Geothermal Well Casing Buckling

72
v c'!bdbiA REPORT SAND82-0863 Unlimited Release UC-66c Printed February 1983 Euler Buckling of Geothermal Well Casing SAND--82-0863 DE83 010292 Robert P. Rechard, Karl W. Schuler Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Llvermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Transcript of Geothermal Well Casing Buckling

Page 1: Geothermal Well Casing Buckling

v

c ' ! b d b i A REPORT SAND82-0863 Unlimited Release UC-66c Printed February 1983

Euler Buckling of Geothermal Well Casing

SAND--82-0863

DE83 010292

Robert P. Rechard, Karl W. Schuler

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Llvermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Page 2: Geothermal Well Casing Buckling

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: Geothermal Well Casing Buckling

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: Geothermal Well Casing Buckling

hued by Sandin National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was repared as an account of work sponsored by an agency of the United States 8overnment. Neither the United States Govem- ment nor any agency thereof, nor MY of theu em loyees, nor MY of theu contractors, subeontraetora. or their employees, des any warranty, express or im lied, or assumes any al liability or responsibility for the accuTBcy, comppeteness, or use*= 3 any information, apparatus, product, or pro- ceaa Wd, or represents that its use would not infringe privately owned rights. Reference herein to any rpecifk commercial product, proceaa, or

trade m e , trademark, manufacturer, or othe-, does not y constitute or imply its endorsement, recommendation, or favoring

by the United States Gwernment, any n y q thereof or MY of their contractors or subcontractors. The views an opmions expressed herein do not necessarily state or reflect thcae of the United States Government, any agency thereof or any of their contractors or subcontractom.

F’rinted in the United States of America Available from National Technical Information Service US. Department of Commerce 5285 Port F& S p w i e l d , 8%: NTIS ricecodes Print2 copy A04 Microfiche copy A01

Page 5: Geothermal Well Casing Buckling

U C - 6 6 ~

SAND82-0863

EULER BUCKLING OF GEOTHERMAL WELL C A S I N G

R. P. Rechard K. W. S c h u l e r

A p p l i e d Mechan ics D i v i s i o n S a n d i a N a t i o n a l L a b o r a t o r i e s

A lbuquerque , New M e x i c o 87185

HOTICE PORTIONS OF THIS REPQRT ARE ILLEGIELE. tt has been rcprosfuced from the best available copy to permit the broadest possible avatfability, - . -. _ . .- - .

ABSTRACT

Geo the rma l w e l l o p e r a t o r s have e x p r e s s e d c o n c e r n o v e r t h e v u l n e r a b i l i t y of u n s u p p o r t e d c a s i n g t o b u c k l i n g f r o m t h e r m a l e l o n g a t i o n . I n t h i s r e p o r t , we p r e s e n t p r e l i m i n a r y n u m e r i c a l and t h e o r e t i c a l c a l c u l a t i o n s , w h i c h i n d i c a t e t h e b u c k l i n g phenomenon s h o u l d n o t be s e r i o u s i n N-80 c a s i n g i f t h e s t r i n g i s t e n s i o n p r e l o a d e d . B u c k l i n g w o u l d b e d e t r i m e n t a l f o r ' K-55 c a s i n g . The e f f e c t o f w a l l c o n t a c t was f o u n d t o b e b e n e f i c i a l f o r c l o s e l y c o n f i n e d p i p e s t r i n g s and o f no d e t r i m e n t when h o l e gaps a r e l a r g e . The weakness o f A P I sc rew j o i n t s i n b e n d i n g a p p e a r s t o be t h e s t r u c t u r a l l i m i t a t i o n . The a n a l y s i s assumed s t r e s s e s above y i e l d c o n s t i t u t e d f a i l u r e , t h a t t h e r m a l e x p a n s i o n was s t r a i n c o n t r o l l e d , and t h a t t h e c a s i n g was c o n t i n u o u s . E x c e s s i v e i n t e r n a l p r e s s u r e i n s t a b i l i t y was i g n o r e d . The t e m p e r a t u r e v a r i a t i o n c o n s i d e r e d was be tween c e m e n t i n g c o n d i t i o n s o f 100-200°F (40-95°C) and s h u t - i n c o n d i t i o n s o f 425-450°F (220-230°C) .

Page 6: Geothermal Well Casing Buckling

"

Page 7: Geothermal Well Casing Buckling

CONTENTS

Page

INTRODUCTION. . . . . . . . . . . . . . . . . . . 1

Geothermal W e l l C o n s t r u c t i o n . . . . . . . . . 1 W e l l Cas ing D e s i g n . . . . . . . . . . . . . 5 T e m p e r a t u r e Env i ronment . . . . . . . . . . . . 6 C a s i n g I n s t a b i l i t y . . . . . . . . . . . . 11

ANALYSIS. . . 1 7

T h e o r e t i c a l Model . . . . . . . . . 1 7 N u m e r i c a l Model . . . . . . . . . . . . . . . 30 A d d i t i o n o f C o n s t a n t S t r e s s . . . . . 3 3 A n a l y t i c Summary. . . . . . . . . . . . . . . . 3 3

RESULT IMPLICATIONS . . . . . . . . . . . . . . . 35

T h e r m a l l y Induced E u l e r B u c k l i n g . . . . . . . . 35 J o i n t B e h a v i o r . , . . . . . . . . . . . . . . . 37

SUMMARY AND CONCLUSIONS . . . . . . . . . . . . 3 9

REFERENCES. . . . . . . . . . . . . . . . . . . . 41

A P P E N D I X A - N o m e n c l a t u r e . . . . . . . . . . . . . 43

A P P E N D I X B - D e r i v a t i o n o f E q u a t i o n s . . . . 45

iii

Page 8: Geothermal Well Casing Buckling

I L L U STR AT IO NS

F i g u r e Page

1. T y p i c a l Geo the rma l W e l l C o n s t r u c t i o n and C a s i n g T e m p e r a t u r e P r o f i l e . . . . . . . . . . . . 3

2. I d e a l i z e d C o n d i t i o n s C a u s i n g C a s i n g B u c k l i n g w i t h T e m p e r a t u r e E x c u r s i o n . . . . . . . . . . . . 7

3. P r e l i m i n a r y GEOTEMP C a l c u l a t i o n s o f T e m p e r a t u r e C o n d i t i o n s D u r i n g Cement ing . . . . . 9

4. P o s t u l a t e d B u c k l i n g F a i l u r e Modes: a ) L o c a l , P l a s t i c D e f o r m a t i o n , b ) E u l e r b u c k l i n g , c ) E u l e r B u c k l i n g w i t h Subsequen t W a l l C o n t a c t , and d ) H e l i c a l B u c k l i n g . . . . . . . . . . . . . 12

5. Q u a l i t a t i v e P l o t o f T e m p e r a t u r e Change Versus

6. D e f i n i t i o n o f Terms: a ) L i n e S k e t c h and

7 . Locus D e l i n e a t i n g E u l e r B u c k l i n g Reg ion : ? l o t

U n s u p p o r t e d L e n g t h D e p i c t i n g B u c k l i n g R e g i o n s . 1 4

. . . . . . . . . . . . . . b ) F r e e Body Diagram. 1 9

o f T e m p e r a t u r e Change ( A T ) V e r s u s N o r m a l i z e d U n s u p p o r t e d L e n g t h ( L / D ) . . . . . . . . . . . . . 21

8. Maximum S t r e s s ( u ) V e r s u s T e m p e r a t u r e Change ( A T ) f o r 1 3 - 3 / 8 i n c h 54.5 p p f C a s i n g Assuming U n s u p p o r t e d L e n g t h s ( L / D ) o f 50, 100, and 200 . 2 5

9. Maximum D e f l e c t i o n Versus T e m p e r a t u r e Change ( A T ) for 13-3 /8 i n c h 54.5 p p f C a s i n g Assuming U n s u p p o r t e d L e n g t h s ( L / D ) o f 50, 100, and 200 26

10. Deformed C a s i n g Shapes w i t h W a l l C o n s t r a i n t P r e d i c t e d b y MARC and T h e o r e t i c a l Models ,at a ) AT = 80'F, b) MARC R e s u l t s a t A T = 300 F, and c ) A n a l y t i c R e s u l t s a t AT = 300°F . . . . . . 27

11. Maximum S t r e s s ( u ) V e r s u s A T f o r 13 -3 /8 i n c h 54.5 p p f C a s i n g f o r U n s u p p o r t e d L e n g t h ( L / D ) o f 100 w i t h W a l l C o n t a c t : a ) A n a l y t i c Model, b ) MARC Computer Code, and c ) C o n s t a n t S t r e s s A d d i t i o n . . . . . . . . . . . . . . . . . . . . . 29

i v

Page 9: Geothermal Well Casing Buckling

c

P .

INTRODUCTION

D r S l l i n g f o r g e o t h e r m a l e n e r g y began as e a r l y as t h e 1 9 2 0 ' s i n t h e Geysers f i e l d i n n o r t h e r n C a l i f o r n i a , b u t a s e r i o u s e f f o r t t o h a r n e s s g e o t h e r m a l e n e r g y f o r power g e n e r a t i o n was n o t begun i n t h e U n i t e d S t a t e s u n t i l t h e 1 9 7 0 ' s . On a n a t i o n a l s c a l e , t h e r e i s t h e g e o l o g i c p o t e n t i a l t o d e v e l o p 20,000 MW o f e l e c t r i c a l e n e r g y . The g e o t h e r m a l e n e r g y i n d u s t r y p e r f o r m a n c e i n t h e l a s t 1 0 y e a r s and t h e g e o l o g i c p r o s p e c t s i n d i c a t e t h e i n d u s t r y has t h e p o t e n t i a l f o r g r o w t h and can make a c o n t r i b u t i o n i n s u p p l y i n g t h e e n e r g y needs o f t h e n a t i o n .

T h e r e a r e numerous s i m i l a r i t i e s be tween c o n v e n t i o n a l o i l and gas w e l l s and g e o t h e r m a l w e l l s i n c o n s t r u c t i o n and o p e r a t i o n . However, i m p o r t a n t d i f f e r e n c e s do e x i s t ( w h e t h e r f r o m d r y steam, d r y h o t r o c k , h o t w a t e r , o r g e o p r e s s u r i t e d f l u i d r e s e r v o i r s ) . F l u i d f l o w r a t e s a r e an o r d e r o f m a g n i t u d e l a r g e r t h a n i n t h e p e t r o l e u m i n d u s t r y . The h i g h t e m p e r a t u r e s e n c o u n t e r e d a f f e c t t h e d r i l l b i t , d r i l l i n g mud and t h e cement p e r f o r m a n c e . R e s e r v o i r c a l c u l a t i o n s must i n c l u d e an e n e r g y b a l a n c e as w e l l as a mass b a l a n c e . F i n a l l y , d i f f i c u l t g e o l o g y , c o r r o s i v e e n v i r o n m e n t s , and t h e r m a l s t r e s s e s i n d u c e d i n t h e w e l l c a s i n g p r e s e n t t h e c a s i n g d e s i g n e r w i t h a new s e t o f f a i l u r e modes t o c o n s i d e r .

Geo the rma l W e l l C o n s t r u c t i o n

T h i s i n t r o d u c t i o n i s i n t e n d e d t o p r o v i d e t h e r e a d e r u n f a m i l i a r w i t h g e o t h e r m a l w e l l c a s i n g d e s i g n and c o n s t r u c t i o n n e c e s s a r y b a c k g r o u n d i n f o r m a t i o n . However, i t a l s o s e r v e s t o r e m i n d t h e r e a d e r t h a t a l t h o u g h t h e c a s i n g s e l e c t i o n i s based on t h e w o r s t c a s e d e s i g n c r i t e r i a f r o m b u r s t , c o l l a p s e , t e n s i o n , e t c . , s t r e s s e s f rom many d i f f e r e n t l o a d s can be

Page 10: Geothermal Well Casing Buckling

p r e s e n t s i m u l t a n e o u s l y -and c o n t r i b u t e t o c a s i n g f a i l u r e . More comprehens ive d i s c u s s i o n s o f t h e v a r i o u s f a c t s o f Geothermal w e l l s a r e a v a i l a b l e (e.g. Edwards e t a l . , 1982) .

b e used f o r d i s c u s s i o n . T e m p e r a t u r e p r o f i l e s o f t h e c a s i n g and u n d i s t u r b e d f o r m a t i o n a r e a l s o shown. F i g u r e 1 c o n t a i n s w e l l f e a t u r e s f r o m s e v e r a l t y p e s o f g e o t h e r m a l f i e l d s and t h u s c a n n o t t r u l y be c l a s s i f i e d as l l t yp ica l . l l

a r e d i r e c t i o n a l l y d r i l l e d . A p p r o p r i a t e d r i l l s i t e s a r e d i f f i c u l t t o l o c a t e i n t h e r o u g h t e r r a i n o f t e n f o u n d above g e o t h e r m a l f i e l d s . I t i s a l s o d e s i r a b l e t o d r i l l a t an a n g l e t o i n t e r s e c t more f r a c t u r e s . Geothermal r e s e r v o i r s f r e q u e n t l y o c c u r i n f r a c t u r e d r e s e r v o i r s b e l o w 3000 f t ( 9 0 0 m ) ; hence f r a c t u r e s a r e p r i m a r i l y v e r t i c a l .

