.50

120.000119.946

125.040125.000

120.210120.070

0.2640.070

12060DU60.5059.50

120100DU100.5099.50

125100DU 125 130100.5099.50

125.000124.937

130.040130.000

125.210125.070

0.2730.070

13060DU130 135

60.5059.50 130.000

129.937135.040135.000

130.210130.070

130100DU100.5099.50

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

38

8 Standard Products

8.2 DU Flanged Bushes

All dimensions in mm

13560DU135 140

2.4652.415

60.5059.50

h8

135.000134.937

H7

140.040140.000

135.210135.070

0.2730.070

13580DU80.5079.50

14060DU140 145

60.5059.50 140.000

139.937145.040145.000

140.210140.070

140100DU100.5099.50

15060DU

150 155

60.5059.50

150.000149.937

155.040155.000

150.210150.070

15080DU80.5079.50

150100DU100.5099.50

16080DU160 165

80.5079.50 160.000

159.937165.040165.000

160.210160.070

160100DU100.5099.50

180100DU 180 185

100.5099.50

180.000179.937

185.046185.000

180.216180.070

0.2790.070

200100DU 200 205200.000199.928

205.046205.000

200.216200.070

0.2880.070

210100DU 210 215210.000209.928

215.046215.000

210.216210.070

220100DU 220 225220.000219.928

225.046225.000

220.216220.070

250100DU 250 255250.000249.928

255.052255.000

250.222250.070

0.2940.070

300100DU 300 305300.000299.919

305.052305.000

300.222300.070

0.3030.070

Part No.Nominal Diameter

Wall thichnesss3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

ClearanceCD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

D

i(D

i,a)

Do

rmax

0.3

min

.

Dfl

Co

Ci

B

20° ±8°

Z

sfl

Do - Di

2

s 3

Detail Z

Split

Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

Part No.

Nominal Diameter

Wall thickness

s3

Flange thickness

sfl

Flange-∅Dfl

WidthB

Shaft-∅DJ [h6, f7]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

Clearance CD

Di Domaxmin.

max.min.

max.min.

max.min.

max.min.

max.min.

max.min.

max. min.

BB0304DU 3 4.50.7500.730

0.800.70

7.506.50 4.25

3.75h6

3.0002.994

H6

4.5084.500

3.0483.000

0.0540.000

BB0404DU 4 5.59.508.50

4.0003.992

5.5084.500

4.0484.000

0.0560.000

BB0505DU 5 71.0050.980

1.050.80

10.509.50

5.254.75

f74.9904.978

H77.0157.000

5.0554.990

0.0770.000

Outside Co and Inside Ci chamfers

a = Chamfer Co machined or rolled at the opinion of the manufacturer

b = Ci can be a radius or a chamfer in accordance with ISO 13715

Wall thickness Cos3

(a)Ci (b)

machined rolled

0.75 0.5 ±0.3 0.5 ±0.3 -0.1 to -0.4

1 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.5

1.5 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.7

Wall thickness Cos3

(a)Ci (b)

