Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse...

37
Sparse approximation by modified Prony method Gerlind Plonka and Vlada Pototskaia Institut f¨ ur Numerische und Angewandte Mathematik Georg-August-Universit¨ at G¨ ottingen Alba di Canazei, September 19, 2016 Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 1 / 29

Transcript of Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse...

Page 1: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Sparse approximation by modified Prony method

Gerlind Plonka and Vlada Pototskaia

Institut fur Numerische und Angewandte MathematikGeorg-August-Universitat Gottingen

Alba di Canazei, September 19, 2016

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 1 / 29

Page 2: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 2 / 29

Page 3: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 3 / 29

Page 4: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Sparse approximation of exponential sums

Consider a function of the form

f(x) =

N∑j=1

ajzxj with |zj | < 1,

where aj , zj ∈ C.

Goal: Find a function

f(x) =n∑j=1

aj zxj with |zj | < 1,

such that n < N and‖f − f‖ ≤ ε

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 4 / 29

Page 5: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Discrete sparse approximation problem

Consider a sequence of samples f := (fk)∞k=0 given by

fk := f(k) =

N∑j=1

ajzkj with |zj | < 1,

where aj , zj ∈ C.

Goal: Find a sequence f := (fk)∞k=0 of the form

fk =n∑j=1

aj zkj with |zj | < 1,

such that n < N and‖f − f‖`2 ≤ ε

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 5 / 29

Page 6: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Possible applications

We consider here a structured low-rank approximation problem for modelreduction.

Problem: Low-rank approximation using the SVD destroys the Hankelstructure. [Markovsky, 2008]

Applications

Approximation of special functions by exponential sums, e.g. Besselfunctions, or x−1/2 to avoid quadrature methods for Schrodingerequations. [Beylkin, Monzon, 2005], [Hackbusch, 2005]

Signal compression by sparse representation of the (discrete) Fouriertransform.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 6 / 29

Page 7: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Our approach

(1) Given a sufficiently large number of samples fk, reconstruct zj and ajsuch that

fk =

N∑j=1

ajzkj with |zj | < 1

using a Prony-like method.

(2) Given the representation (1), find zj and aj such that for

fk =n∑j=1

aj zkj with |zj | < 1

and n < N we have‖f − f‖`2 ≤ ε

using the AAK Theorem [Adamjan, Arov, Krein], (1971).

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 7 / 29

Page 8: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Our approach

(1) Given a sufficiently large number of samples fk, reconstruct zj and ajsuch that

fk =

N∑j=1

ajzkj with |zj | < 1

using a Prony-like method.

(2) Given the representation (1), find zj and aj such that for

fk =

n∑j=1

aj zkj with |zj | < 1

and n < N we have‖f − f‖`2 ≤ ε

using the AAK Theorem [Adamjan, Arov, Krein], (1971).

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 7 / 29

Page 9: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 8 / 29

Page 10: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Classical Prony’s Method (1795)

Assume

f(k) =

N∑j=1

ajzkj with zj := eTj

Given: N and fk := f(k) for k = 0, . . . , 2N − 1

Wanted: zj ∈ C , aj ∈ C

Consider the Prony polynomial

P (x) :=

N∏j=1

(x− zj) =

N∑k=0

pkxk, with pN = 1.

We have for l = 0, . . . , N − 1

N∑k=0

pkfl+k =

N∑k=0

pk

N∑j=1

ajz(l+k)j =

N∑j=1

ajzlj

N∑k=0

pkzkj = 0

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 9 / 29

Page 11: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Classical Prony’s Method (1795)

Assume

f(k) =

N∑j=1

ajzkj with zj := eTj

Given: N and fk := f(k) for k = 0, . . . , 2N − 1

Wanted: zj ∈ C , aj ∈ CConsider the Prony polynomial

P (x) :=

N∏j=1

(x− zj) =

N∑k=0

pkxk, with pN = 1.

We have for l = 0, . . . , N − 1

N∑k=0

pkfl+k =

N∑k=0

pk

N∑j=1

ajz(l+k)j =

N∑j=1

ajzlj

N∑k=0

pkzkj = 0

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 9 / 29

Page 12: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Classical Prony’s Method (1795)

Assume

f(k) =

N∑j=1

ajzkj with zj := eTj

Given: N and fk := f(k) for k = 0, . . . , 2N − 1

Wanted: zj ∈ C , aj ∈ CConsider the Prony polynomial

P (x) :=

N∏j=1

(x− zj) =

N∑k=0

pkxk, with pN = 1.