Most g e o t h e r m a l r e s e r v o i r s a r e b e l o w t h e d r i l l mud h y d r o s t a t i c p r e s s u r e w h i c h causes l o s t c i r c u l a t i o n p r o b l e m s d u r i n g d r i l l i n g and cemen t ing . A l s o , l o w g e o t h e r m a l r e s e r v o i r p r e s s u r e s make d e t e c t i o n o f s team or h o t w a t e r b e a r i n g f r a c t u r e s d i f f i c u l t . The use o f a i r r e d u c e s t h e d r P l l f l u i d d e n s i t y and g r e a t l y speeds up d r i l l i n g . However, t h e d r i l l b i t l i f e i s g r e a t l y r e d u c e d because o f t h e h i g h t e m p e r a t u r e s e n c o u n t e r e d . The n e a r s o n i c v e l o c i t i e s p r o d u c e d w h i l e c a r r y i n g t h e c u t t i n g s up t h e o u t s i d e o f t h e d r i l l p i p e a l s o causes e x c e s s i v e e r o s i o n o f t h e d r i l l p i p e .

c o n d u c t o r p i p e , s u r f a c e c a s i n g , i n t e r m e d i a t e c a s i n g and p r o d u c t i o n c a s i n g . The p r o d u c t i o n c a s i n g i s o f t e n s e t as a p r o d u c t i o n l i n e r w i t h a t i e b a c k . P r o d u c t i o n c a s i n g and p r o d u c t i o n l i n e r s a r e d e s i g n e d w i t h t h e same c r i t e r i o n as i n t e r m e d i a t e c a s i n g and d r i l l i n g l i n e r s e x c e p t t h a t c o n s i d e r a t i o n o f d r i l l i n g wear i s n o t r e q u i r e d . The w e l l c o n s t r u c t i o n d i f f e r s s l i g h t l y f r o m c o n v e n t i o n a l o i l w e l l s i n t h a t each c a s i n g i s cemented t o t h e s u r f a c e .

i n s t a l l e d . I t a i d s i n p r e v e n t i n g washouts a round t h e d r i l l

F i g u r e 1 shows a s c h e m a t i c o f a g e o t h e r m a l w e l l w h i c h w i l l

The w e l l i s shown v e r t i c a l , b u t f r e q u e n t l y g e o t h e r m a l w e l l s

The s t a n d a r d components o f t h e w e l l c a s i n g p r o g r a m a r e

C o n d u c t o r p i p e i s t h e f i r s t s t r i n g o f p i p e t o be

2

Page 11: Geothermal Well Casing Buckling

GEOTHERMAL WELL SCHEMATIC AND CASING TEMPERATURE

F i g u r e 1.

THE SURFACE

INTERMEDIATE

13-3/8 INCH

BUTTRESS JOINTS

8001

100

200c

5001

Q526'F

I I

- 350°F-

TEMPERATURE PROFILES

0 -UNDISTURBED FORMATION

-CEMENT-SET I' TEMPERATURE

0 -0PERATINa CASING TEMPERATURE

-SHUT-IN CASING TEMPERATURE

L 100 200 300 400

50°F

L l 500

J TEMPERATUREOF

T y p i c a l Geo the rma l We1 1 C o n s t r u c t T e m p e r a t u r e P r o f i l e .

on and C a s i n g

3

Page 12: Geothermal Well Casing Buckling

. z

r i g s , p r o v i d e s a c o n d u i t f o r d r i l l i n g f l u i d s t o s u r f a c e p i t s ,

and h e l p s s u p p o r t w e l l head equ ipmen t . C o n d u c t o r p i p e i s s e t s h a l l o w and i s n o t u s u a l l y c o n s i d e r e d a p r e s s u r e s t r i n g .

The s u r f a c e c a s i n g i s t h e f i r s t t r u e c a s i n g s t r i n g . As a p r i m a r y s t r u c t u r a l member i t p r o v i d e s s u p p o r t f o r subsequen t c a s i n g s t r i n g s . To a v o i d b u c k l i n g p r o b l e m s f r o m t h e c o m p r e s s i v e l o a d s a p p l i e d , i t i s o f t e n cemented t o t h e s u r f a c e even i n c o n v e n t i o n a l w e l l s . S u r f a c e c a s i n g must a l s o p r o v i d e s u f f i c i e n t h o l e s t a b i l i t y , p r o t e c t i o n t o a q u i f e r s , s o l i d s u p p o r t f o r t h e r e s e r v o i r p r e s s u r e , and p r e s s u r e i n t e g r i t y i n t h e e v e n t o f a b r u p t p r e s s u r e i n c r e a s e s ( b l o w o u t s and k i c k s ) . S u r f a c e c a s i n g i s s u b j e c t e d t o d r i l l i n g wear w h i c h r e q u i r e s h e a v y c a s i n g . Common s e t t i n g d e p t h s a r e be tween 1000 and 2500 f t (300 t o 760 m).

I n a c o n v e n t i o n a l w e l l , i n t e r m e d i a t e c a s i n g can be exposed t o h i g h b o t t o m h o l e p r e s s u r e s w h i c h r e q u i r e s s u b s t a n t i a l b u r s t r e s i s t a n c e . H i g h c o l l a p s e r e s i s t a n c e i s a l s o r e q u i r e d f o r t h e deeper c a s i n g . Heavy muds and cement s l u r r i e s r e q u i r e d f o r deep d r i l l i n g can c r e a t e h i g h c o l l a p s e l o a d s s h o u l d l o s t c i r c u l a t i o n zones empty t h e p i p e . These c o n d i t i o n s d i c t a t e h e a v y c a s i n g . As w i t h s u r f a c e s t r i n g s , i n t e r m e d i a t e c a s i n g and d r ill i n g 1 i n e r s a r e s u b j e c t e d t o m e c h a n i c a l damage f r o m d r i l l i n g wear.

v a l u e s i n many g e o t h e r m a l f i e l d s . However, a s t a n d a r d c a s i n g p r o g r a m i n t h e p r o m i n e n t Geysers g e o t h e r m a l f i e l d c o n s i s t s o f 26 a n d / o r 20 i n c h ( 6 6 0 o r 508 mm) d i a m e t e r c o n d u c t o r p i p e , 1 3 - 3 / 8 i n c h ( 3 4 0 mm) s u r f a c e c a s i n g , and 9 - 5 / 8 i n c h ( 2 4 4 mm) i n t e r m e d i a t e c a s i n g or l i n e r ( w i t h o r w i t h o u t a t i e b a c k s t r i n g o f e i t h e r 9 - 5 / 8 o r 10 -3 /4 i n c h (244 o r 273 mm) c a s i n g )

(Capuano, 1979) . Because s u p e r h e a t e d s team i s p roduced, a p r o d u c t i o n c a s i n g i s n o t needed. An open h o l e i n t h e r e s e r v o i r i s u s u a l l y s t a b l e .

The c a s i n g s i z e s shown i n F i g u r e 1 a r e commonly s e l e c t e d

4

Page 13: Geothermal Well Casing Buckling

W e l l C a s i n g Des& - --

The p r o p e r s e l e c t i o n o f t h e t y p e , s i z e , and s e t t i n g d e p t h o f t h e w e l l c a s i n g i s based on t h e e x p e c t e d w e l l o p e r a t i o n c o n d i t i o n s and t h e d r i l l i n g s i t e g e o l o g y . The u s u a l p r a c t i c e i s t o c o n s i d e r t h e w o r s t case o r maximum l o a d i n d e t e r m i n i n g t h e r e q u i r e d c a s i n g c o n f i g u r a t i o n . n e s t i n g a r e u s u a l l y i g n o r e d . A l i s t o f c a s i n g f a i l u r e modes i n c l u d e s (Snyder , 1 9 7 9 ) :

C o m p l i c a t i o n s due t o c a s i n g

* M e t a l f a i l u r e : b u r s t , c o l l a p s e , t e n s i o n , o r c o r r o s i o n ,

* M e c h a n i c a l damage: d r i l l p i p e wear, w e l d i n g p rob lems , t h r e a t damage, o r l e a k a g e and p e r f o r a t i o n ,

.Casing i n s t a b i l i t y : l a t e r a l d e f l e c t i o n ( b u c k l i n g ) f r o m e x c e s s i v e c o m p r e s s i v e l o a d s (e .g t h e r m a l e x p a n s i o n ) o r i n t e r n a l p r e s s u r e ,

*Cement f a i l u r e s : v o i d s f r o m l o s t c i r c u l a t i o n zones' o r cement t o o l p rob lems , cement d i s s o l u t i o n and c o r r o s i o n p e r m i t t i n g f l u i d movement between c a s i n g and f o r m a t i o n , o r p o o r h i g h - t e m p e r a t u r e s l u r r y b e h a v i o r ,

f a i l u r e s ( t e l e s c o p i n g ) , l e a k a g e i n c o u p l i n g s f r o m c y c l i c l o a d i n g , e x c e s s i v e b e n d i n g l o a d s i n dog l e g s , s t r a i n beyond u l t i m a t e .

T h i s t a b u l a t i o n p r e s e n t s p o s s i b l e f a i l u r e modes.

*Thermal s t r e s s f a i l u r e s : c o m p r e s s i o n a n d / o r t e n s i o n

U n f o r t u n a t e l y l i t t l e d e t a i l e d p u b l i c i n f o r m a t i o n e x i s t s on g e o t h e r m a l w e l l c a s i n g f a i l u r e s . The a n a l y s t can o n l y p o s t u l a t e t y p e s and f a i l u r e mechanisms and t h u s t h e danger e x i s t s t h a t an i m p o r t a n t o r more l i k e l y f a i l u r e mechanism has been o v e r l o o k e d .

i n d e p e n d e n t . For--example, a cement f a i l u r e c o u l d cause i n s u f f i c i e n t l a t e r a l s u p p o r t and r e s u l t i n c a s i n g i n s t a b i l i t y when h i g h i n t e r n a l p r e s s u r e s o c c u r r e d . The r e s u l t i n g l a t e r a l d e f l e c t i o n c o u l d i n t u r n r e s u l t i n e x c e s s i v e d r i l l p i p e wear d u r i n g t h e d r i l l i n g o p e r a t i o n and subsequen t b u r s t o f t h e c a s i n g d u r i n g t h e p r o d u c t i o n o p e r a t i o n .

I t s h o u l d be n o t e d t h a t t h e f a i l u r e modes l i s t e d a r e n o t

5

Page 14: Geothermal Well Casing Buckling

I n o i l o r gas w e l l c a s i n g d e s i g n , t h e m a j o r c o n c e r n a d d r e s s e d i s m e t a l f a i l u r e f r o m b u r s t , c o l l a p s e , o r t e n s i o n . However, t h e p r e s e n c e o f t h e r m a l l o a d s i n g e o t h e r m a l w e l l

c a s i n g g r e a t l y i n c r e a s e s t h e o p p o r t u n i t y f o r c a s i n g i n s t a b i l i t y . C a s i n g s t a b i l i t y can b e i m p r o v e d by: 1 ) c e m e n t i n g t h e e n t i r e s t r i n g t o p r o v i d e l a t e r a l s u p p o r t o r 2 ) a p p l y i n g a t e n s i o n l o a d i n t h e uncemented s e c t i o n s . F u l l y c e m e n t i n g t h e c a s i n g s t r i n g i s t h e u s u a l c h o i c e . U n f o r t u n a t e l y , p o o r f o r m a t i o n c o n d i t i o n s f r e q u e n t l y e x i s t i n g e o t h e r m a l a reas . The r e s e r v o i r i s u s u a l l y b e l o w h y d r o s t a t i c p r e s s u r e and can be h i g h l y f r a c t u r e d . C o n s e q u e n t l y , l o s t c i r c u l a t i o n w h i l e d r i l l i n g w i t h mud o r c e m e n t i n g c a s i n g i s common. I t i s t h u s i m p o s s i b l e t o e n s u r e a c o m p l e t e cement j o b i n many i n s t a n c e s . F a i l u r e o f s t a g e c e m e n t i n g t o o l s i n g e o t h e r m a l w e l l s i s f r e q u e n t and a l s o c r e a t e s u n s u p p o r t e d t u b u l a r s e c t i o n s (Snyder , 1979). B u c k l i n g f a i l u r e s o f t h e c a s i n g f r o m t h e r m a l e x p a n s i o n where cement f a i l u r e s h a v e o c c u r r e d i s t h e s u b j e c t o f t h i s r e p o r t ( F i g u r e 2 ) .