machined rolled

2 1.2 ± 0.4 1.0 ± 0.4 -0.1 to -0.7

2.5 1.8 ± 0.6 1.2 ± 0.4 -0.2 to -1.0

39

8Standard Products

BB0604DU6 8

1.0050.980

1.050.80

12.5011.50

4.253.75

f7

5.9905.978

H7

8.0158.000

6.0555.990

0.0770.000

BB0608DU8.257.75

BB0806DU

8 1015.5014.50

5.755.25

7.9877.972

10.01510.000

8.0557.990

0.0830.003

BB0808DU7.757.25

BB0810DU9.759.25

BB1007DU

10 1218.5017.50

7.256.75

9.9879.972

12.01812.000

10.0589.990

0.0860.003

BB1009DU9.258.75

BB1012DU12.2511.75

BB1017DU17.2516.75

BB1207DU

12 1420.5019.50

7.256.75

11.98411.966

14.01814.000

12.05811.990

0.0920.006

BB1209DU9.258.75

BB1212DU12.2511.75

BB1217DU17.2516.75

BB1412DU14 16

22.5021.50

12.2511.75 13.984

13.96616.01816.000

14.05813.990

BB1417DU17.2516.75

BB1509DU

15 1723.5022.50

9.258.75

14.98414.966

17.01817.000

15.05814.990

BB1512DU12.2511.75

BB1517DU17.2516.75

BB1612DU16 18

24.5023.50

12.2511.75 15.984

15.96618.01818.000

16.05815.990

BB1617DU17.2516.75

BB1812DU

18 2026.5025.50

12.2511.75

17.98417.966

20.02120.000

18.06117.990

0.0950.006

BB1817DU17.2516.75

BB1822DU22.2521.75

BB2012DU

20 23

1.5051.475

1.601.30

30.5029.50

11.7511.25

19.98019.959

23.02123.000

20.07119.990

0.1120.010

BB2017DU16.7516.25

BB2022DU21.7521.25

BB2512DU

25 2835.5034.50

11.7511.25

24.98024.959

28.02128.000

25.07124.990

BB2517DU16.7516.25

BB2522DU21.7521.25

BB3016DU30 34

2.0051.970

2.101.80

42.5041.50

16.2515.75 29.980

29.95934.02534.000

30.08529.990

0.1260.010

BB3026DU26.2525.75

BB3516DU35 39

47.5046.50

16.2515.75 34.975

34.95039.02539.000

35.08534.990

0.1350.015

BB3526DU26.2525.75

BB4016DU40 44

53.5052.50

16.2515.75 39.975

39.95044.02544.000

40.08539.990

BB4026DU26.2525.75

BB4516DU45 50

2.5052.460

2.602.30

58.5057.50

16.2515.75 44.975

44.95050.02550.000

45.10544.990

0.1550.015

BB4526DU26.2525.75

Part No.

Nominal Diameter

Wall thickness

s3

Flange thickness

sfl

Flange-∅Dfl

WidthB

Shaft-∅DJ [h6, f7]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

Clearance CD

Di Domaxmin.

max.min.

max.min.

max.min.

max.min.

max.min.

max.min.

max. min.

40

8 Standard Products

8.3 DU Flanged Washers

All dimensions in mm

Corrosion Protection: Washers will be supplied covered with a light coating of oil.

Tab (Lug) Form: Washers are supplied with this feature in an unformed state (Flat). This feature may be supplied in the formedstate only when requested by the customer.

r 1.25

Do

dp

4.8 -0.6

Di

Dfl

1.5 x 45°

r 1

8±1

5 ±0.1

30°

2.00 +0/-0.05

Part No.

Inside-∅Di

Outside-∅Do

Flange-∅Dfl

Location-∅dP

max.min.

max.min.

max.min.

max.min.

BS40DU40.740.2

75.074.5

44.00043.900

65.064.5

BS50DU51.551.0

85.084.5

55.00054.880

75.074.5

BS60DU61.561.0

95.094.5

65.00064.880

85.084.5

BS70DU71.571.0

110.0109.5

75.00074.880

100.099.5

BS80DU81.581.0

120.0119.5

85.00084.860

110.0109.5

BS90DU91.591.0

130.0129.5

95.00094.860

120.0119.5

BS100DU101.5101.0

140.0139.5

105.000104.860

130.0129.5

41

8Standard Products

8.4 DU Thrust Washer

All dimensions in mm

Ha

DisT

dP

Do

Do

dp

dD

Hd

[D1

0]

DJ

Part No.

Inside-∅Di

Outside-∅Do

Thickness sTDowel Hole Recess Depth

Ha∅dD PCD-∅ dP

min. max. max. min.max.min.

max.min.

max.min.

max.min.

WC08DU 10.00 10.25 20.00 19.75

1.501.45

No Hole No Hole

1.200.95

WC10DU 12.00 12.25 24.00 23.751.8751.625

18.1217.88

WC12DU 14.00 14.25 26.00 25.75

2.3752.125

20.1219.88

WC14DU 16.00 16.25 30.00 29.7522.1221.88

WC16DU 18.00 18.25 32.00 31.7525.1224.88

WC18DU 20.00 20.25 36.00 35.75

3.3753.125

28.1227.88

WC20DU 22.00 22.25 38.00 37.7530.1229.88

WC22DU 24.00 24.25 42.00 41.7533.1232.88

WC24DU 26.00 26.25 44.00 43.7535.1234.88

WC25DU 28.00 28.25 48.00 47.75

4.3754.125

38.1237.88

WC30DU 32.00 32.25 54.00 53.7543.1242.88

WC35DU 38.00 38.25 62.00 61.7550.1249.88

WC40DU 42.00 42.25 66.00 65.7554.1253.88

WC45DU 48.00 48.25 74.00 73.75

2.001.95

61.1260.88

1.701.45

WC50DU 52.00 52.25 78.00 77.7565.1264.88

WC60DU 62.00 62.25 90.00 89.7576.1275.88

42

8 Standard Products

8.5 DU-B Cylindrical Bushes

All dimensions in mm

0.3

min

.

s 3D

i(D

i,a)

Do

Co

Ci

B

Z

20° ±8°

Detail Z

Split

Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

Part No.

