GFDM

43
Designing A Possible 5G PHY With GFDM Gerhard P. Fettweis Ivan Gaspar, Luciano Mendes, Maximilian Matthé, Nicola Michailow, Andreas Festag, Rohit Datta, Martin Danneberg, Dan Zhang coordinator serial entrepreneur 1

description

advanced to OFDM, 5G

Transcript of GFDM

  • Designing A Possible 5G PHY With GFDM

    Gerhard P. Fettweis Ivan Gaspar, Luciano Mendes, Maximilian Matth, Nicola Michailow, Andreas Festag, Rohit Datta, Martin Danneberg, Dan Zhang coordinator

    serial entrepreneur

    1

  • Wireless >2020 Outlook

    100Tb/s

    10 Tb/s

    1 Tb/s

    100Gb/s

    10Gb/s

    1Gb/s

    100Mb/s

    10Mb/s

    1Mb/s

    100Kb/s

    10Kb/s 1995 2000 2005 2010 2015 2020 2025 2030

    ? 802.11ac/ad 802.11n 802.11ag

    802.11

    802.11b

    GSM GPRS

    HSPA

    HSDPA LTE

    3G R99 / EDGE

    LTE Advanced

    WLAN (10m)

    Cellular (100m)

  • The Tactile Internet And Its Millisecond

  • The Tactile Internet

    Gerhard Fettweis Slide 5 12/8/2014 http://ostsee-spezial.de/?p=148

    Moving from 25ms RTT 1ms tomorrow

  • 10

    Reinventing Latin Classes

    MPI Saarbrcken

  • 1ms examples of todays cars: ESC, ABS

    Tomorrow: platooned ESC & ABS

    Platooning

    13

  • Revolution Ahead: The Tactile Internet

    Gerhard Fettweis

    4G:

    Content

    Communications

    Health & Care Traffic & Mobility Sports & Gym Edutainment Manufacturing Smart Grid

    5G:

    Steering & Control

    Communications

  • 5G Massive Requirements

    18

    Sta

    te o

    f th

    e ar

    t

    Massive safety and security

    5G

    The Tactile

    Internet

    > 10Gbit/s per user < 1ms RTT > 10k sensors per cell < 108 outage

    Massive low latency

    Massive throughput

    Massive sensing

    Massive resilience

    Massive fractal heterogenity

    < 1012 security 10x10 heterogeneity

  • 19

    5G L A B GERMANY

    5G Research on four Tracks

    Mobile edge cloud Silicon systems

    Tactile Internet applications Wireless & Network

  • Members on Tracks

    20

    Wireless track

    Silicon systems track

    Mobile edge cloud track

    Tactile Internet application track

    Gerhard Fettweis

    Eduard Jorswieck

    Frank Ellinger

    Christel Baier

    Rene Schffny

    Frank Fitzek

    Leon Urbas

    Christof Fetzer Uwe

    Amann

    Wolfgang Lehner

    Ercan Altinsoy Thorsten Strufe

    Klaus Janschek

    Dirk Plettemeier

    Wolfgang Nagel

    Hermann Hrtig Michael Schrter Silvia Santini

    Team of 500+ Researchers !!!

  • Relevant Startups Generated by Team

    21

    Wireless track Silicon systems track

    Mobile edge cloud track

    Tactile Internet application track

    freedelity

  • Inhalt f ast a ctuators s ensors & t ransceivers

    fast value chain

    sales & service

    systems, networks, software circuits

    components semi-

    conductors

    fast network of

    states

    Berlin Brandenburg Mecklenburg Vorpommern

    Saxony-Anhalt Saxony

    Thuringia Baden-Wrtt. Lower Saxony

    Bavaria

    Coordinators: Frank Ellinger, (Gerhard Fettweis), TU Dresden Starting 2014, appox. 75M project size, 60+ partners

  • MODULATION FOR CM-WAVES

    Gerhard Fettweis

  • 1ms Impact: 100s PHY Latency

    Hosted Computing (decider)

    Network Config.