TemDera tu re E n v i r o n m e n t

The t e m p e r a t u r e e n v i r o n m e n t i s i m p o r t a n t i n f o r m a t i o n f o r t h e t h e r m a l a n a l y s i s . f i g u r e 1 p r e s e n t s a h y p o t h e t i c a l t e m p e r a t u r e e n v i r o n m e n t . The s u r f a c e and b o t t o m h o l e t e m p e r a t u r e s a r e as s u r m i s e d b y t h e w e l l o p e r a t o r s i n The Geysers f i e l d (Pye, 1980; J e n k i n s and Snyder , 1979) , b u t t h e a c t u a l t e m p e r a t u r e p r o f i l e s t h r o u g h o u t t h e s t r a t i g r a p h y and c a s i n g a r e unknown. I n F i g u r e 1 c a s i n g t e m p e r a t u r e s a r e assumed t o v a r y l i n e a r l y . The u n d i s t u r b e d f o r m a t i o n p r o f i l e i s shown w i t h one e lbow. A f e w p r o f i l e s a v a i l a b l e f r o m The Geysers f i e l d c o n t a i n t w o k i n k s : t h e second e lbow o c c u r s w i t h i n t h e f i r s t 500 f t (150 m ) .

F o r w e l l s c o m p l e t e d i n l o w - p r e s s u r e h o t - w a t e r o r s team r e s e r v o i r s , t h e c a s i n g s a r e t h o u g h t t o b e cemented a t a t e m p e r a t u r e be tween 100-2OO'F (40-95°C). T h i s assumes t h e

6

Page 15: Geothermal Well Casing Buckling

i .

Fig

HOT WATER, STEAM

CEMENT SHEATH

ENLARGED HOL

PIPE DIAMETER

ure 2 . Ideal ized Conditions Causing Casing Buck Temperature Excursion.

, l i n g with

7

Page 16: Geothermal Well Casing Buckling

c a s i n g i s n o t p u r p o s e l y a l l o w e d t o h e a t up b e f o r e c e m e n t i n g . Upon c o m p l e t i o n , t h e w e l l i s t e m p e r a t u r e c y c l e d be tween p r o d u c i n g c o n d i t i o n s o f a p p r o x i m a t e l y 325-400°F (160-205°C) and s h u t i n c o n d i t i o n s o f 425-450°F (220-235°C). The c y c l i n g i s due t o a i r p o l l u t i o n s t a n d a r d s w h i c h l i m i t t h e v e n t i n g o f g e o t h e r m a l w e l l s . C y c l i n g can o c c u r 2 t o 3 t i m e s p e r week if t h e steam c o n t a i n s a p o l l u t a n t such as h y d r o g e n s u l f i d e ( H 2 S ) . When t h e w e l l r e q u i r e s r e m e d i a l work, t h e c a s i n g t e m p e r a t u r e i s r e d u c e d t o a r o u n d 100°F (40°C) w i t h c o o l w a t e r . These a r e a p p r o x i m a t e v a l u e s o n l y .

A t e m p e r a t u r e p r o f i l e i s v e r y u s e f u l i n v i s u a l i z i n g t h e t e m p e r a t u r e change t o w h i c h each t y p e o f c a s i n g i s s u b j e c t e d . A c c u r a t e i n f o r m a t i o n o f t h i s t y p e w o u l d g r e a t l y a i d t h e d e s i g n and a n a l y s i s o f t h e c a s i n g i n t e g r i t y . As seen i n F i g u r e 1, t h e c a s i n g can be s u b j e c t e d t o l a r g e t e m p e r a t u r e changes. C o n s e q u e n t l y l a r g e t h e r m a l s t r e s s e s must b e a n t i c i p a t e d . I t i s seen t h a t t h e more s e v e r e t e m p e r a t u r e changes o c c u r n e a r t h e s u r f a c e d u r i n g t h e c y c l i n g be tween p r o d u c t i o n and s h u t - i n . However, t h e w h o l e c a s i n g s t r i n g can be s u b j e c t e d t o l a r g e

t e m p e r a t u r e changes a f t e r c e m e n t i n g and whenever t h e w e l l must b e quenched.

An a c c u r a t e cemen t -se t t e m p e r a t u r e i s e s s e n t i a l t o t h e t h e r m a l s t r e s s a n a l y s i s because t h i s i s t h e t e m p e r a t u r e t h e c a s i n g becomes c o n s t r a i n e d . The GEOTEMP compu te r p r o g r a m (Wooley, 1980; M i t c h e l l , 1982) b e i n g d e v e l o p e d under c o n t r a c t t o S a n d i a w i l l be h e l p f u l i n more c a r e f u l l y d e f i n i n g t h e t e m p e r a t u r e r e g i m e o f t h e w e l l c a s i n g . P r e l i m i n a r y GEOTEMP t e m p e r a t u r e c a l c u l a t i o n s a r e shown i n F i g u r e 3. R a d i a l t e m p e r a t u r e s a t 200 f t ( 6 0 m ) d e p t h u n d e r t h r e e g e o t h e r m a l f l u i d f l o w c o n d i t i o n s a r e d e p i c t e d f o r a G e y s e r s w e l l . The c e m e n t i n g c o n d i t i o n s a r e l o w e r t h a n g e n e r a l l y assumed b y o p e r a t o r s . V e r i f i c a t i o n o f t h e GEOTEMP p r o g r a m i s n o t c o m p l e t e , b u t t h e t e m p e r a t u r e d i f f e r e n c e shown c o u l d be s i g n i f i c a n t and needs t o be more c a r e f u l l y examined.

Page 17: Geothermal Well Casing Buckling

c

*

PROFILES TAKEN FROM GEOTEMP ANALYSIS

100 1 I t I I

n

5 Y

20 INCH 13 3/8 INCH

B 5/8 INCH u

90 t -

06 h INJECTION COOLING 250 gal/rnin 0 3 h SHUT - IN AFTER INJECTION

A 5 h CONDITIONING 400 gal/rnin

2 h CEMENTING A n 10' I I I I

r (FEET)

RADIAL TEMPERATURES AT 200 FOOT DEPTH

Figure 3 . Preliminary GEOTEMP Calculat ions o f Temperature Conditions During Cementing.

9

Page 18: Geothermal Well Casing Buckling

.

c a s i n g i s n o t p u r p o s e l y a l l o w e d t o h e a t up b e f o r e cemen t ing .

Upon c o m p l e t i o n , t h e w e l l i s t e m p e r a t u r e c y c l e d be tween p r o d u c i n g c o n d i t i o n s o f a p p r o x i m a t e l y 325-400°F (160-205°C) and s h u t i n c o n d i t i o n s o f 425-450°F (220-235°C). The c y c l i n g i s due t o a i r p o l l u t i o n s t a n d a r d s w h i c h l i m i t t h e v e n t i n g o f g e o t h e r m a l w e l l s . C y c l i n g can o c c u r 2 t o 3 t i m e s p e r week i f t h e s team c o n t a i n s a p o l l u t a n t such as h y d r o g e n s u l f i d e (H2S). When t h e w e l l r e q u i r e s r e m e d i a l work, t h e c a s i n g t e m p e r a t u r e i s r e d u c e d t o a r o u n d 100°F (40'C) w i t h c o o l w a t e r . These a r e a p p r o x i m a t e v a l u e s o n l y .

A t e m p e r a t u r e p r o f i l e i s v e r y u s e f u l i n v i s u a l i z i n g t h e t e m p e r a t u r e change t o w h i c h each t y p e o f c a s i n g i s s u b j e c t e d . A c c u r a t e i n f o r m a t i o n o f t h i s t y p e w o u l d g r e a t l y a i d t h e d e s i g n and a n a l y s i s o f t h e c a s i n g i n t e g r i t y . As seen i n F i g u r e 1, t h e c a s i n g can be s u b j e c t e d t o l a r g e t e m p e r a t u r e changes. C o n s e q u e n t l y l a r g e t h e r m a l s t r e s s e s must be a n t i c i p a t e d . I t i s seen t h a t t h e more s e v e r e t e m p e r a t u r e changes o c c u r n e a r t h e s u r f a c e d u r i n g t h e c y c l i n g be tween p r o d u c t i o n and s h u t - i n . However, t h e w h o l e c a s i n g s t r i n g can be s u b j e c t e d t o l a r g e t e m p e r a t u r e changes a f t e r c e m e n t i n g and whenever t h e w e l l must be quenched.

An a c c u r a t e cement -se t t e m p e r a t u r e i s e s s e n t i a l t o t h e t h e r m a l s t r e s s a n a l y s i s because t h i s i s t h e t e m p e r a t u r e t h e

c a s i n g becomes c o n s t r a i n e d . The GEOTEMP compu te r p r o g r a m (Wooley, 1980; M i t c h e l l , 1982) b e i n g d e v e l o p e d under c o n t r a c t t o Sand ia w i l l be h e l p f u l i n more c a r e f u l l y d e f i n i n g t h e t e m p e r a t u r e r e g i m e o f t h e w e l l c a s i n g . P r e l i m i n a r y GEOTEMP t e m p e r a t u r e c a l c u l a t i o n s a r e shown i n F i g u r e 3. R a d i a l

t e m p e r a t u r e s a t 200 f t . ( 6 0 m ) d e p t h under t h r e e g e o t h e r m a l f l u i d f l o w c o n d i t i o n s a r e d e p i c t e d f o r a G e y s e r s w e l l . The c e m e n t i n g c o n d i t i o n s a r e l o w e r t h a n g e n e r a l l y assumed b y o p e r a t o r s . V e r i f i c a t i o n o f t h e GEOTEMP p r o g r a m i s n o t comp le te , b u t t h e t e m p e r a t u r e d i f f e r e n c e shown c o u l d be s i g n i f i c a n t and needs t o be more c a r e f u l l y examined.

1 0

Page 19: Geothermal Well Casing Buckling

W h i l e f a i l u r e s i n cemented s t r i n g s such as c o m p r e s s i o n a n d / o r t e n s i o n f a i l u r e s and c o n n e c t i o n f a i l u r e s a r e o f c o n c e r n , o p e r a t o r s h a v e e x p r e s s e d g r e a t e r c o n c e r n o v e r c a s i n g buck1 i n g i n p a r t i a l l y cemented s t r i n g s (Pye, 1980; Kumataka, 1981, Snyder , 1979) . As r e g a r d s p a r t i a l l y cemented s t r i n g s , work i n t h e a r c t i c o i l f i e l d s has shown t h a t t h e cement a n d l o r f o r m a t i o n s u p p o r t needed t o a v o i d b u c k l i n g f r o m s u b s i d e n c e i s q u i t e s m a l l ( W i l s o n e t a l . , 1980) . ( B o t h subs ' idence and t h e r m a l s t r e s s l o a d s a r e s t r a i n c o n t r o l l e d . ) , Because l i t t l e l a t e r a l s u p p o r t i s n e c e s s a r y , b u c k l i n g i s l i m i t e d t o a reas where f o r m a t i o n c o n d i t i o n s cause e n l a r g e d h o l e s t o f o r m w i t h s u b s e q u e n t v o i d s i n t h e cement s h e a t h such t h a t a c o m p l e t e l y u n s u p p o r t e d s e c t i o n o c c u r s ( F i g u r e 2 ) .

p a r t i a l l y cemented s t r i n g s can be d i v i d e d i n t o f o u r c a t e g o r i e s . The f a i l u r e t y p e i s dependent on t h e u n s u p p o r t e d c a s i n g l e n g t h and i n t e r n a l - e x t e r n a l p r e s s u r e i n t e r a c t i o n ( F i g u r e 4) . The c a t e g o r i e s a r e :

C a s i n g i n s t a b i l i t y f a i l u r e s f r o m a t h e r m a l l o a d i n

%

.Local p l a s t i c d e f o r m a t i o n ,

~ E u l e r buck1 i n g ,

C o n s t r a i n e d E u l e r b u c k l i n g f o l l o w e d b y p l a s . t i c d e f o r m a t i o n

*He1 i c a l b u c k l i n g .

o r c o l l a p s e due t o o v a l a t i o n , ' .

I t i s i m p o r t a n t t o emphas ize t h e d i f f e r e n c e between s t a n d a r d co lumn b u c k l i n g under an a p p l i e d . l o a d a b u c k l i n g f r o m t h e r m a l f a r c e s where s u p p o r t o f - a f o l l o w e r a x i a l l o a d i s n o t r e q u i r e d . R a t h e r t h a n c a t a s t r o p h i c . 5 f a i l u v e f r o m a c r i t i c a l t e m p e r a t u r e change, t h e c a s i n g s l o w l y de fo rms e l a s t i c a l l y i n t o t h e de fo rmed shape f o r l a r g e + u n s u p p o r t e d

l e n g t h s . Thus co lumn " b e n d i n g " i s a more a p p r o p r i a t e

d e s c r i p t i o n o f t h e phenomenon. The p i p e s t r i n g i n s t a b i l i t y m a n i f e s t s i t s e l f as a l a t e r a l d e f l e c t i o n .

11

Page 20: Geothermal Well Casing Buckling

7 SHORT

UNSUPPORTED

a) LOCAL, PLASTIC DEFORMATION

c) EULER BUCKLING WITH SUBSEQUENT WALL CONTACT (PLASTIC DEFORMATION OR COLLAPSE DUE TO OVALATION POSSIBLE)

b)

d)

I LONG

LENGTH UNSUPPORTED

EULER BUCKLING

H

HELICAL BUCKLING

Figure 4 . Postulated Buckling Fai lure Modes: a ) Local, P l a s t i c Deformation, b ) Euler Buckling, c ) Euler Buckling with Subsequent Wall Contact, a n d d ) Hel ica l Buckling.