Nominal Diameter

Wall thickness s3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

ass. in H6/H7 housing

Clearance CD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

0203DUB2 3.5

0.7500.730

3.252.75

h6

2.0001.994

H6

3.5083.500

2.0482.000 0.054

0.0000205DUB

5.254.75

0306DUB 3 4.56.255.75

3.0002.994

4.5084.500

3.0483.000

0404DUB4 5.5

4.253.75 4.000

3.9925.5085.500

4.0484.000

0.0560.000

0406DUB6.255.75

0505DUB5 7

1.0050.980

5.254.75

f7

4.9904.978

H7

7.0157.000

5.0554.990

0.0770.000

0510DUB10.259.75

0606DUB

6 8

6.255.75

5.9905.978

8.0158.000

6.0555.990

0608DUB8.257.75

0610DUB10.259.75

0808DUB

8 10

8.257.75

7.9877.972

10.01510.000

8.0557.990

0.0830.003

0810DUB10.259.75

0812DUB12.2511.75

1010DUB10 12

10.259.75 9.987

9.97212.01812.000

10.0589.990

0.0860.003

1015DUB15.2514.75

1208DUB

12 14

8.257.75

11.98411.966

14.01814.000

12.05811.990

0.0920.006

1210DUB10.259.75

1212DUB12.2511.75

1215DUB15.2514.75

Outside Co and Inside Ci chamfers

a = Chamfer Co machined or rolled at the opinion of the manufacturer

b = Ci can be a radius or a chamfer in accordance with ISO 13715

Wall thickness Cos3

(a)Ci (b)

machined rolled

0.75 0.5 ±0.3 0.5 ±0.3 -0.1 to -0.4

1 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.5

1.5 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.7

Wall thickness Cos3

(a)Ci (b)

machined rolled

2 1.2 ± 0.4 1.0 ± 0.4 -0.1 to -0.7

2.5 1.8 ± 0.6 1.2 ± 0.4 -0.2 to -1.0

43

8Standard Products

1410DUB

14 16

1.0050.980

10.259.75

f7

13.98413.966

H7

16.01816.000

14.05813.990

0.0920.006

1415DUB15.2514.75

1420DUB20.2519.75

1515DUB15 17

15.2514.75 14.984

14.96617.01817.000

15.05814.990

1525DUB25.2524.75

1615DUB16 18

15.2514.75 15.984

15.96618.01818.000

16.05815.990

1625DUB25.2524.75

1820DUB18 20

20.2519.75 17.984

17.96620.02120.000

18.06117.990

0.0950.006

1825DUB25.2524.75

2015DUB

20 23

1.5051.475

15.2514.75

19.98019.959

23.02123.000

20.07119.990

0.1120.010

2020DUB20.2519.75

2025DUB25.2524.75

2030DUB30.2529.75

2215DUB

22 25

15.2514.75

21.98021.959

25.02125.000

22.07121.990

2220DUB20.2519.75

2225DUB25.2524.75

2515DUB25 28

15.2514.75 24.980

24.95928.02128.000

25.07124.990

2525DUB25.2524.75

2830DUB 28 32

2.0051.970

30.2529.75

27.98027.959

32.02532.000

28.08527.990

0.1260.010

3020DUB

30 34

20.2519.75

29.98029.959

34.02534.000

30.08529.990

3030DUB30.2529.75

3040DUB40.2539.75

3520DUB35 39

20.2519.75 34.975

34.95039.02539.000

35.08534.990

0.1350.015

3530DUB30.2529.75

4030DUB40 44

30.2529.75 39.975

39.95044.02544.000

40.08539.990

4050DUB50.2549.75

4530DUB45 50

2.5052.460

30.2529.75 44.975

44.95050.02550.000

45.10544.990

0.1550.015

4550DUB50.2549.75

5040DUB50 55

40.2539.75 49.975

49.95055.03055.000

50.11049.990

0.1600.015

5060DUB60.2559.75

5540DUB 55 6040.2539.75

54.97054.940

60.03060.000

55.11054.990

0.1700.020

6040DUB

60 65

40.2539.75

59.97059.940

65.03065.000

60.11059.990

6050DUB50.2549.75

6060DUB60.2559.75

6070DUB70.2569.75

6570DUB 65 7070.2569.75

64.97064.940

70.03070.000

65.11064.990

Part No.