    Manager (SON)

    Terminal Air Interface

    Base Station & Compute = 0.3 ms

    = 0.2 ms = 0.5 ms

    Latency Goals:

    Software Ecosystem

    1ms

    Sensor Embedded Computing Receiver 100 s

    Actuator Embedded Computing Receiver Trans mitter

    100 s

    Trans mitter

  • packet latency

    100s

    Requirements / Challenges

    27

    t async. operation

    f

    scalable bandwidth

    f

    fragmented spectrum

    f

    LTE clocking scheme

    New Air Interface

  • The Subcarrier Time/Frequency Dilemma

    30

    frequency

    time 1/R

    R

  • GFDM Signal Properties

    Multi-carrier scheme

    Block based approach

    Circular signal structure (time and frequency)

    Gerhard P. Fetweis Slide 31

  • GFDM Signal Properties

    Multi-carrier scheme

    Block based approach

    Circular signal structure (time and frequency)

    Pulse shaped sub-carriers

    Overlapping sub-carriers

    Gerhard P. Fettweis Slide 32

  • Multi-Carrier Revisited OFDM GFDM SC-FDM

    33

    N time samples

    N su

    bcar

    riers

    N symbols

    M sub-symbols

    N fr

    eque

    ncy

    sam

    ples

    K s

    ubca

    rrie

    rs

    M fr

    eq. s

    ampl

    es

    K time samples

    N=KM

  • Realtime 5G Research Testbed: GFDM With -45dB to -65dB Notches !

    Research on 5G Slide 34

  • LTE COMPATIBILITY

    Gerhard Fettweis

  • The LTE Frame Structure

    Gerhard Fettweis 37

    LTE is clearly one order of magnitude above the target latency. The 5G goal: Reduce the 1 ms based frame structure to something in the order of 50-100 s.

    frame n-1 frame n-1 frame n-1 ......

    subframe 0 subframe 9...

    slot 0 slot 1

    symbol 0CP symbol 1CP symbol 6

    CP...symbol 2

    CP

    10 ms

    1 ms

    0.5 ms

    66.7 s

  • Problems with OFDM

    Gerhard Fettweis 38

    Every symbol requires a cyclic prefix, which depends on the channel. a) It reduces the spectral efficiency. b) It prevents reducing the latency by shortening the symbols.

    OFDM requires frequency flat subcarriers Subcarrier bandwidth coupled to symbol duration. Reducing symbol duration imposes constraint on frequency selectivity of the channel.

    coherence bandwidth

  • Proposed Frame Structure

    Gerhard Fettweis 39

    Step 1: Add a single prefix for entire frame. Step 2: Reduce the frame duration to 66.7 s.

    Introducing subsymbols allows to decouple the frequency resolution from the bandwidth of the subcarriers. Coherence bandwidth can be the same as in OFDM (given same sampling frequency).

  • One LTE Symbol Can Host One 5G GFDM Packet

    41

    LTE Symbol (e.g. 4 PRBs) GFDM TTI (e.g. 7 Subsymbols)

  • TTI Framing Opportunity 100s

    42

    LTE 1ms OFDM TTI (here with 4 PRBs)

    5G 70s GFDM TTI (here with 7 sub-symbols per symbol)

  • OQAM in GFDM Analyzing the structure of interference for a circular RC pulse

  • OQAM in GFDM

    I & Q selecto

    r +

    complex symbols I & Q

    selector

    complex symbols

    Modulator

    modulated samples

    Demodulator

    GFDM Demodulat

    or 1

    GFDM Demodulat

    or 2

    GFDM Modulato

    r 1

    GFDM Modulato

    r 2

  • GFDM A MODULATION FRAMEWORK

    47

  • Flexible Spacing Between Subcarriers & Subsymbols tim

    e fr

    eque

    ncy

    FMT SE-FDM

    FTN

    default

  • GFDM for Virtualization of 5G Waveform Candidates

    The design space of GFDM can be explored to obtain other waveforms

    classical waveforms filterbank based waveforms

    non-orthogonal multicarrier

  • MTC? Machine Type Communications (M2M SIG)

    Gerhard Fettweis

  • Asynchronous transmission

    Time offsets

    In M2M, time shifts between the users cannot be controlled

    Users cannot be orthogonal non-orthogonal signaling inevitable Increased protection can be achieved by re-allocating the CP

    Frequency offsets

    Should be handled by a subcarrier filter

    with low spectral leakage

    1 SC guard between users should be sufficient

    Gerhard Fettweis 52

    0 2 4 6 8-100

    -80

    -60

    -40

    -20

    0

    subcarrier

    |G(f)

    |2

    sincRC, a=0.5

  • TTI Framing Opportunity M2M Sensors

    53

    LTE 1ms OFDM TTI (here with 4 PRBs)

    5G 1ms GFDM TTI 25Bytes generated by a modified SC-FDMA HW!