1 2

Page 21: Geothermal Well Casing Buckling

. c

I

The r e s u l t i n g d e f o r m a t i o n may n o t impede o p e r a t i o n s i f t h e d e f o r m a t i o n i s s l i g h t . The l a r g e s t t h e r m a l s t r e s s e s a r e i n t r o d u c e d d u r i n g s h u t - i n a f t e r t h e w e l l i s comp le ted , t h u s t h e danger o f e x c e s s i v e p i p e wear d u r i n g d r i l l i n g has passed. However, even s l i g h t b e n d i n g a t c o n n e c t i o n s can r e s u l t i n j o i n t f a f l u r e because s t a n d a r d Amer i can P e t r o l e u m I n s t i t u t e ( A P I ) j o i n t s a r e n o t d e s i g n e d t o w i t h s t a n d b e n d i n g s t r e s s e s .

F i g u r e 5 q u a l i t a t i v e l y i n d i c a t e s where v a r i o u s buck1 i n g modes o c c u r . I t i s i m p o r t a n t t o n o t e t h a t i n t e r n a l - e x t e r n a l p r e s s u r e i n t e r a c t i o n has been i g n o r e d . O n l y u n s u p p o r t e d l e n g t h and t e m p e r a t u r e was c o n s i d e r e d .

d e f o r m a t i o n a n d / o r c o l l a p s e w o u l d be e x p e c t e d . A t l o n g e r u n s u p p o r t e d l e n g t h s , E u l e r b u c k l i n g w o u l d o c c u r . W i t h c o n t i n u e d t e m p e r a t u r e i n c r e a s e , t h e c a s i n g c o u l d d e f l e c t enough t o c o n t a c t t h e d r i l l h o l e s i d e s . P l a s t i c d e f o r m a t i o n o r p i p e c o l l a p s e f r o m t h e weaken ing e f f e c t s o f c r o s s - s e c t i o n o v a l a t i o n c o u l d f o l l o w .

t h e o i l w e l l i n d u s t r y , t h e c o r k s c r e w i n g i s due p r i m a r i l y t o e x c e s s i v e , d e s t a b i l i z i n g , i n t e r n a l p r e s s u r e s ( L u b i n s k i e t a1 ., 1962) . F r e q u e n t l y , t h e d e f o r m a t i o n i s n o t s e v e r e enough t o cause pe rmanen t d e f o r m a t i o n ( T e x t e r , 1955).. Because l o n g u n s u p p o r t e d l e n g t h s a r e much l e s s l i k e l y and t h e u l t i m a t e f a i l u r e mechanism i s s i m i l a r t o t h a t e n c o u n t e r e d w i t h s i n g l e o r d e r E u l e r b u c k l i n g , t h i s r e g i o n i s o f l e s s i n t e r e s t .

t h e r m a l b u c k l i n g and l o c a l i z e d p l a s t i c d e f o r m a t i o n o f g e o t h e r m a l c a s i n g . F i r s t , a n a l y s i s o f t h e E u l e r b u c k l i n g r e g i m e assuming b u i l t - i n ends and s u b s e q u e n t e l a s t i c - p l a s t i c b e n d i n g needs t o be examined. A n a l y s i s o f n e s t e d c a s i n g

b e h a v i o r when c o n s t r a i n e d b y cement a n d / o r f o r m a t i o n s c o u l d a l s o be i n v e s t i g a t e d more t h o r o u g h l y . Second, a n a l y s i s o f

l o c a l i z e d p l a s t i c d e f o r m a t i o n s such as s y m m e t r i c a l b u c k l i n g and w r i n k l i n g i n s t a b i l i t i e s needs t o be examined. Smal l s c a l e

F o r s h o r t u n s u p p o r t e d l e n g t h s o n l y l o c a l i z e d p l a s t i c

H e l i c a l b u c k l i n g o c c u r s i n l o n g u n s u p p o r t e d l e n g t h s . I n

Two b a s i c s u b j e c t a r e a s need t o b e i n v e s t i g a t e d c o n c e r n i n g

1 3

Page 22: Geothermal Well Casing Buckling

QUALITATIVE DESCRIPTION OF VARIOUS BUCKLING MODES

1

I- <I FAILURE ZONE

FAILURE WITH WALL CONTACT

FAILURE WITHOUT BUCKLING ZONE WALL CONTACT

HELICAL I- BUCKLING ZONE

NO ADVERSE DEFORMATION

UNSUPPORTED LENGTH, L

F i g u r e 5. Q u a l i t a t i v e P l o t o f T e m p e r a t u r e Change Versus U n s u p p o r t e d L e n g t h D e p i c t i n g Buck1 i n g Reg ions .

14

Page 23: Geothermal Well Casing Buckling

laboratory t e s t s of thermally-induced buckling should a l s o be conducted t o enhance the understanding o f the phenomenon.

This report q u a n t i t a t i v e l y de f ines the Euler buckling regime f o r a c a s i n g with f i x e d ends with a n d without subsequent hole wall contac t .

1 5 : :

Page 24: Geothermal Well Casing Buckling
Page 25: Geothermal Well Casing Buckling

,

ANALY S IS

T h e o r e t i c a l Model -4 - -- - 6

----- ASsumpt ions. The down h o l e e f f e c t s o f i m p r o p e r c e m e n t i n g may be m a n i f e s t e d i n many ways. However, w i t h o u t d e t a i l e d f i e l d o r l a b o r a t o r y d a t a on g e o t h e r m a l c a s i n g b e h a v i o r o r c a s i n g f a i l u r e s , t h e r e i s l i t t l e need t o s h a r p l y f o c u s on one s u b j e c t a r e a . T h e r e f o r e a s i m p l e a n a l y t i c and n u m e r i c a l model i s p r e s e n t e d i n o r d e r t o g a i n i n s i g h t i n t o t h e prob lem. The a n a l y s i s assumed:

1 ) t h e c a s i n g was i n i t i a l l y v e r t i c a l ( b o d y f o r c e s i g n o r e d ) and c e m e n t i n g above and be low t h e u n s u p p o r t e d c a s i n g p r o v i d e d f i x e d - e n d c o n d i t i o n s ,

2 ) c o m p l i c a t i o n s f r o m c o u p l i n g s such as changes i n moment o f i n e r t i a ( I ) and weakness i n b e n d i n g were un i m p o r t a n t ,

3 ) c a s i n g s t r e s s e s r e m a i n e d i n t h e e l a s t i c r e g i o n and t h e modu lus o f e l a s t i c i t y (E) was i n d e p e n d e n t of t e m p e r a t u r e and e q u a l t o 2 9 x l o 6 p s i (200 GPa),

4 ) t h e l i n e a r t h e r m a l e x p a n s i o n c o e f f i c i e n t ( a ) was c o n s t a n t and e q u a l t o 6.5 x 10-6'F (1 .2 x lO-5'C),

5 ) c o m p l i c a t i o n s due t o c a s i n g n e s t i n g were n e g l i g i b l e ,

6 ) t h e i n t e r n a l and e x t e r n a l t i t b u l a r p r e s s u r e s were e q u a l ,

7 ) c r o s s - s e c t i o n a l shape changes ( o v a l a t i o n ) due t o l a t e r a l and b e n d i n g f o r c e s were u n i m p o r t a n t .

A s s u m p t i o n s 5, 6, and 7 were j u s t i f i e d b y t h e f o l l o w i n g f a c t s : F i r s t , c a s i n g n e s t i n g i s r a r e l y c o n s i d e r e d i n a c t u a l d e s i g n a p p l i c a t i o n s . Second, c a s i n g o v a l a t i o n p rob lems a t t h e w a l l c o n t a c t were t h o u g h t m i n o r i f s t r e s s e s r e m a i n e d b e l o w y i e l d . The n u c l e a r r e a c t o r i n d u s t r y has been a d d r e s s i n g t h i s

17

Page 26: Geothermal Well Casing Buckling

p r o b l e m t o some e x t e n t . F i n a l l y f o r l o w p r e s s u r e , h o t w a t e r , o r s team r e s e r v o i r s , t h e c a s i n g i n t e r n a l p r e s s u r e i s l i k e l y t o b e l e s s t h a n e x t e r n a l f o r m a t i o n p r e s s u r e s ; hence n e g l e c t i n g i n t e r n a l - e x t e r n a l p r e s s u r e i n t e r a c t i o n was f e l t j u s t i f i e d * ( L u b i n s k i e t a1 ., 1962; H a m m e r l i n d l , 1978; J e n k i n s and Snyder, 1979) .

These a s s u m p t i o n s p e r m i t t e d t h e a p p l i c a t i o n o f E u l e r beam t h e o r y . The o u t l i n e o f t h e e q u a t i o n deve lopmen t i s p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n . More d e t a i l e d d e r i v a t i o n s a r e p r e s e n t e d i n Append ix B.

C r i t i c a l Tempera tu re . A f r e e body d i a g r a m f o r a de fo rmed beam i s shown i n F i g u r e 6. The d i f f e r e n t i a l e q u a t i o n t h a t d e s c r i b e s t h e beam i s as f o l l o w s : (Terms a r e d e f i n e d i n F i g u r e 6 and i n Append ix A ) .

M = MR - Py + V X = E Iy "

T h e r e a r e f o u r b o u n d a r y c o n d i t i o n s :

x = o , y = o x = 0, y ' = 0

x = R, y ' = 0 x = R , y = e

The f i r s t two b o u n d a r y c o n d i t i o n s e s t a b l i s h t h e e q u a t i o n :

where

* As a check on t h i s a s s u m p t i o n , one can compare t h e m a g n i t u d e o f t h e t h e r m a l a x i a l l o a d w i t h t h e l o a d c a l c u l a t e d f r o m t h e i n t e r n a l - e x t e r n a l p r e s s u r e d i f f e r e n c e t i m e s t h e p i p e c r o s s - s e c t i o n a l area. The l a t t e r l o a d s h o u l d be much s m a l l e r i n c o m p a r i s o n t o t h e t h e r m a l l o a d .

1 8

Page 27: Geothermal Well Casing Buckling

DEFINITION OF TERMS

HOLE WALL ~

4

4 ENDS

a)

F i g u r e 6. D e f i n i t i o n of Terms: a ) L i n e S k e t c h and b) F u l l Body D i a g r a m .

1 9

Page 28: Geothermal Well Casing Buckling

The f o u r t h b o u n d a r y c o n d i t i o n e s t a b l i s h e s a r e l a t i o n s h i p

be tween MR, V, and P ( o r K ) . as seen f r o m t h e f o l l o w i n g e q u a t i o n :

T h e r e a r e t h r e e s p e c i a l cases

MR V y ' = p ( K s i n K R ) - ( 1 - cos K R )

The t h r e e cases a r e :

2 ) 1 - C O S K R = 0 and s i n K R = 0

3 ) M = 0 a..d 1 - c o s K R = 0 R

Case 1 i s t h e s i t u a t i o n b e f o r e w a l l c o n t a c t (y < e ) . c a s i n g t a k e s t h e shape o f a c o s i n e f u n c t i o n :

MR y = p ( 1 - C O S K X )

where

K = 2 n / L

The c r i t i c a l l o a d (Per) i s t h e r m a l l y i n d u c e d and

( 3 )

The

t h u s

( 4 )

e q u a l t o AEaAT. The r e s u l t i n g e x p r e s s i o n f o r t h e c r i t i c a l t e m p e r a t u r e change AT^,) w h i c h i n i t i a t e s b u c k l i n g i s :

2 4 n 1 AT^^ = -2 L Aa

( 5 )

F i g u r e 7 p l o t s e q u a t i o n ( 5 ) . The u n s u p p o r t e d l e n g t h ( L ) i s n o r m a l i z e d b y t h e o u t s i d e c a s i n g d i a m e t e r (D). A l t e r n a t e l y one can use t h e r a d i u s o f g y r a t i o n ( r ) ( N e l s o n , 1975) .

9

Page 29: Geothermal Well Casing Buckling

!

1300

c1200

!

13 3/8 tNCH 54.5ppf - ACTUAL \ A 9 5/8 INCH 36.OPPf -

BEHAVIOR - \ rn 9 5/8 INCH 40.0PPf - \

\ ~EFORMATION 100

%ooo g 900- z 2 800-

700- W 2 600-

2 500-

400-

E 300-

200

100

0

Figure 7 .

- - APPROXIMATE LIMIT -

OF EULER BUCKING - FORMULATION -

- -

1580 CASING

- -

I I I I I I I I I

Locus Del ineating Euler Buckling Region: P l o t o f Temperature Change ( A T ) Versus Normal i ted Unsupported Length ( L / D ) .