Nominal Diameter

Wall thickness s3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

ass. in H6/H7 housing

Clearance CD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

44

8 Standard Products

8.6 DU-B Flanged Bushes

All dimensions in mm

7050DUB70 75

2.5052.460

50.2549.75

f7

69.97069.940

H7

75.03075.000

70.11069.990 0.170

0.0207070DUB

70.2569.75

7580DUB 75 8080.2579.75

74.97074.940

80.03080.000

75.11074.990

8060DUB80 85

2.4902.440

60.5059.50

h8

80.00079.946

85.03585.000

80.15580.020

0.2010.020

80100DUB100.5099.50

85100DUB 85 90100.5099.50

85.00084.946

90.03590.000

85.15585.020

0.2090.020

9060DUB90 95

60.5059.50 90.000

89.94695.03595.000

90.15590.020

90100DUB100.5099.50

95100DUB 95 100100.5099.50

95.00094.946

100.035100.000

95.15595.020

10060DUB100 105

60.5059.50 100.000

99.946105.035105.000

100.155100.020

100115DUB115.50114.50

105115DUB 105 110115.50114.50

105.000104.946

110.035110.000

105.155105.020

110115DUB 110 115115.50114.50

110.000109.946

115.035115.000

115.155115.020

Part No.

Nominal Diameter

Wall thickness s3

WidthB

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

ass. in H6/H7 housing

Clearance CD

Di Domax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

D

i(D

i,a)

Do

rmax

0.3

min

.

Dfl

Co

Ci

B

20° ±8°

Z

sfl

Do - Di

2

s 3

Detail Z

Split

Dimensions and Tolerances according to ISO 3547 and GSP-Specifications

Part No.

Nominal Diameter

Wall thickness

s3

Flange thickness

sfl

Flange-∅Dfl

Width B

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

Clearance CD

Di Domaxmin.

max.min.

max.min.

max.min.

max.min.

max.min.

max.min.

max. min.

BB0304DUB 3 4.50.7500.730

0.800.70

7.506.50 4.25

3.75h6

3.0002.994

H6

4.5084.500

3.0483.000

0.0540.000

BB0404DUB 4 5.59.508.50

4.0003.992

5.5084.500

4.0484.000

0.0560.000

BB0505DUB 5 71.0050.980

1.050.80

10.509.50

5.254.75

f74.9904.978

H77.0157.000

5.0554.990

0.0770.000

Outside Co and Inside Ci chamfers

a = Chamfer Co machined or rolled at the opinion of the manufacturer

b = Ci can be a radius or a chamfer in accordance with ISO 13715

Wall thickness Cos3

(a)Ci (b)

machined rolled

0.75 0.5 ±0.3 0.5 ±0.3 -0.1 to -0.4

1 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.5

1.5 0.6 ± 0.4 0.6 ± 0.4 -0.1 to -0.7

Wall thickness Cos3

(a)Ci (b)

machined rolled

2 1.2 ± 0.4 1.0 ± 0.4 -0.1 to -0.7

2.5 1.8 ± 0.6 1.2 ± 0.4 -0.2 to -1.0

45

8Standard Products

BB0604DUB6 8

1.0050.980

1.050.80

12.5011.50

4.253.75

f7

5.9905.978

H7

8.0158.000

6.0555.990

0.0770.000

BB0608DUB8.257.75

BB0806DUB8 10

15.5014.50

5.755.25 7.987

7.97210.01510.000

8.0557.990

0.0830.000

BB0810DUB9.759.25

BB1007DUB10 12

18.5017.50

7.256.75 9.987

9.97212.01812.000

10.0589.990

0.0860.003

BB1012DUB12.2511.75

BB1207DUB

12 1420.5019.50

7.256.75

11.98411.966

14.01814.000

12.05811.990

0.0920.006

BB1209DUB9.258.75

BB1212DUB12.2511.75

BB1417DUB 14 1622.5021.50

17.2516.75

13.98413.966

16.01816.000

14.05813.990

BB1512DUB15 17

23.5022.50

12.2511.75 14.984

14.96617.01817.000

15.05814.990

BB1517DUB17.2516.75

BB1612DUB16 18

24.5023.50

12.2511.75 15.984

15.96618.01818.000

16.05815.990

BB1617DUB17.2516.75

BB1812DUB18 20

26.5025.50

12.2511.75 17.984

17.96620.02120.000

18.06117.990

0.0950.006

BB1822DUB22.2521.75

BB2012DUB20 23

1.5051.475

1.601.30

30.5029.50

11.7511.25 19.980

19.95923.02123.000

20.07119.990

0.1120.010

BB2017DUB16.7516.25

BB2512DUB25 28

35.5034.50

11.7511.25 24.980

24.95928.02128.000

25.07124.990

BB2522DUB21.7521.25

BB3016DUB30 34

2.0051.970

2.101.80

42.5041.50

16.2515.75 29.980

29.95934.02534.000

30.08529.990

0.1260.010

BB3026DUB26.2525.75

BB3526DUB 35 3947.5046.50

26.2525.75

34.97534.950

39.02539.000

35.08534.990

0.1350.015

BB4026DUB 40 4453.5052.50

26.2525.75

39.97539.950

44.02544.000

40.08539.990

0.1350.015

BB4526DUB 45 502.5052.460

2.602.30

58.5057.50

26.2525.75

44.97544.950

50.02550.000

45.10544.990

0.1550.015

Part No.