We have for l = 0, . . . , N − 1

N∑k=0

pkfl+k =

N∑k=0

pk

N∑j=1

ajz(l+k)j =

N∑j=1

ajzlj

N∑k=0

pkzkj = 0

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 9 / 29

Page 13: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Classical Prony method (1795)

Since pN = 1, the last equation can be written as

N∑k=0

pkfl+k =

N−1∑k=0

pkfl+k + fl+N = 0 ⇔N−1∑k=0

pkfl+k = −fl+N

and defines a homogeneous difference equation of order N .

Matrix-vector-representation:f0 f1 · · · fN−1

f1 f2 · · · fN...

.... . .

...fN−1 fN · · · f2N−2

p0

p1...

pN−1

= −

fNfN+1

...f2N−1

.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 10 / 29

Page 14: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Literature

[Prony] (1795) Reconstruction of a difference equation

[Schmidt] (1979) MUSIC (Multiple Signal Classification)

[Roy,Kailath] (1989) ESPRIT

(Estimation of signal parameters via

rotational invariance techniques)

[Hua,Sakar] (1990) Matrix-Pencil method

[Stoica,Moses] (2000) Annihilating filters

[Potts,Tasche] (2010,2011) Approximate Prony method

[Kunis et al.], [Sauer] (2015) Multivariate Prony’s method

Golub, Milanfar, Varah (’99); Vetterli, Marziliano, Blu (’02);

Maravic, Vetterli (’04); Elad, Milanfar, Golub (’04);

Beylkin, Monzon (’05,’10); Batenkov, Yomdin (’12,’13);

Filbir et al. (’12); Potts, Tasche (’11,’12,’13);

Plonka, Wischerhoff (’13, ’16); Peter, Plonka (’13);

Cuyt, Lee, Tsai (’16); Diederichs, Iske (’16) ....

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 11 / 29

Page 15: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 12 / 29

Page 16: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

AAK Theorem for Samples of Exponential Sums

Consider the sequence f := (fk)∞k=0 given by samples

fk = f(k) =N∑j=1

ajzkj with 0 < |zj| < 1

and let D := {z ∈ C : 0 < |z| < 1}.

We define the infinite Hankel matrix

Γf :=

f0 f1 f2 · · ·f1 f2 f3 · · ·f2 f3 f4 · · ·...

......

. . .

= (fk+j)∞k,j=0

with respect to f .

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 13 / 29

Page 17: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

AAK theorem for samples of exponential sums

Then Γf has the following properties:

Γf defines a compact operator on `2 = `2(N).

Γf has finite rank N .

The singular values of Γf are of the form

σ0 ≥ σ1 ≥ . . . ≥ σN−1 > σN = . . . = σ∞ = 0.

[Young] (1988) An Introduction to Hilbert Space[Chui, Chen] (1992) Discrete H∞ optimization[Peller] (2000) Hankel Operators and Their Applications[Beylkin,Monzon] (2005) On approximation of functions by exponential sums[Andersson et al.] (2011) Sparse approximation of functions using sums

of exponentials and AAK theory

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 14 / 29

Page 18: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

AAK theorem for samples of exponential sums

Then Γf has the following properties:

Γf defines a compact operator on `2 = `2(N).

Γf has finite rank N .

The singular values of Γf are of the form

σ0 ≥ σ1 ≥ . . . ≥ σN−1 > σN = . . . = σ∞ = 0.

[Young] (1988) An Introduction to Hilbert Space[Chui, Chen] (1992) Discrete H∞ optimization[Peller] (2000) Hankel Operators and Their Applications[Beylkin,Monzon] (2005) On approximation of functions by exponential sums[Andersson et al.] (2011) Sparse approximation of functions using sums

of exponentials and AAK theory

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 14 / 29

Page 19: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

The AAK theorem (Adamjan, Arov, Krein, 1971)

Let f := (f(k))∞k=0 be given as before.Let (σn, un) be a fixed singular pair of Γf with σn /∈ {σk}k 6=n and σn 6= 0.

Then

Pun(x) :=

∞∑k=0

un(k)xk

has exactly n zeros z1, . . . , zn in D, repeated according to multiplicity.

If the zk are pairwise different, then there are a1, . . . , an ∈ C suchthat for

f = (fj)∞j=0 =

(n∑k=1

akzkj

)∞j=0

it holds that‖Γf − Γf‖`2→`2 = σn.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 15 / 29

Page 20: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

The AAK theorem (Adamjan, Arov, Krein, 1971)

Let f := (f(k))∞k=0 be given as before.Let (σn, un) be a fixed singular pair of Γf with σn /∈ {σk}k 6=n and σn 6= 0.

Then

Pun(x) :=

∞∑k=0

un(k)xk

has exactly n zeros z1, . . . , zn in D, repeated according to multiplicity.