21

Page 30: Geothermal Well Casing Buckling

T h r e e t y p i c a l c a s i n g s were examined: 9 - 5 / 8 i n c h 36 p p f , 9 - 5 / 8 i n c h 40 p p f , and 13 -3 /8 i n c h 54.5 p p f ( 2 4 4 mm 54 kg/m, 244 mm 60 kg/m, and 340 mm 80 k g l m ) . L i t t l e d i f f e r e n c e between t h e c a s i n g s e x i s t s . The moment o f i n e r t i a ( I ) d e c r e a s e s s l i g h t l y f o r t h e 9 - 5 / 8 i n c h 40 p p f (244 mm 60 k g / m ) p i p e because t h e o u t s i d e d i a m e t e r r e m a i n s c o n s t a n t . T h i s e x p l a i n s t h e s l i g h t d e c r e a s e i n AT^^ f o r t h i s s u p p o s e d l y s t r o n g e r p i p e . i m p o r t a n t t o n o t e f rom e q u a t i o n ( 5 ) t h a t l a r g e r d i a m e t e r p i p e w i l l i n c r e a s e t h e c r i t i c a l b u c k l i n g t e m p e r a t u r e w h e t h e r o r n o t t h e p i p e s t r e n g t h i n c r e a s e s .

b y n o t i n g t h a t A I S C ( 1 9 8 0 ) recommends t h e s l e n d e r n e s s r a t i o ( K L / r ) r e m a i n above r ( 2 E / a )ll2.

9 Y e s t a b l i s h e d because co lumn f a i l u r e modes such as l o c a l i z e d p l a s t i c d e f o r m a t i o n o r k i n k i n g became i m p o r t a n t f o r s m a l l e r v a l u e s . The above c r i t e r i o n e s t a b l i s h e s a minimum l e n g t h o f 22 f t (6.8 m ) o r 27.5 D f o r E u l e r b u c k l i n g o f N-80 9 - 5 / 8 i n c h 40 p p f ( 2 4 4 mm 60 k g l m ) c a s i n g .

when E u l e r b u c k l i n g w i l l i n i t i a t e . Whether t h e b u c k l i n g r e s u l t s i n p l a s t i c d e f o r m a t i o n s mus t b e examined f r o m t h e s t r e s s s t a n d p o i n t . The t o t a l s t r e s s ( a t ) a f t e r b e n d i n g a t a maximum f i b e r i s e q u a l t o t h e a x i a l s t r e s s (a,) p l u s t h e maximum b e n d i n g s t r e s s ( a b ) m a x ( o v a l a t i o n s t r e s s e s n e g l e c t e d ) :

It i s

The r a n g e o f a p p l i c a b i l i t y o f e q u a t i o n ( 5 ) can be e s t i m a t e d

T h i s c r i t e r i o n was

Maximum s t r e s s b e f o r e w a l l c o n t a c t . F i g u r e 7 i n d i c a t e s

‘t = lT a + (‘b)max

where

u = P c r / A = E ~ A T ~ ~ = c o n s t a n t a

= M r /I ( ‘b )max R o

The end moment r e a c t i o n ( I d R ) i n t h e e x p r e s s i o n f o r ( a b ) m a x i s f o u n d f r o m t h e c o n d i t i o n e s t a b l i s h e d b y t h e f i x e d ends; t h e

22

Page 31: Geothermal Well Casing Buckling

t h e r m a l d i s p l a c e m e n t ( s ( T ) ) mus t e q u a l t h e sum o f t h e a x i a l l o a d d i s p l a c e m e n t ( s ( P ) ) and t h e c a s i n g d e f l e c t i o n d i s p l a c e m e n t ( s ( y ) ) ( B o l e y and Weiner , 1960) :

The d i s p l a c e m e n t s a r e e x p r e s s e d as:

( 1 1 ) 6 ( P ) = PcrL/AE = c o n s t a n t

a (y ) = ( y l ) ' dx (T imoshenko, 1961) ( 1 2 )

2 =($) L

Once b u c k l i n g has o c c u r r e d t h e t h e r m a l l y i n d u c e d l e n g t h change s ( T ) i s e n t i r e l y abso rbed b y t h e co lumn d e f l e c t i o n t e r m s (y ) ; hence, s ( P ) r e m a i n s c o n s t a n t . C o n s e q u e n t l y u a r e m a i n s a t t h e c r i t i c a l b u c k l i n g s t r e s s as n o t e d above. I n s e r t i n g t h e d i s p l a c e m e n t e x p r e s s i o n s i n t o e q u a t i o n ( 9 ) and s o l v i n g f o r MR

r e s u l t s i n ( A T > AT^,):

( 1 4 ) 1 / 2 MR = [ a ( A T - AT^^)] lr

A s s e m b l i n g t h e e x p r e s s i o n s f o r ua and ( a b ) m a x and

i n s e r t i n g i n t o ( 6 ) y i e l d s :

4 L r 0 1 + --51--T-' [a ( AT-AT,, ) 3 I2 1 ( 1 5 ) f ~ ( r o + r i )

at = EaATcr

23

Page 32: Geothermal Well Casing Buckling

E q u a t i o n ( 1 5 ) i s p l o t t e d f o r 13 -3 /8 i n c h 54.5 p p f (340 mm 80 kg /m) c a s i n g w i t h L / D = 50, 100, 200 i n F i g u r e 8. The u p p e r r a n g e o f a p p l i c a b i l i t y f o r f i g u r e 8 i s when t h e s t e e l r e a c h e s

i t s y i e l d p o i n t ( 8 0 k s i ( 5 5 0 MPa) f o r N-80 c a s i n g ) o r t h e c a s i n g d e f l e c t s enough t o c o n t a c t t h e h o l e s i d e s . The l a t t e r c o n d i t i o n i s a d d r e s s e d be low. F i g u r e 9 p l o t s maximum d e f l e c t i o n (ymax) v e r s u s t e m p e r a t u r e change ( A T ) and e n a b l e s one t o p r e d i c t when w a l l c o n t a c t w o u l d o c c u r .

c o n d i t i o n s l e a d s t o t h e r e s u l t t h a t M R = -Mb ( F i g u r e 6 ) . The de fo rmed c a s i n g shape i s n o t c o m p a t i b l e w i t h t h e s e end moments. Hence case 3, a c o n c e n t r a t e d s h e a r l o a d ( V ) a c t i n g a t t h e p o i n t o f c o n t a c t , was used t o m a t h e m a t i c a l l y d e s c r i b e t h e c a s i n g a t w a l l c o n t a c t . * The shape o f t h e c a s i n g be tween p o i n t s and " b t l i n F i g u r e 6 i s :

Maximum s t r e s s a f t e r w a l l c o n t a c t . Case 2 o f t h e b o u n d a r y --- -------------- ----

s i n 2Kx) V Y = p ( X - Z i i ;

N o t e t h a t t h e end moment ( M R ) i s r e p l a c e d w i t h t h e s h e a r f o r c e ( V ) . U n t i l w a l l c o n t a c t , t h e co lumn shape i s d e s c r i b e d b y a c o s i n e f u n c t i o n ( e q u a t i o n 2 ) . An i n s t a n t a n e o u s change i n c a s i n g shape i s r e q u i r e d . An i m p o r t a n t consequence i s t h a t s t r e s s v a l u e s a r e n o t c o m p a t i b l e when w a l l c o n t a c t o c c u r s u s i n g t h e two d i f f e r e n t shapes. E q u a t i o n s ( 4 ) and ( 1 6 ) a l o n g w i t h compu te r r e s u l t s t o be d i s c u s s e d l a t e r a r e p l o t t e d i n F i g u r e l o a .

A s o l u t i o n t o t h e p r e d i c a m e n t ( s u b j e c t t o c o n f i r m a t i o n b y n u m e r i c a l a n a l y s i s ) was t o assume t h e co lumn shape a f t e r c o n t a c t was t h e same as b e f o r e . The o n l y d i f f e r e n c e was t h a t i t was " s p l i t . " T h i s a s s u m p t i o n r e q u i r e d i m a g i n a r y end moments

. i T X m o s h E o (1959) d i s c u s s e s t h e case o f a f i x e d end beam u n i f o r m l y l o a d e d w i t h f o u n d a t i o n c o n t a c t b u t no r e f e r e n c e was found d i s c u s s i n g a x i a l l y - l o a d e d members w i t h w a l l c o n t a c t .

24

Page 33: Geothermal Well Casing Buckling

F c

GEOTHERMAL WELL CASING EULER BUCKLING MAXIMUM STRESS

I I I I 1

1

TEMPERATURE CHANGE, AT ( O R

Figure 8 . Maximum Stress ( a ) Versus Temperature Change ( A T ) f or 13-318 inch 5 4 . 5 ppf C a s i n g Assuming Unsupported Lengths ( L / D ) of 50, 100, a n d 2 0 0 .

25

Page 34: Geothermal Well Casing Buckling

GEOTHERMAL WELL CASING EULER BUCKLING

MAXIMUM DEFLECTION I I I

13 3/8 INCH S4.Sppf CASING UNSUPPORTED LENGTH

0 V D = l O O (111 ft) L/D=200 (223 ft)

A uD=60(58ff)

I

OO

F i g u r e 9. Maximum D e f l e c t i o n Versus T e m p e r a t u r e Change ( A T ) fo r 13 -3 /8 i n c h 54.5 p p f C a s i n g Assuming U n s u p p o r t e d L e n g t h s ( L / D ) o f 50, 100, and 200.

100 200 300 400

26

Page 35: Geothermal Well Casing Buckling

COMPARISON OF DEFORMED CASING SHAPES

AT AT EQUAL 80 OF* 10

l a W6 I C H Mdppf CA6lG

HOLE QAP. 010=060 (6.60 NCMS) 0 . UNSUPPORTEO L€NGTn.UD=lOO

6 - 0 NARCRESULTS --- y,=(lIZ) (1 - corn Ka), K=Wl 6 w 7 - ___ yr=(o/U (a 41121o.ln 2x11) ,

g 6 -

0 6 - 5

t: 3. n

,g=- - a) z

fCP g 4 -

*?a O F WAS AT NECESSARY FOR WALL CONTACT ~PREDICM BY MARC) - Af 2 -

400 600 800

1 - j=, / 5 ° OO- 200

LENGTH (INCHES)

-.

COMPARISON OF DEFORMED CASING SHAPES

10, I

YARC RESULTS 0 AT=lOOeF A AT = 200.F

~ ~ = a o o * ~ ANALYTIC RESULTS (AT=SOO*F)

LENGTH (INCHES)

COMPARISON OF DEFORMED CASING SHAPES

10, 1

b)

1 15 W6 INCH 64.5 ppf CASING UNSUPPORTED LENGTH. U D = 100 HOLE QAP. o/O=O.SO (6.60 INCHES) YARC RESULT

ANALYTIC RESULT AT AT= SOOT ~ ~ = a o o * ~

LENGTH (INCHES)

F i g u r e 10. Deformed C a s i n g Shapes w i t h W a l l C o n s t r a i n t P r e d i c t e d by MARC and T h e o r e t i c a l Models a t a ) A T = 80°F, b ) M A R C r e s u l t s a t A T o 300°F, and c ) A n a l y t i c R e s u l t s a t AT = 30OoF.

2 7

Page 36: Geothermal Well Casing Buckling

( M R ) e x i s t e d e q u a l t o Pe/2 . The m a t h e m a t i c a l model was s i m i l a r t o t h a t used p r i o r t o t h e w a l l c o n t a c t w i t h t h e e x c e p t i o n o f a v a r i a b l e co lumn l e n g t h ( 2 ) .

between t h e f i x e d end and t h e p o i n t o f w a l l c o n t a c t . The l e n g t h ( 2 ) s h o r t e n s as t h e c a s i n g segment a g a i n s t t h e w a l l l e n g t h e n s due t o i n c r e a s e d d e f o r m a t i o n . An e x p r e s s i o n f o r was f o u n d f r o m t h e c o n d i t i o n t h a t t h e - t h e r m a l d i s p l a c e m e n t ( 6 ( T ) ) e q u a l e d t h e sum o f t h e a x i a l l o a d d i s p l a c e m e n t ( s ( P ) ) and t h e beam d e f l e c t i o n d i s p l a c e m e n t ( a ( y ) ) . . U s i n g t h e same d i s p l a c e m e n t e x p r e s s i o n s as b e f o r e ( e q u a t i o n s ( l o ) , (ll), and ( 1 2 ) ) r e s u l t e d i n :

F i g u r e 6 d e p i c t s t h e v a r i a b l e l e n g t h ( 2 ) . I t i s t h e l e n g t h

R = {(,e)2 A + A2 + 256 L 2 2 1 I A a A T I 1 / 2 ) /16LAaAT ( 1 7 )

The t o t a l s t r e s s ( a b ) a t a maximum f i b e r i n t h e c a s i n g e q u a l s t h e a x i a l s t r e s s ( u a ) p l u s t h e maximum b e n d i n g s t r e s s

( “b )ma x ( e q u a t i o n 6 ) where:

u a = EaATcr

= M r /I (“b)max R o

( 7 )

and

2 2 MR = P e / 2 = T E I e / = 2

The e x p r e s s i o n f o r t h e maximum s t r e s s i s t h u s :

( 1 9 ) 2 2

at = EaATcr + 1 Eero /2R

F i g u r e l l a p l o t s e q u a t i o n ( 1 9 ) f o r a 1 3 - 3 / 8 i n c h 54.5 p p f (340 mm 8 0 k g / m ) c a s i n g 100 d i a m e t e r s l o n g . W a l l c o n t a c t

28

Page 37: Geothermal Well Casing Buckling

&'. i

I

i

100 13 518 INCH S4.SPPf CASING UNSUPPORTED LENGTH, LID =lo0 - 90 - HOLE GAP, */D - 0 0.26 (3.34 INCH)

- 5 0 - cn

t

b)

,-

ANALYTIC MODEL OF EULER BUCKLING WITH SUBSEQUENT

WALL CONTACT I I

isa /8 INCH s4 . sppf CASING loo - UNSUPPORTED LENGTH, L/D = 100

90 - HOLE GAP, */D 0 0.25 (5.34 INCH)

m 1.00 (13.58 INCH)

Q 8 0 - 0 O I O (6.69 INCH) A 0.71 (10.03 INCH)

0 - a) 0 0

400

TEMPERATURE CHANGE, AT ( O F )

MARC FE ANALYSIS USING THIN WALLED BEAM ELEMENT

I I I I

F i g u r e 11.