Nominal Diameter

Wall thickness

s3

Flange thickness

sfl

Flange-∅Dfl

Width B

Shaft-∅DJ [h6, f7, h8]

Housing−∅DH [H6, H7]

Bush-∅Di,a

Ass. in H6/H7 housing

Clearance CD

Di Domaxmin.

max.min.

max.min.

max.min.

max.min.

max.min.

max.min.

max. min.

46

8 Standard Products

8.7 DU Cylindrical Bushes - Inch sizes

All dimensions in inch

Ci

Co

.01

2 m

in.

α

β

Di

Do

(Di,a

)s 3

B

ZDetail Z

Split

Part No.Nominal Diameter

Wall thicknesss3

WidthB

Shaft-∅DJ

Housing-∅DH

Bush-∅Di,a

Ass. in D H

housing

Clearance CD

Di Do Bmax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

02DU021/8

3/16

1/8

0.03150.0305

0.13500.1150 0.1243

0.12360.18780.1873

0.12680.1243

0.00320.0000

02DU03 3/16

0.19750.1775

025DU0255/32

7/32

5/32

0.166250.14265 0.1554

0.15470.21910.2186

0.15810.1556

0.00340.0002

025DU04 1/40.26000.2400

03DU03

3/161/4

3/160.19750.1775

0.18650.1858

0.25030.2497

0.18930.1867

0.00350.0002

03DU04 1/40.26000.2400

03DU06 3/80.38500.3650

04DU041/4

5/16

1/40.26000.2400 0.2490

0.24810.31280.3122

0.25180.2492

0.00370.0002

04DU06 3/80.38500.3650

05DU065/16

3/8

3/80.38500.3650 0.3115

0.31060.37530.3747

0.31430.3117

05DU08 1/20.51000.4900

06DU06

3/815/32

3/8

0.04710.0461

0.38500.3650

0.37400.3731

0.46910.4684

0.37690.3742

0.00380.0002

06DU08 1/20.51000.4900

06DU12 3/40.76000.7400

07DU087/16

17/32

1/20.51000.4900 0.4365

0.43550.53160.5309

0.43940.4367

0.00390.0002

07DU12 3/40.76000.7400

08DU06

1/219/32

3/80.38500.3650

0.49900.4980

0.59410.5934

0.50190.4992

0.00390.0002

08DU08 1/20.51000.4900

08DU10 5/80.63500.6150

08DU14 7/80.88500.8650

09DU089/16

21/32

1/20.51000.4900 0.5615

0.56050.65660.6559

0.56440.5617

09DU12 3/40.76000.7400

ID and OD chamfers

D C αi o C βi

1/8" - 5/16" 0.008" - 0.024" 30°-45° 0.004" - 0.012" 30°-45°

3/8" - 11/16" 0.020" - 0.040" 20°-30° 0.005" - 0.025" 40°-55°

3/4" - 7" 0.020" - 0.040" 15°-25° 0.005" - 0.025" 40°-50°

47

8Standard Products

10DU08

5/823/32

1/2

0.04710.0461

0.51000.4900

0.62400.6230

0.71920.7184

0.62700.6242 0.0040

0.0002

10DU10 5/80.63500.6150

10DU12 3/40.76000.7400

10DU147/8

0.88500.8650

11DU14 11/1625/32

0.88500.8650

0.68650.6855

0.78170.7809

0.68950.6867

12DU08

3/47/8

1/2

0.06270.0615

0.51000.4900

0.74910.7479

0.87550.8747

0.75250.7493

0.00460.0002

12DU12 3/40.76000.7400

12DU16 11.01000.9900

14DU12

7/8 1

3/40.76000.7400

0.87410.8729

1.00050.9997

0.87750.8743

14DU14 7/80.88500.8650

14DU16 11.01000.9900

16DU12

1 11 /8

3/40.76000.7400

0.99910.9979

1.12561.1246

1.00260.9992

0.00470.0001

16DU16 11.01000.9900

16DU24 11 /21.51001.4900

18DU1211 /8

91 /32

3/4

0.07840.0770

0.76000.7400 1.1238

1.12261.28181.2808

1.12781.1240

0.00520.0002

18DU16 11.01000.9900

20DU12

11 /4 113/32

3/40.76000.7400

1.24881.2472

1.40681.4058

1.25281.2490

0.00560.0002

20DU16 11.01000.9900

20DU20 11 /41.26001.2400

20DU28 31 /41.76001.7400

22DU16

31 /8 117/32

11.01000.9900

1.37381.3722

1.53181.5308

1.37781.3740

22DU22 31 /81.38501.3650

22DU28 31 /41.76001.7400

24DU16

11 /2 121/32

11.01000.9900

1.49881.4972

1.65681.6558

1.50281.4990

24DU20 11 /41.26001.2400

24DU24 11 /21.51001.4900

24DU32 22.01001.9900

26DU1651 /8 125/32

11.01000.9900 1.6238

1.62221.78181.7808

1.62781.6240

0.00560.0002

26DU24 11 /21.51001.4900

28DU16

31 /4 115/16