If the zk are pairwise different, then there are a1, . . . , an ∈ C suchthat for

f = (fj)∞j=0 =

(n∑k=1

akzkj

)∞j=0

it holds that‖Γf − Γf‖`2→`2 = σn.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 15 / 29

Page 21: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

The AAK theorem

Let Γf be of rank N and the singular values be of the form

σ0 > σ1 > . . . > σN−1 > σN = . . . = σ∞ = 0.

zeros of

n σn Pun(x) in D f ‖Γf − Γf‖0 σ0 − 0 σ0

1 σ1 z1 fj = azj1 σ1

2 σ2 z1, z2 fj = a1zj1 + a2z

j2 σ2

3 σ3 z1, z2, z3 fj = a1zj1 + a2z

j2 + a3z

j3 σ3

......

......

...

N − 1 σN−1 z1, . . . , zN−1 fj =∑N−1

k=1 akzjk σN−1

Original sequence: fj =∑N

k=1 akzjk 0

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 16 / 29

Page 22: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

The AAK theorem

Let Γf be of rank N and the singular values be of the form

σ0 > σ1 > . . . > σN−1 > σN = . . . = σ∞ = 0.

zeros of

n σn Pun(x) in D f ‖Γf − Γf‖0 σ0 − 0 σ0

1 σ1 z1 fj = azj1 σ1

2 σ2 z1, z2 fj = a1zj1 + a2z

j2 σ2

3 σ3 z1, z2, z3 fj = a1zj1 + a2z

j2 + a3z

j3 σ3

......

......

...

N − 1 σN−1 z1, . . . , zN−1 fj =∑N−1

k=1 akzjk σN−1

Original sequence: fj =∑N

k=1 akzjk 0

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 16 / 29

Page 23: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Problems with application of AAK theory

Let f be given as before and let (σn, un) be a fixed singular pair of Γfsuch that σn /∈ {σk}k 6=n and σn 6= σ∞.

Then

Pun(x) :=

∞∑k=0

un(k)xk

has exactly n zeros z1, . . . , zn in D, repeated according to multiplicity.

If the zk are pairwise different, then there are a1, . . . , an ∈ C suchthat for

f = (fj)∞j=0 =

(n∑k=1

akzjk

)∞j=0

it holds that‖Γf − Γf ‖`2→`2 = σn.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 17 / 29

Page 24: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Problems with application of AAK theory

Let f be given as before and let (σn, un) be a fixed singular pair of Γfsuch that σn /∈ {σk}k 6=n and σn 6= σ∞.

Then

Pun(x) :=

∞∑k=0

un(k)xk

has exactly n zeros z1, . . . , zn in D, repeated according to multiplicity.

If the zk are pairwise different, then there are a1, . . . , an ∈ C suchthat for

f = (fj)∞j=0 =

(n∑k=1

akzjk

)∞j=0

it holds that‖Γf − Γf ‖`2→`2 = σn.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 17 / 29

Page 25: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 18 / 29

Page 26: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Singular values and con-eigenvalues

For a (complex) Hankel matrix Γf we call σ ∈ C a con-eigenvalue withthe corresponding con-eigenvector v ∈ `2(N) if it satisfies

Γfv = σv.

For symmetric matrices like Γf we have

We can always select a nonnegative σ.

(σ, v) is a multiplicity is 1−−−−−−−−−⇀↽−−−−−−−−−(σ, v) is a

singular pair of Γf con-eigenpair of Γf

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 19 / 29

Page 27: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Structure of con-eigenvectors to non-zero con-eigenvalues

Lemma: Let f be given as before, i.e.

fk =

N∑j=1

ajzjk with zj ∈ D,

and let σ 6= 0 be a fixed con-eigenvalue of Γf with the correspondingcon-eigenvector u := (uk)

∞k=0.

Then u can be represented by

uk =

N∑j=1

bjzjk, k = 0, 1, . . . ,

where bj , j = 1, . . . , N are some (complex or real) coefficients.

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 20 / 29

Page 28: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Dimension reduction for the con-eigenvalue problem of Γf

Γf u = σu ⇔∞∑j=0

fj+kuj = σuk, ∀k = 0, 1, 2, . . .

⇔∞∑j=0

(N∑l=1

alzk+jl

)(N∑s=1

bszjs

)= σ

N∑l=1

blzkl

⇔N∑l=1

zkl

al N∑s=1

bs

∞∑j=0

(zlzs)j

= σN∑l=1

blzkl .

⇔N∑l=1

zkl

(al

N∑s=1

bs1− zlzs

)=

N∑l=1

(σbl) zkl .

⇔ al

N∑s=1

bs1− zlzs

= σbl ∀ l = 1, . . . , N

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 21 / 29

Page 29: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Dimension reduction for the con-eigenvalue problem of Γf

Γf u = σu ⇔∞∑j=0

fj+kuj = σuk, ∀k = 0, 1, 2, . . .