C

2 9

Page 38: Geothermal Well Casing Buckling

g e n e r a l l y l o w e r s t h e s t r e s s i f t h e d i s t a n c e t o t h e h o l e w a l l

( e / D ) i s l e s s t h a n 0.50 and t e m p e r a t u r e changes ( A T ) a r e w i t h i n t h e n o r m a l 200-3OO'F (95-15O'C) r a n g e .

-- N u m e r i c a l Model

The a n a l y s i s o f c a s i n g b u c k l i n g i s d i f f i c u l t f o r a s t a t i c f i n i t e e l e m e n t code t o h a n d l e . I n a d d i t i o n , t h e n u m e r i c a l model f o r m u l a t i o n r e q u i r e s a s l i d i n g i n t e r f a c e c a p a b i l i t y t o s i m u l a t e w a l l c o n t a c t . The n u m e r i c a l model d e v e l o p e d used t h e t h i n - w a l l ed beam e l emen t ( E u l e r t h e o r y ) w i t h c i r c u l a r c r o s s - s e c t i o n and t h e f r i c t i o n gap e l e m e n t f r o m t h e MARC f i n i t e e l e m e n t p r o g r a m (1979) . As a check, a n o t h e r model was a l s o r u n u s i n g a s t a n d a r d beam-column e l e m e n t w i t h an i d e n t i c a l m o m e n t - o f - i n e r t i a a r e a r a t i o ( I / A ) . The r e s u l t i n g s t r e s s e s were p r a c t i c a l l y i d e n t i c a l u n t i l n e a r t h e y i e l d p o i n t .

t o t h o s e o f t h e a n a l y t i c model. C o m p l i c a t i o n s due t o c a s i n g n e s t i n g and c r o s s - s e c t i o n a l shape changes ( o v a l a t i o n ) due t o l a t e r a l and b e n d i n g f o r c e s were n o t i n c l u d e d . C a s i n g i n s t a b i l i t y f r o m i n t e r n a l - e x t e r n a l p r e s s u r e i n t e r a c t i o n was

n e g l e c t e d , F i n a l l y , o n l y 13 -3 /8 i n c h 54.5 p p f ( 3 4 0 mm 80 k g l m ) c a s i n g 100 d i a m e t e r s l o n g was examined. H i g h t e m p e r a t u r e changes were a n t i c i p a t e d n e a r t h e s u r f a c e i f w e l l shutdown o c c u r r e d and t h u s l a r g e d i a m e t e r p i p e was t h o u g h t a p p r o p r i a t e . The u n s u p p o r t e d l e n g t h s e l e c t e d was a r b i t r a r y . F o r t h i s i n i t i a l i n v e s t i g a t i o n , i n e l a s t i c a n a l y s i s above t h e y i e l d p o i n t was o m i t t e d ( 8 0 k s i ( 5 5 2 MPa) f o r N-80 c a s i n g ) .

n u m e r i c a l l y u n s t a b l e ) a t A T ~ ~ e q u a l t o 58°F (14°C) . v a l u e compares p o o r l y w i t h t h e a n a l y t i c a l l y computed 72°F (22'C) c r i t i c a l t e m p e r a t u r e change AT^,). f u n c t i o n o f t h e e c c e n t r i c i t y i n i t i a l l y i n t r o d u c e d i n t h e c a s i n g model .

r u n . The c a s i n g w o u l d n e v e r r e g a i n s t a b i l i t y a f t e r b u c k l i n g

Assumpt ions . --- The n u m e r i c a l model l i m i t a t i o n s a r e s i m i l a r

D i s c u s s i o n . .- -- The n u m e r i c a l model b u c k l e d (became T h i s

However, A T i s a s t r o n g

I t was n o t p o s s i b l e t o p l o t t h e e n t i r e s t r e s s p a t h i n one

30

k i c

I 1

1 1

i I

Page 39: Geothermal Well Casing Buckling

even though t h e l o a d i n g was t e m p e r a t u r e ( s t r a i n ) c o n t r o l l e d ; hence i t was n e c e s s a r y t o e s t a b l i s h the c a s i n g deformat ion a t wal l c o n t a c t and then proceed w i t h t h e c a l c u l a t i o n s . Force e q u i l i b r i u m o c c u r r e d a t A T equal t o 7 8 ° F (26°C) which i n d i c a t e d wal l con t a c t .

Snyder (1979) c la imed thermal b u c k l i n g i n an unsupported h o l e i s no t s t r a i n c o n t r o l l e d . Fur thermore , he hypo thes i zed sudden h o r i z o n t a l movement could cause c r a c k i n g o f work-hardened, h i g h g rade s t e e l . A t f i r s t g l a n c e , the i n s t a b i l i t y p r o b l e m w i t h MARC (1979) a p p e a r s t o s u p p o r t t h e s u d d e n h o r i z o n t a l d i sp l acemen t v i ewpo in t .

v e r y h i g h ( h i g h s t r a i n r a t e ) f o r t h e above hypotheses t o be t r u e . T h e a n a l y t i c s o l u t i o n (F igu re 8 ) suggests l a r g e h o r i z o n t a l movement i s no t p o s s i b l e unless c a s i n g s t r e s s has i n c r e a s e d wel l beyond AT^^ b e f o r e buck l ing . w i t h the M A R C model may have been d u e t o t he a r t i f i c i a l t e m p e r a t u r e i n c r e a s e r a t e , b u t t h e l a r g e computer t ime r e q u i r e d t o r u n t h e model prec luded t h e use o f s m a l l e r r a t e s .

f i e l d , Baja , C a l i f o r n i a , the i n i t i a l t e m p e r a t u r e r i s e t o p roduc t ion t e m p e r a t u r e s is c a r e f u l l y monitored t o ensure s t r a i n c o n t r o l . T h e procedure requi res 30-60 days (Snyder , 1979) . T h i s rate w o u l d b e impractical i f many temperature cyc le s were

r e q u i r e d .

( 4 ) , t h e t h e o r e t i c a l curve ( 1 6 ) , and the MARC d i sp l acemen t v a l u e s f p r t h e deformed c a s i n g shape a t t h e time of wal l c o n t a c t w i t h a h o l e gap ( e / D ) equal t o 0.50 a r e compared i n F igure 10. F igure 10b p l o t s t h e MARC deformed shapes f o r t e m p e r a t u r e changes ( A T ) o f 100, 200, and 300°F (38 , 93, and 149°C) and a l s o e q u a t i o n (16) a t A T = 30OoF. A t AT equal t o 300"F, the d i f f e r e n c e i n shape between e q u a t i o n ( 1 6 ) a n d MARC i s g r e a t and w o u l d presumably get worse a t h i g h e r t e m p e r a t u r e changes .

However, t h e r a t e o f t e m p e r a t u r e i n c r e a s e w o u l d have t o b e

T h e d i f f i c u l t i e s

I t i s worth ment joning t h a t i n t h e C e r r o P r i e t o geothermal

As i p d i c a t e d e a r l i e r , t h e s p l i t - c o s i n e b e l l approximation

31

Page 40: Geothermal Well Casing Buckling

F o r t h e n u m e r i c a l c a l c u l a t i o n s , t h e c a s i n g c o n t a c t l e n g t h

w i t h t h e w a l l was q u i t e s m a l l . A t A T = 300°F and e/D = 0.75, MARC p r e d i c t e d a c o n t a c t l e n g t h o f 1 0 p e r c e n t o f t h e t o t a l l e n g t h u s i n g a t o l e r a n c e o f 0.05 i n c h e s (1.27 mm). T h i s compares w i t h 47 p e r c e n t f r o m a n a l y t i c c a l c u l a t i o n s .

(149°C) d e v e l o p e d f r o m e q u a t i o n ( 4 ) and ( 1 6 ) u s i n g t h e f r e e , u n s u p p o r t e d l e n g t h ( R ) d e t e r m i n e d f r o m M A R C r a t h e r t h a n a n a l y t i c a l l y . The r a i s e d - c o s i n e e q u a t i o n ( 4 ) c o i n c i d e d w i t h

F i g u r e 1Oc shows two shape p r e d i c t i o n s a t A T e q u a l t o 300°F

t h e MARC d a t a when t h e n u m e r i c a l v a l u e o f R was used. E q u a t i o n ( 1 6 ) p r e d i c t e d s l i g h t l y more c u r v a t u r e .

I f t h e n u m e r i c a l l y d e t e r m i n e d R i s used i n t h e e x p r e s s i o n f o r s t r e s s ( a b ) ( e q u a t i o n 19) , a v a l u e o f 64 k s i ( 4 4 1 MPa) i s p r e d i c t e d when e/D = 0.50 and AT = 300°F (149°C) . The maximum s t r e s s c a l c u l a t e d n u m e r i c a l l y was 72.5 k s i (500 MPa)

( F i g u r e l l b ) . Thus, t h e t h e o r e t i c a l e q u a t i o n s p r o v i d e a good shape and s t r e s s v a l u e p r e d i c t i o n i f t h e l e n g t h (R) i s known.

t h a t e q u a t i o n ( 4 ) d i c t a t e s u t o c c u r s a t t h e w a l l c o n t a c t w h i l e e q u a t i o n ( 1 6 ) d i c t a t e s u t o c c u r s a t t h e q u a r t e r p o i n t o f t h e f r e e l e n g t h . The MARC model showed a t g r a d u a l l y s h i f t i n g f r o m t h e w a l l c o n t a c t p o i n t a t A T e q u a l t o 78°F ( 2 6 ° C ) t o t h e q u a r t e r p o i n t a t 300°F (149°C) when e/D e q u a l s t o 0.50. The s h i f t o f u t t o t h e q u a r t e r p o i n t o c c u r r e d w i t h s m a l l e r changes i n A T as e d e c r e a s e d i n m a g n i t u d e .

F i g u r e l l b p l o t s a t v e r s u s AT f o r MARC v a l u e s . a n a l y t i c c a l c u l a t i o n s f r o m F i g u r e l l a a r e p l o t t e d f o r compar i son . The a n a l y t i c and n u m e r i c a l s o l u t i o n s compare f a v o r a b l y when t h e w a l l d i s t a n c e ( e / D ) i s 0.50. A t a h o l e gap s i z e o f 0.25, t h e a n a l y t i c s o l u t i o n shows a d i p b e l o w t h e EaAT s t r e s s l i n e . T h i s i s u n r e a l i s t i c and i n d e e d t h e n u m e r i c a l s o l u t i o n does n o t c r o s s t h e EaAT l o w e r l i m i t . The n u m e r i c a l r e s u l t s i n d i c a t e t e m p e r a t u r e changes u p t o 310°F (154°C) c o u l d be t o l e r a t e d f o r e/D = 0.75.

I n mak ing c o m p a r i s o n s be tween e q u a t i o n ( 4 ) and ( 1 6 ) , r e c a l l

The

3 2

-. .

Page 41: Geothermal Well Casing Buckling

A d d i t i o n o f & o n s t a n t S t r e s s

I t i s i m p o r t a n t t o n o t e t h e n u m e r i c a l r e s u l t s p a r a l l e l t h e E a A T l i n e i n d i c a t i n g t h e a d d i t i o n o f a c o n s t a n t s t r e s s t o t h e E a A T s t r e s s w o u l d model t h e maximum c a s i n g s t r e s s r e a s o n a b l y w e l l . Assuming t h e s t r e s s change ( A U ) i s a l i n e a r f u n c t i o n o f t h e h o l e gap (e ) , a l e a s t squares f i t r e s u l t s i n (r2 = 0.78) ( i n c h e s and p s i ) :

A U = ae + b

a = 1960; b = 2060 (20)

u = EaAT + Au

The M A R C a n a l y s i s and c o n s t a n t s t r e s s change a s s u m p t i o n a r e compared i n F i g u r e l l c . No te t h a t t h e s i m p l i f i c a t i o n i s v a l i d as l o n g as t h e c a s i n g c o n t a c t l e n g t h r e m a i n s s m a l l and t h e h o l e

gap ( e ) i s s m a l l .