1

0.09410.0923

1.01000.9900

1.74871.7471

1.93811.9371

1.75351.7489

0.00640.0002

28DU24 11 /21.51001.4900

28DU28 31 /41.76001.7400

28DU32 22.01001.9900

Part No.Nominal Diameter

Wall thicknesss3

WidthB

Shaft-∅DJ

Housing-∅DH

Bush-∅Di,a

Ass. in D H

housing

Clearance CD

Di Do Bmax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

48

8 Standard Products

30DU16

71 /812 /16

1

0.09410.0923

1.01000.9900

1.87371.8721

2.06332.0621

1.87871.8739

0.00660.0002

30DU30 71 /81.88501.8650

30DU36 12 /42.26002.2400

32DU16

2 32 /16

11.01000.9900

1.99871.9969

2.18832.1871

2.00371.9989

0.00680.0002

32DU24 11 /21.51001.4900

32DU32 22.01001.9900

32DU40 12 /22.51002.4900

36DU32

12 /472 /16

2

0.09280.0902

2.01001.4900

2.25072.2489

2.43772.4365

2.25732.2509

0.00840.0002

36DU36 12 /42.26002.2400

36DU40 12 /22.51002.4900

36DU48 33.01002.9900

40DU32

12 /2 211/16

22.01001.9900

2.50112.4993

2.68812.6869

2.50772.5013

40DU40 12 /22.51002.4900

40DU48 33.01002.9900

40DU56 13 /23.51003.4900

44DU32

32 /4 215/16

22.01001.9900

2.75002.7482

2.93702.9358

2.75662.7502

44DU40 12 /22.51002.4900

44DU48 33.01002.9900

44DU56 13 /23.51003.4900

48DU32

3 33 /16

12 /22.51002.4900

3.00002.9982

3.18723.1858

3.00683.0002

0.00860.0002

48DU48 33.01002.9900

48DU60 33 /43.76003.7400

56DU40

13 /2 311/16

12 /22.51002.4900

3.50003.4978

3.68723.6858

3.50683.5002

0.00900.0002

56DU48 33.01002.9900

56DU60 33 /43.76003.7400

64DU48

4 34 /16

33.01002.9900

4.00003.9978

4.18724.1858

4.00684.0002

0.00900.0002

64DU60 33 /43.76003.7400

64DU76 34 /44.76004.7400

80DU485 35 /16

33.01002.9900 4.9986

4.99615.18605.1844

5.00564.9988

0.00950.0002

80DU60 33 /43.76003.7400

96DU486 36 /16

33.01002.9900 6.0000

5.99756.18746.1858

6.00706.0002

96DU60 33 /43.76003.7400

112DU60 7 37 /1633 /4

3.76003.7400

6.99546.9929

7.18307.1812

7.00266.9956

0.00970.0002

Part No.Nominal Diameter

Wall thicknesss3

WidthB

Shaft-∅DJ

Housing-∅DH

Bush-∅Di,a

Ass. in D H

housing

Clearance CD

Di Do Bmax.min.

max.min.

max.min.

max.min.

max.min.

max.min.

49

8Standard Products

8.8 DU Thrust Washers - Inch sizes

All dimensions in inch

dP

Di

Do

sT

Ha

Do

dp

dD

Hd

[D1

0]

DJ

Part No.

Inside-∅Di

Outside-∅Do

Thickness sT

Dowel Hole Recess DepthHa∅dD PCD-∅dP

max. min. max. min.max.min.

max.min.

max.min.

max.min.

DU06 0.510 0.500 0.875 0.865

0.0630.061

0.0770.067

0.6920.682

0.0500.040

DU07 0.572 0.562 1.000 0.9900.7860.776

DU08 0.635 0.625 1.125 1.115

0.1090.099

0.8800.870

DU09 0.697 0.687 1.187 1.1770.9420.932

DU10 0.760 0.750 1.250 1.2401.0050.995

DU11 0.822 0.812 1.375 1.3651.0991.089

DU12 0.885 0.875 1.500 1.4900.1400.130

1.1921.182

DU14 1.010 1.000 1.750 1.7401.3801.370

DU16 1.135 1.125 2.000 1.990

0.1710.161

1.5671.557

DU18 1.260 1.250 2.125 2.1151.6921.682

DU20 1.385 1.375 2.250 2.2401.8171.807

DU22 1.510 1.500 2.500 2.490

0.2020.192

2.0051.995

DU24 1.635 1.625 2.625 2.6152.1302.120

DU26 1.760 1.750 2.750 2.7402.2552.245

DU28 2.010 2.000 3.000 2.990

0.0930.091

2.5052.495

0.0800.070

DU30 2.135 2.125 3.125 3.1152.6302.620

DU32 2.260 2.250 3.250 3.2402.7552.745

50

8 Standard Products

8.9 DU Strip

All dimensions in mm

8.10DU-B Strip

All dimensions in mm

8.11 DU Strip - Inch sizes

DU Strip Inch sizes are available as Non-Standard products, on request.