⇔∞∑j=0

(N∑l=1

alzk+jl

)(N∑s=1

bszjs

)= σ

N∑l=1

blzkl

⇔N∑l=1

zkl

al N∑s=1

bs

∞∑j=0

(zlzs)j

= σ

N∑l=1

blzkl .

⇔N∑l=1

zkl

(al

N∑s=1

bs1− zlzs

)=

N∑l=1

(σbl) zkl .

⇔ al

N∑s=1

bs1− zlzs

= σbl ∀ l = 1, . . . , N

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 21 / 29

Page 30: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Dimension reduction for the con-eigenvalue problem of Γf

The last equation can be seen as the following con-eigenvalue problem ofthe dimension N

AZb = σb,

where

A :=

a1 0

a2

. . .

0 aN

, Z :=

1

1−|z1|21

1−z2z1 · · · 11−zNz1

11−z1z2

11−|z2|2 · · · 1

1−zNz2...

.... . .

...1

1−z1zN1

1−z2zN · · · 11−|zN |2

and b := (b1, . . . , bN )T .

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 22 / 29

Page 31: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Computation of the roots of con-eigenpolynomials of Γf

Let Pu(x) be the n-th con-eigenpolynomial of Γf .

Then for |x| < 1 we obtain

Pu(x) =

∞∑k=0

ukxk =

∞∑k=0

N∑j=1

bjzkj

xk=

N∑j=1

bj

∞∑k=0

(zjx)k =

N∑j=1

bj1− zjx

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 23 / 29

Page 32: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Norm of the Hankel Operator: ‖Γf‖ vs. ‖f‖

Let e1 := (1, 0, 0, . . .)T . Then

‖f‖`2 =

∞∑j=0

|fj |21/2

= ‖Γfe1‖`2 ≤ sup‖x‖`2=1

‖Γfx‖`2 = ‖Γf‖.

Therefore we have

‖f − f‖`2 ≤ ‖Γf−f‖ = σn

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 24 / 29

Page 33: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Algorithm for sparse approximation of exponential sums

Input: samples fk, k = 0, . . . , L, for a sufficiently large L,target approximation error ε.

1. Find the N nodes zj and the weights aj of the exponentialrepresentation of f using a Prony-like method.

2. Compute a con-eigenvalue σn < ε of the matrix AZ and thecorresponding con-eigenvector u = un.

3. Compute the n zeros zj of the con-eigenpolynomial Pu(x) of Γf in Dusing the rational function representation.

4. Compute the new coefficients aj by solving

mina1,...,an

‖f − f‖2`2 = mina1,...,an

∞∑k=0

|fk −n∑j=1

aj(zj)k|2.

Output: sequence fk =∑n

j=1 aj zkj , such that ‖f − f‖`2 ≤ σn < ε

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 25 / 29

Page 34: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Outline

1 Sparse approximation problem for exponential sums

2 Prony’s method

3 The AAK theorem for samples of exponential sums

4 Method for sparse approximation of exponential sums

5 Numerical example

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 26 / 29

Page 35: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Numerical example

N=6

fk =∑6

j=1 ajzkj

aj = 5, j = 1, . . . , 6

n = 5 n = 4 n = 3 n = 2 n = 1

z1 = 0.3500 0.3509 0.3550 0.3671 0.3985 0.4889 z1z2 = 0.4000 0.4103 0.4365 0.4860 0.5684 z2z3 = 0.4500 0.4802 0.5282 0.5910 z3z4 = 0.5000 0.5456 0.5981 z4z5 = 0.5500 0.5998 z5z6 = 0.6000

4.5845e-10 1.6340e-07 3.1318e-05 4.3318e-03 4.8259e-01 σn

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 27 / 29

Page 36: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Numerical example

N=6

fk =∑6

j=1 ajzkj

aj = 5, j = 1, . . . , 6

n σn ‖f − f‖2 maxk |fk−fk|maxk |fk|

1 4.8259e-01 4.7095e-01 1.1013e-02

2 4.3318e-03 4.2576e-03 7.6860e-05

3 3.1318e-05 2.8624e-05 5.9415e-07

4 1.6340e-07 1.4449e-07 2.9658e-09

5 4.5845e-10 8.0184e-10 1.1560e-11

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 28 / 29

Page 37: Gerlind Plonka and Vlada Pototskaiaalvise/CANAZEI2016/SLIDES/... · 2016. 9. 16. · Sparse approximation by modi ed Prony method Gerlind Plonka and Vlada Pototskaia Institut f ur

Thank You !

Gerlind Plonka, Vlada Pototskaia Prony method for sparse approximation Canazei 2016 29 / 29