A n a l y s i s Summary - ---- I n summary, t h r e e p r e d i c t i v e s t r e s s methods were examined:

n u m e r i c a l , e m p i r i c a l , and t h e o r e t i c a l . The n u m e r i c a l f o r m u l a t i o n f o r m o d e l i n g t h e c a s i n g a f t e r w a l l c o n t a c t was c o n s t r u c t e d u s i n g M A R C beam e l e m e n t s . The e m p i r i c a l m e t h o d

c o n s i s t e d of a d d i n g a s t r e s s w h i c h was a f u n c t i o n o f t h e h o l e gap d i s t a n c e ( e ) t o t h e t h e r m a l l y i n d u c e d EaAT s t r e s s . The e q u a t i o n f i t t h e n u m e r i c a l r e s u l t s r e a s o n a b l y w e l l f o r s m a l l e v a l u e s . The t h e o r e t i c a l model made use o f s i m p l e beam t h e o r y . B u c k l i n g w i t h o u t w a l l c o n t a c t was e a s i l y examined t h e o r e t i c a l l y . However, t h e c a s i n g shape a f t e r w a l l c o n t a c t as d e r i v e d s t r i c t l y 3 r o m E u l e r beam t h e o r y was n o t c o m p a t i b l e w i t h t h e i n i t i a l b u c k l i n g phase; hence t h e shape and s t r e s s p r e d i c t i o n s were o n l y i n f a i r agreement w i t h t h e n u m e r i c a l

r e s u l t s . The t h e o r e t i c a l f o r m u l a t i o n (16 and 1 9 ) p r o v i d e d a good shape and s t r e s s v a l u e p r e d i c t i o n i f t h e n u m e r i c a l l y d e t e r m i n e d w a l l c o n t a c t l e n g t h ( R ) was used.

3 3

Page 42: Geothermal Well Casing Buckling

A d e s c r i p t i o n o f t h e de fo rmed c a s i n g as a s p l i t c o s i n e b e l l ( e q u a t i o n 4 w i t h MR = P e / 2 ) was c o n t r a s t e d w i t h t h e n u m e r i c a l r e s u l t s . The s p l i t - c o s i n e f o r m u l a p r o v i d e d a good a p p r o x i m a t i o n o f t h e de fo rmed shape. The shape d e s c r i p t i o n was e x c e l l e n t if t h e n u m e r i c a l l y d e t e r m i n e d w a l l c o n t a c t l e n g t h was used. The e x p r e s s i o n f o r t h e maximum c a s i n g s t r e s s was i d e n t i c a l t o t h a t d e r i v e d i n t h e t h e o r e t i c a l f o r m u l a t i o n . O n l y t h e e x p r e s s i o n f o r t h e l e n g t h d i f f e r e d .

34

Page 43: Geothermal Well Casing Buckling

RESULT IMPLICATIONS

T h e r m a l l y I n d u c e d E u l e r Buck1 i n g ---- - ---1-_1_

L o o k i n g a t F i g u r e 8, N-80 1 3 - 3 / 8 i n c h 54.5 p p f (340 mm 80 k g l m ) c a s i n g w i t h a y i e l d s t r e s s ( U ) o f a b o u t 75 k s i

( 5 1 7 MPa) a t 500°F (260°C) * and 100 d i a m e t e r u n s u p p o r t e d l e n g t h w o u l d s l i g h t l y exceed y i e l d c o n d i t i o n s i f a 300°F (150°C) t e m p e r a t u r e e x c u r s i o n f r o m cement c o n s t r a i n e d c o n d i t i o n s o f 100-200°F (40-95°C) o c c u r r e d . These c o n d i t i o n s r o u g h l y c o r r e s p o n d t o t y p i c a l i n t e r m e d i a t e c a s i n g i n g e o t h e r m a l w e l l s ( F i g u r e 1 ) . The i n t r o d u c t i o n o f a s m a l l t e n s i l e s t r e s s w o u l d e a s i l y r e d u c e t h e s t r e s s t o b e l o w y i e l d . C o n s e q u e n t l y , s i m p l e E u l e r b u c k l i n g s h o u l d n o t cause a s e r i o u s p r o b l e m i f AT i s l e s s t h a n 275°F (135°C) f o r u n s u p p o r t e d l e n g t h s ( L / D ) above 100. Note, however , t h a t t h e r e was no a l l o w a n c e f o r a d e s i g n

f a c t o r . A p p l i c a t i o n o f e i t h e r d i r e c t t e n s i o n o r i n t e r n a l p r e s s u r e d u r i n g t h e c e m e n t i n g p r o c e s s w o u l d e s t a b l i s h an a x i a l t e n s i l e l o a d a l t h o u g h t h e m i c r o a n n u l u s be tween t h e c a s i n g and cement w o u l d b e e n l a r g e d u s i n g i n t e r n a l p r e s s u r e . O p e r a t o r s h a v e a v o i d e d t h e r m a l w e l l c a s i n g f a i l u r e s i n p a r t i a l l y cemented s team i n j e c t i o n w e l l s b y u s i n g N-80 o r P-110 g r a d e c a s i n g

Y

( H o l l i d a y , 1969) . T h i s t e n d s t o c o n f i r m t h e l o w p r o b a b i l i t y o f

p r o b l e m s w i t h N-80 c a s i n g . The u s e o f l a r g e r d i a m e t e r p i p e w o u l d i n c r e a s e t h e c r i t i c a l

b u c k l i n g t e m p e r a t u r e b u t n o t s i g n i f i c a n t l y . T h i s i s

* One i s s a f e i n assuming no s i g n i f i c a n t r e d u c t i o n i n u l i i m a t e c a s i n g s t r e n g t h o c c u r s f o r t e m p e r a t u r e r i s e s b e l o w 660 F (350°C), b u t t h e y i e l d s t r e n g t h d e f i n i t e l y d e c r e a s e s w i t h an i n c r e a s e i n t e m p e r a t u r e . M a n u f a c t u r e r s g e n e r - a l l y do n o t make t e n s i l e t e s t s a t e l e v a t e d t e m p e r a t u r e s and t h u s s t a t i s t i c a l l y r e l i a b l e i n f o r m a t i o n i s l a c k i n g . K a r l s s o n (1978) s u g g e s t s t h e u s e o f D I N St. 45.8. The maximum p o s s i b l e r e d u c t i o n i n y i e l d s t r e n g t h f r o m t h i s f o r m u l a f o r t h e above c o n d i t i o n s i s 19 p e r c e n t . The above r e d u c t i o n o f 6 p e r c e n t c o r r e s p o n d s t o t h e minimum o b t a i n e d f r o m s e v e r a l p r i v a t e t e s t s .

35

I

Page 44: Geothermal Well Casing Buckling

d e m o n s t r a t e d b y F i g u r e 7 where commonly used c a s i n g d i a m e t e r s

p l o t on t o p o f each o t h e r . I n a d d i t i o n , t h e b e h a v i o r a f t e r b u c k l i n g m i g h t be i m p a i r e d because t h e minimum u n s u p p o r t e d l e n g t h f o r E u l e r b u c k l i n g t o o c c u r w o u l d i n c r e a s e .

I t has been t a c i t l y assumed t h a t s t r e s s e s above y i e l d c o n s t i t u t e d f a i l u r e . T h i s i s a r e a s o n a b l e f a i l u r e c r i t e r i o n because permanent d e f o r m a t i o n c o u l d h i n d e r r e m e d i a l work on t h e w e l l . P l a s t i c d e f o r m a t i o n was p e r m i t t e d a t Prudhoe Bay (Goodman, 1978) where p e r m a f r o s t thaw p roduced s t r a i n c o n t r o l l e d c o m p r e s s i v e f o r c e s , b u t t h e u s u a l l y s u c c e s s f u l cement j o b p r e c l u d e d t h e b u c k l i n g f a i l u r e mode.

c o n c e r n s c a s i n g c o l l a p s e . The t h e o r e t i c a l a rgument ( e q u a t i o n 1 6 ) d i c t a t e s an end r e a c t i o n ( V ) a t t h e w a l l s e p a r a t i o n p o i n t . The end r e a c t i o n i n c r e a s e s w i t h h o l e gap s i z e . A t AT = 300°F and e/D = 0.75, an end r e a c t i o n o f 11 900 l b (52 .9 k N ) was c a l c u l a t e d n u m e r i c a l l y . U s i n g t h i s v a l u e as a p o i n t l o a d on a c y l i n d e r , one c a l c u l a t e s v a l u e s be tween 51.9 and 77.2 k s i (358-532 MPa). The mean i s s l i g h t l y b e l o w t h e 7 5 k s i (517 MPa) y i e l d p o i n t . B u t t h e c a s i n g has d e f i n i t e l y r e a c h e d y i e l d a t t h e q u a r t e r p o i n t ( x / R = 1 / 4 ) . T h e r e f o r e , y i e l d i s more l i k e l y t o o c c u r a t t h e f r e e - l e n g t h q u a r t e r p o i n t f i r s t r a t h e r t h a n a t t h e w a l l c o n t a c t .

A g a i n r e f e r r i n g t o F i g u r e 8, t h e i m p o r t a n c e o f b u c k l i n g changes d r a m a t i c a l l y f o r weaker K - 5 5 c a s i n g . The c a s i n g w o u l d n o r m a l l y y i e l d a t A T = 295°F (145°C) w i t h f u l l l a t e r a l s u p p o r t assuming u = 55 k s i (380 MPa), b u t s i m p l e E u l e r b u c k l i n g wou ld p r o d u c e s t r e s s e s above y i e l d w i t h o n l y a 155°F ( 7 0 ° C ) t e m p e r a t u r e change. I f a no rma l 230-3OO'F (95-15O'C) t e m p e r a t u r e e x c u r s i o n o c c u r r e d , t h e K-55 c a s i n g w o u l d y i e l d when b u c k l i n g o c c u r r e d . L a t e r a l s u p p o r t w o u l d be a n e c e s s i t y . (The c a s i n g m i g h t , y i e l d even w i t h f u l l l a t e r a l s u p p o r t . ) The a n a l y s i s has i g n o r e d t h e s t r e n g t h e n i n g o f c a s i n g n e s t i n g w i t h c o m p l e t e cement j o b s . T h i s s i t u a t i o n m i g h t w a r r a n t e x a m i n a t i o n .

From F i g u r e l l b i t can be g e n e r a l l y s t a t e d t h a t w a l l c o n t a c t a f t e r b u c k l i n g l o w e r e d c a s i n g s t r e s s e s i n c o m p a r i s o n t o s i m p l e

The c a s i n g l o a d s a l o n g t h e w a l l c o n t a c t a r e i m p o r t a n t as

Y

36

Page 45: Geothermal Well Casing Buckling

i

I

I

b u c k l i n g . The n u m e r i c a l r e s u l t s i n d i c a t e d 13-318 i n c h 54.5 p p f ( 3 4 0 mm 8 0 k g l m ) N-80 c a s i n g w i t h u n s u p p o r t e d l e n g t h s ( L / D ) above 100 w i t h gaps ( e / D ) b e l o w 0.75 s h o u l d n o t e x p e r i e n c e d i f f i c u l t i e s i f t e m p e r a t u r e e x c u r s i o n s a r e w i t h i n t h e n o r m a l 200-300°F (95-150°C) r a n g e . f i e l d e v i d e n c e t h a t p r o d u c t i o n t u b i n g , w h i c h i s c l o s e l y c o n f i n e d , s e l d o m p e r m a n e n t l y d e f o r m s when b u c k l e d ( T e x t e r ,

1955) . h o l e s e x c e e d i n g e /D > 0.75. The t r e n d o f t h e maximum s t r e s s ( u t ) i n F i g u r e l l b s u g g e s t t h a t l i t t l e d e t r i m e n t w o u l d o c c u r a t w a l l c o n t a c t w i t h g r e a t l y e n l a r g e d h o l e s . The c a s i n g w o u l d a l r e a d y b e n e a r y i e l d f o r t h e t e m p e r a t u r e change ( A T ) n e c e s s a r y f o r t h e l a r g e h o r i z o n t a l d i s p l a c e m e n t s .