ss

Wu m

in

L

W

Part No.Length L

Total Width W Usable Width WU min

Thickness sS

max.min.

max.min.

S07190DU

503500

200 190

0.740.70

S10190DU1.010.97

S15240DU

254 240

1.521.48

S20240DU2.001.96

S25240DU2.502.46

S30240DU3.063.02

Part No.Length L

Total Width W Usable Width WU min

Thickness sS

max.min.

max.min.

S07085DUB

503500

95 850.740.70

S10180DUB

193 180

1.010.97

S15180DUB1.521.48

S20180DUB2.001.96

S25180DUB2.502.46

51

9Test Methods

9 Test Methods

9.1 Measurement of Wrapped Bushes

It is not possible to accurately measure the external and inter-nal diameters of a wrapped bush in the free condition. In itsfree state a wrapped bush will not be perfectly cylindrical andthe butt joint may be open. When correctly installed in a hou-sing the butt joint will be tightly closed and the bush will con-form to the housing.

For this reason the external diameter and internal diameter ofa wrapped bush can only be checked with special gauges andtest equipment.

The checking methods are defined in ISO 3547 Parts 1 to 7.

Test A of ISO 3547 Part 2

Checking the external diameter in a test machine withchecking blocks and adjusting mandrel.

Fig. 34: Test A, Data for drawing

Table 14: Test A of ISO 3547 Part 2

Test B (alternatively to Test A)

Check external diameter with GO and NOGO ring gauges.

Test C

Checking the internal diameter of a bush pressed into a ringgauge, which nominal diameter corresponds to the dimensionspecified in table 6 of ISO 3547 Part 2 (Example Di = 20 mm).

Fig. 35: Test C, Data for drawing

Measurement of Wall Thickness (alternatively to Test C)

The wall thickness is measured at one, two or three positionsaxially according to the bearing dimensions.

Fig. 36: Measurement position Table 15: Measurement position

Test D

Check external diameter by precision measuring tape.

Checking block

Split

dch,1

Fch

z

Test A of ISO 3547 Part 2 on 2015DU

Checking block and setting mandrel dch,1 23.062 mm

Test force Fch 4500 N

Limits for ∆z 0 and -0.065 mm

Bush Outside diameter Do 23.035 to 23.075 mm

20.061

20.001

Bush inserted in ring gauge ∅ 23.011 mm

A

A

∅0.050

X Xmeasurement position

BB [mm] X [mm]

measurement position

≤15 B/2 1

>15 ≤50 4 2

>50 ≤90 6 and B/2 3

>90 8 and B/2 3

52

9 Test Methods

Your notes:

Formula Symbols and Designations

Formula

SymbolUnit Designation

A mm² Surface Area of DU bearing

AM mm² Surface Area of mating surface in con-tact with DU bearing (slideway)

aB - Bearing size factor

aC - Application factor for bore burnishing or

machining

aE - High load factor

aE1 - Specific load factor (slideways)

aE2 - Speed, temperature and material factor (slideways)

aE3 - Relative contact area factor (slideways)

aL - Life correction constant

aM - Mating surface material factor

aT - Temperature application factor

B mm Nominal bush width

C 1/min Dynamic load frequency

CD mm Installed diametral clearance

Ci mm ID chamfer length

Co mm OD chamfer length

CT - Total number of dynamic load cycles

DC mm Diameter of burnishing tool

Dfl mm Nominal bush flange OD

DH mm Housing Diameter

Di mm Nominal bush and thrust washer ID

Di,a mm Bush ID when assembled in housing

DJ mm Shaft diameter

DNth nvt Max. thermal neutron dose

Do mm Nominal bush and thrust washer OD

Dγ Gy Max. Gamma radiation dose

dch,1 mm Checking block diameter

dD mm Dowel hole diameter

dL mm Oil hole diameter

dP mm Pitch circle diameter for dowel hole

F N Bearing load

Fch N Test force

Fi N Insertion force

f - friction

Ha mm Depth of Housing Recess

(e.g. for thrust washers)