  • CONCLUSIONS

    Gerhard Fettweis

  • Requirements / Challenges for 5G PHY

    56

    scalable bandwidth

    f

    fragmented spectrum need deep notches

    f

    packet latency

    100s

    Multi Carrier

    Subcarrier Filters

    Compact Packet

    New Air Interface:

    GFDM

    Generalized Frequency Division

    Multiplexing

  • GFDM a Prime Candidate for 5G Flexibility/Parameterization Spectrum Engineering OFDM Compatibility Evolution of OFDM and SC-FDE - Synchronization / Equalization / Clocking Fully MIMO capable ( OFDM and SC-FDE are special cases)

    TEAM EFFORT BY Ivan Gaspar, Luciano Mendes, Maximilian Matth, Nicola Michailow, Andreas Festag, Rohit Datta, Martin Danneberg, Dan Zhang

    57

  • 5G Realtime Lab Sponsored by

    Vodafone Chair Slide 58

    Realtime GFDM With -45dB to -65dB Notches

  • 2G 1992 Voice Messages

    3G 2002 + Data + Positioning

    4G 2012 + Video everything + 3D Graphics

    5G 2022 + Tactile Internet + massive M2M + Tb/s + carrier grade + safe & secure

    Cellular Roadmap of USPs

    Gerhard Fettweis 59

    GFDM

  • Thank you

    60

    5G Lab Germany

    Coordinators: Gerhard Fettweis dresden5GLab.org [email protected] Frank Fitzek

  • Thank You

    or 20 years of continued support !

    Gerhard Fettweis

  • Related Publications

    For our publications on GFDM:

    Overview paper, IEEE Trans. Commun.: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6871292

    More than 60 papers: http://scholar.google.com/scholar?start=10&q=GFDM+fettweis&hl=en&as_sdt=0,5

    5G and TACTILE INTERNET:

    Gerhard Fettweis, and Siavash Alamouti. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony

    Communications Magazine, IEEE 52.2 (2014): 140-145.

    Gerhard Fettweis "The Tactile Internet: Applications and Challenges."

    Vehicular Technology Magazine, IEEE 9.1 (2014): 64-70.

    Gerhard Fettweis et al., Tactile Internet, ITU Technology Watch, paper, 2014 http://www.itu.int/en/ITU-T/techwatch/Pages/tactile-internet.aspx

    Fettweis et al. Positionspapier Das Taktile Internet, VDE ITG

    http://www.vde.com/de/fg/ITG/Seiten/PosiPapTaktilesInternet.aspx

    Alcatel-Lucent Foundation, Positionspaper: Das Taktile Internet

    http://www.stiftungaktuell.de/wp-content/uploads/2014/07/Positionspapier_Das_Taktile_Internet_final.pdf

    62

    Designing A Possible 5G PHY With GFDMWireless >2020 OutlookThe Tactile InternetAnd Its MillisecondThe Tactile InternetReinventing Latin ClassesPlatooning Foliennummer 14Revolution Ahead: The Tactile Internet5G Massive RequirementsFoliennummer 19Members on TracksRelevant Startups Generated by TeamFoliennummer 22Modulation for cm-Waves1ms Impact: 100s PHY LatencyRequirements / ChallengesThe Subcarrier Time/Frequency DilemmaGFDM Signal PropertiesGFDM Signal PropertiesMulti-Carrier RevisitedOFDM GFDM SC-FDMRealtime 5G Research Testbed: GFDM With -45dB to -65dB Notches ! LTE CompatibilityThe LTE Frame StructureProblems with OFDMProposed Frame StructureOne LTE Symbol Can Host One 5G GFDM PacketTTI Framing Opportunity 100sOQAM in GFDMOQAM in GFDMGFDM A Modulation FrameworkFlexible Spacing Between Subcarriers & SubsymbolsGFDM for Virtualization of 5G Waveform CandidatesMTC?Asynchronous transmissionTTI Framing Opportunity M2M SensorsConclusionsRequirements / Challenges for 5G PHYGFDM a Prime Candidate for 5G 5G Realtime Lab Sponsored by Cellular Roadmap of USPsThank youFoliennummer 61Related Publications