Hd mm Diameter of Housing Recess

(for thrust washers)

L mm Strip length

LH h Bearing service life

LS mm Length of stroke (slideway)

N 1/min Rotational speed

Nosz 1/min Oscillating movement frequency

p N/mm² Specific load

plim N/mm² Specific load limit

psta,max N/mm² Maximum static load

pdyn,max N/mm² Maximum dynamic load

Q - Permissible number of cycles

Ra mm Surface roughness (DIN 4768, ISO/DIN 4287/1)

ROB Ω Electrical resistance

s3 mm Bush wall thickness

sfl mm Flange thickness

sS mm Strip thickness

sT mm Thrust washer thickness

T °C Temperature

Tamb °C Ambient temperature

Tmax °C Maximum temperature

Tmin °C Minimum temperature

U m/s Sliding speed

W mm Strip width

WU min mm Minimum usable strip width

ZT - Total number of cycles

α1 1/106K Coefficient of linear thermal expansion

parallel to surface

α2 1/106K Coefficient of linear thermal expansion normal to surface

σc N/mm² Compressive Yield strength

λ W/mK Thermal conductivity

ϕ ° Angular displacement

η Ns/mm² Dynamic Viscosity

FormulaSymbol

Unit Designation

53

54

©2016 GGB. All rights reserved.

www.ggbearings.com

Product Information

GGB gives an assurance that the products described in this document

have no manufacturing errors or material deficiencies.

The details set out in this document are registered to assist in assessingthe material's suitability for the intended use. They have been developed

from our own investigations as well as from generally accessible publi-

cations. They do not represent any assurance for the properties them-selves.

Unless expressly declared in writing, GGB gives no warranty that the

products described are suited to any particular purpose or specific ope-

rating circumstances. GGB accepts no liability for any losses, damagesor costs however they may arise through direct or indirect use of these

products.

GGB’s sales and delivery terms and conditions, included as an integral

part of quotations, stock and price lists, apply absolutely to all businessconducted by GGB. Copies can be made available on request.

Products are subject to continual development. GGB retains the right to

make specification amendments or improvements to the technical data

without prior announcement.

Edition 2016 (This edition replaces earlier editions which hereby lose

their validity).

Declaration on lead contents of GGB products/compliance with EU law

Since July 1, 2006 it has been prohibited under Directive 2002/95/EC

(restriction of the use of certain hazardous substances in electrical and

electronic equipment; ROHS Directive) to put products on the marketthat contain lead, mercury, cadmium, hexavalent chromium, polybromi-

nated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).

Certain applications listed in the annex to the ROHS Directive areexempted. A maximum concentration value of 0.01% by weight and per

homogeneous material, for cadmium and of 0.1% by weight and per

homogeneous material, for lead, mercury, hexavalent chromium, PBBand PBDE shall be tolerated.

According to Directive 2000/53/EC on end-of life vehicles, since July 1,

2003 it has been prohibited to put on the market materials and compon-

ents that contain lead, mercury, cadmium or hexavalent chromium. Dueto an exceptional provision, lead-containing bearing shells and bushes

could still be put on the market up until July 1, 2008. This general excep-

tion expired on July 1, 2008. A maximum concentration value of up to0.1% by weight and per homogeneous material, for lead, hexavalent

chromium and mercury shall be tolerated.

All products of GGB, with the exception of DU, DU-B, SY and SP

satisfy these requirements of Directives 2002/95/EC (ROHS Direc-tive) and 2000/53/EC (End-of-life Vehicle Directive).

All products manufactured by GGB are also compliant with REACH

Regulation (EC) No. 1 907/2006 of December 18, 2006.

Health Hazard - Warning

There are two separate aspects of health hazard which could arise from

certain usage of DU materials.

Fabrication

At temperatures up to 250 °C the polytetrafluroethylene (PTFE) present in the lining material is completely inert so that even on the rare occasi-

ons in which DU bushes are drilled, or sized, after assembly there is no

danger in boring or burnishing.

At higher temperatures however, small quantities of toxic fumes can be produced and the direct inhalation of these can cause an influenza type

of illness which may not appear for some hours but which subsides wit-

hout after-effects in 24-48 hours.

Such fumes can arise from PTFE particles picked up on the end of a cigarette. Therefore smoking should be prohibited where DU is being

machined.

®DU and DU-B are trademarks of GGB.

Visit us on the internet:

www.ggbearings.com

55

GGB Heilbronn GmbH

Postfach 18 62 D-74008 Heilbronn•

Ochsenbrunnenstraße 9 D-74078 Heilbronn•

Industriegebiet Böllinger Höfe

Tel. +49 7131 269 0 Fax +49 7131 269 500•

eMail: [email protected] www.ggbearings.de•

HB103ENG11-15HN