These r e s u l t s a r e s u k p o r t e d b y t h e

L o s t c i r c u l a t i o n zones c o u l d p o t e n t i a l l y i n v o l v e e n l a r g e d

J o i n t B e h a v i o r ---- F o r N-80 c a s i n g , a r e l a t i v e l y h i g h a l l o w a b l e AT was p o s s i b l e

b e f o r e t h e c a s i n g s t e e l y i e l d e d . The w o r s t case o c c u r r e d d u r i n g w e l l s h u t - i n r e q u i r e d because o f a i r p o l l u t i o n s t a n d a r d s . If no e q u i p m e n t must pass t h r o u g h t h e c a s i n g d u r i n g t h i s p e r i o d , t h e t u b u l a r m a t e r i a l s h o u l d p e r f o r m s a t i s f a c t o r i l y . However, A P I j o i n t s a r e n o t d e s i g n e d t o w i t h s t a n d b e n d i n g s t r e s s e s and w i l l f r a c t u r e n e a r t h e l a s t engaged t h r e a d ( G r e e n i p , 1978) . B u t t r e s s t h r e a d c o n n e c t i o n s ma tch t h e p i p e body t e n s i l e s t r e n g t h and a r e c a p a b l e o f w i t h s t a n d i n g between 2.3 and 3.4 p e r c e n t s t r a i n ( d e p e n d i n g on w h e t h e r i n c o m p r e s s i o n o r t e n s i o n ) (Woo ley e t a l . , 1977) , b u t t h e y a r e s t i l l weak i n b e n d i n g . C o n s e q u e n t l y , j o i n t b e h a v i o r under l o a d i n g c o u l d p o s s i b l y b e t h e l a r g e s t f a c t o r i n c a s i n g f a i l u r e s f r o m b u c k l i n g . B e h a v i o r o f s h o u l d e r - t y p e j o i n t s u n d e r b e n d i n g s h o u l d be examined t o s e e i f a d e q u a t e improvemen ts a r e o b t a i n e d . A 100 p e r c e n t j o i n t such as t h e e a s i l y a n a l y z e d , f a b r i c a t e d , and assembled t a p e j o i n t d e v e l o p e d a t S a n d i a may b e u s e f u l . ( H u e r t a and B l a c k , 1976; Rechard e t a l . , 1982)

.-----

3 7,'

Page 46: Geothermal Well Casing Buckling

3 8

Page 47: Geothermal Well Casing Buckling

SUMMARY AND CONCLUSIONS

L i t t l e i n f o r m a t i o n i s a v a i l a b l e on g e o t h e r m a l w e l l c a s i n g b e h a v i o r o r f a i l u r e s ; t h u s e f f o r t s s h o u l d b e made t o o b t a i n d e t a i l e d d e s c r i p t i o n o f f i e l d b e h a v i o r and t h e c r i t e r i a on w h i c h f a i l u r e i s based. O p e r a t o r s h a v e e x p r e s s e d c o n c e r n o v e r c a s i n g i n s t a b i l i t y as a p o s s i b l e f a i l u r e mechanism. If a c a s i n g s t r i n g i s p l a c e d i n a x i a l compress ion f r o m t h e r m a l e l o n g a t i o n and i f t h e r e a r e s i z a b l e s e c t i o n s where n o l a t e r a l s u p p o r t i s p r o v i d e d due t o i n a d e q u a t e cement o r washout zones, t h e s t r i n g can l a t e r a l l y d e f l e c t ( b u c k l e ) .

T h i s r e p o r t p r o v i d e s p r e l i m i n a r y c a l c u l a t i o n s on t h e b u c k l i n g phenomenon. I t can g e n e r a l l y b e s t a t e d t h a t t h e r m a l l y i n d u c e d b u c k l i n g i n N-80 c a s i n g w o u l d n o t be s e r i o u s i f m i n o r a d j u s t m e n t s t o i n c r e a s e c a s i n g s t a b i l i t y were made such as a p p l y i n g a t e n s i o n p r e l o a d o r a d d i t i o n a l i n t e r n a l p r e s s u r e w h i l e cemen t ing . However, t h e s i t u a t i o n i s f a r worse f o r t h e weaker K-55 c a s i n g . F u l l l a t e r a l s u p p o r t w o u l d b e a n e c e s s i t y .

The e f f e c t o f w a l l c o n t a c t was f o u n d t o be b e n e f i c i a l f o r c l o s e l y c o n f i n e d p i p e s t r i n g s and o f no g r e a t d e t r i m e n t when h o l e gaps were l a r g e p r o v i d e d p i p e o v a l a t i o n was u n i m p o r t a n t . The weakness o f a l l Amer ican P e t r o l e u m I n s t i t u t e ( A P I ) sc rew j o i n t s i n b e n d i n g a p p e a r s t o be t h e s t r u c t u r a l l i m i t a t i o n .

The above c o n c l u s i o n s a r e based on t h e a s s u m p t i o n t h a t s t r e s s e s above y i e l d c o n s t i t u t e d f a i l u r e . I t was a l s o assumed t h e t h e r m a l e x p a n s i o n was s l o w enough t o p roduce s t r a i n c o n t r o l l e d l o a d s and t h a t t h e c a s i n g s t r i n g c o u l d be c o n s i d e r e d c o n t i n u o u s . I n t e r n a l p r e s s u r e i n s t a b i l i t y was i g n o r e d . The t e m p e r a t u r e v a r i a t i o n c o n s i d e r e d was be tween c e m e n t i n g c o n d i t i o n s o f 100-2OO'F (40-95°C) and s h u t - i n c o n d i t i o n s o f 425-450°F (220-230°C)

A n o t h e r r e g i m e o f thermal b u c k l i n g w h i c h needs t o b e i n v e s t i g a t e d i s s y m m e t r i c a l b u c k l i n g and w r i n k l i n g i n s t a b i l i t i e s

39

Page 48: Geothermal Well Casing Buckling

i n s h o r t , u n s u p p o r t e d c a s i n g l e n g t h s . F u r t h e r m o r e , i t w o u l d be b e n e f i c i a l i f l a b o r a t o r y e x p e r i m e n t s were c o n d u c t e d t o : 1 ) o b s e r v e t h e a b r u p t n e s s and e x t e n t o f h o r i z o n t a l d i s p l a c e m e n t a t b u c k l i n g , 2 ) e v a l u a t e s t r e s s r e d u c t i o n i n t h e c a s i n g f o l l o w i n g w a l l c o n t a c t , 3 ) e v a l u a t e weaken ing e f f e c t s o f p i p e o v a l n e s s , and 4 ) d e t e r m i n e t h e l i k e l i h o o d o f o t h e r f a i l u r e modes.

40

Page 49: Geothermal Well Casing Buckling

REFERENCES

1. Manual o f S t e e l C o n s t r u c t i o n , 8 t h E d i t i o n , 1980, Amer i can

2. B o l e y , B. A. and J. H. Weiner , 1960, --- T h e o r y o f Thermal

E t i t u t e o f T e e l C o n s t r u c t i o n , New York .

-- S t r e s s e s , John W i l e y and Sons, Inc . , N e w Y o r k . 7

3. Capuano, L. E., 1978, "How Geysers Steam W e l l s A r e D r i l l e d and Equ ipped, " W o r l d O i l , F e b r u a r y 1, pp. 69-72.

4. C r a n d a l l , S. H., and N. C. Dah l , 1959, An I n t r o d u c t i o n t o --- Mechan ics o f --- S o l i d s , McGraw-H i l l Book Co.,Kr-%%Yol-k.

5. Edwards, L. M., C h i l i n g a r , G. V., R i e k e 111, H. H., and F e r t l , W. H., eds. 1982, Handbook o f Geothermal Energy , - G u l f Pub1 i s h i n g Company,

6. Goodman, M. A., 1978, ' 'Wor ld O i l ' s Handbook o f A r c t i c W e l l C o m p l e t i o n s , " W o r l d O i l , Hous ton , Texas.

7. Green ip , J. T., 1978, "Opt imum C a s i n g Program D e s i g n S t r e s s e s Economy," The O i l and Gas J o u r n a l , O c t o b e r 16, pp. 76-86.

8. H a m m e r l i n d l , D. J., 1978, " B a s i c F l u i d and P r e s s u r e F o r c e s on O i l W e l l T u b u l a r s , " 5 3 r d Annual T e c h n i c a l C o n f e r e n c e and E x h i b i t i o n o f S o c i e t y o f P e t r o l e u m E n g i n e e r s o f A I M E , SPE 7594, O c t o b e r 1-3.

9. H o l l i d a y , G. H., 1969, " C a l c u l a t i o n o f A l l o w a b l e Maximum C a s i n g Tempera tu res t o P r e v e n t T e n s i o n F a i l u r e s i n Therma l W e l l s , " Paper 69-Pet-10, ASME P e t r o l e u m M e c h a n i c a l E n g i n e e r i n g Con fe rence , T u l s a , OK, September 21-25.

10. H u e r t a , M. and J. T. B l a c k , 1976, " E x p e r i m e n t a l and A n a l y t i c a l I n v e s t i g a t i o n o f an I n t e r l o c k i n g Tape J o i n t , " SAND76-0166, Sand ia N a t i o n a l L a b o r a t o r i e s , A lbuquerque , New Mex ico , O c t o b e r .

C a s i n g Des ign : B a s i c D e s i g n C o n s i d e r a t i o n s , " R e p o r t t o S a n d i a N a t i o n a l L a b o r a t o r i e s b y C o m p l e t i o n T e c h n o l o g y Company, August .

Tempera tu re Geothermal We l l s , " Geo the rma l Resources C o u n c i l , T r a n s a c t i o n s , V o l . 2, pp. 355-358.

11. J e n k i n s , C. J., and R. E. Snyder , 1979, "Geothermal We l l

12. K a r l s s o n , T h o r b j o r n , 1978, " C a s i n g D e s i g n f o r H i g h

41

Page 50: Geothermal Well Casing Buckling

13.

14.

1 5 .

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

42

Kumataka, M. K., 1981, l e t t e r t o James R. K e l s e y , S a n d i a N a t i o n a l L a b o r a t o r i e s , f r o m A m i n o i l USA, J u l y 28.

L u b i n s k i , A., W. J. A l t h o u s e , J. L. Logan, 1962, " H e l i c a l B u c k l i n g o f T u b i n g S e a l i n g i n Packe rs , " J. o f P e t r o l e u m Techno logy , pp. 655-670.

M A R C G e n e r a l P u r p o s e F i n i t e E l e m e n t Program, 1979, M A R C A n a l y s i s R e s e a r c h Corp., P a l o A l t o , C a l i f o r n i a 94306.

Ne lson , C. G:, 1975, "P rog ram i s D e s i g n e d t o A n a l y z e C a s i n g B u c k l i n g i n Therma l Recovery, " The O i l and Gas J o u r n a l , December 8, pp. 79-82.

M i t c h e l l , R. F., 1982, "Advanced W e l l Bo re T e m p e r a t u r e S i m u l a t o r , GEOTEMPE, I'SAND82-7003, Sand ia N a t i o n a l L a b o r a t o r i e s , A lbuquerque , New Mex ico .

Pye, S., 1980, l e t t e r t o S. G. Varnado, S a n d i a N a t i o n a l L a b o r a t o r i e s , f r o m U n i o n O i l , March 15.

Rechard, R. P., 3 . T. B l a c k and S. D. Meyer, 1982, " G u i d e l i n e s f o r D e s i g n i n g Tape J o i n t s , " SAND82-2416, S a n d i a N a t i o n a l L a b o r a t o r i e s , A l b u q u e r q u e , New M e x i c o

Snyder, R. E., 1979, "Geo the rma l W e l l C a s i n g D e s i g n : A S t u d y o f F a i l u r e Modes and C e m e n t i n g L i m i t a t i o n s , " R e p o r t t o S a n d i a N a t i o n a l L a b o r a t o r i e s b y C o m p l e t i o n T e c h n o l o g y Company, May.

T e x t e r , H. G., 1955, "Why O i l - W e l l T u b i n g and C a s i n g F a i l . . . b y Wear, E r o s i o n , B u c k l i n g , T o r s i o n and C o r r o s i o n , " The O i l and Gas J o u r n a l , A u g u s t 29, pp. 85-99.

Timoshenko, S., 1959, S t r e n g t h o f M a t e r i a l s , D. Van N o s t r a n d Co., I nc . , P r i n c e t o n , New J e r s e y .

Timoshenko, S., J. M. Gere, 1961, T h e o r y ------ o f E l a s t i c S t a b i l i t y , McGraw-H i l l Book Co. Inc . , New York.

W i l s o n , W. H., T. K. P e r k i n s , and J. H. S t r i e g l e r , 1980, " C a s i n g B u c k l i n g S t u d i e s Lower C e m e n t i n g Cos ts , " W o r l d O i l , September, pp. 63-67.

Wooley,.G. R., S. A. C h r i s t m a n , J. G. Crose, 1977, " S t r a i n L i m i t D e s i g n o f 13 -3 /8 i n c h N-80 B u t t r e s s Casing," 3. o f P e t r o l e u m Techno logy , pp. 355-359.

Wooley, G. R., 1980, " W e l l - B o r e and S o i l The rma l S imu l a t i o n f o r Geo the rma l We1 1 : Compar i son o f GEOTEMP P r e d i c t i o n s t o F i e l d D a t a and E v a l u a t i o n o f F l o w V a r i a b l e s , " SAND79-7116, Sand ia N a t i o n a l L a b o r a t o r i e s , A lbuquerque , New Mexico, March.

Page 51: Geothermal Well Casing Buckling

I

A

D

E

e

I

L

R

A P P E N D I X A

Nomencl a t u r e

Mb, MR

- c a s i n g c r o s s - s e c t i o n a l a r e a ( L * )

- o u t s i d e c a s i n g d i a m e t e r ( L )

- modu lus o f e l a s t i c i t y ( M / t L )

- gap be tween c a s i n g and d r i l l h o l e ( L )

- moment o f i n e r t i a ( ~ 4 )

- t o t a l u n s u p p o r t e d l e n g t h ( L )

- u n s u p p o r t e d l e n g t h between f i x e d end and

- moment a t p o i n t b and r e a c t i o n moment ( M / t )

p o i n t o f c o n t a c t w i t h w a l l ( L )

P, P C r r Pe - a x i a l l o a d , a x i a l l o a d when E u l e r b u c k l i n g

r i , r o

i n i t i a t e d , and r e a c t i o n l o a d ( M / t L )

- i n s i d e and o u t s i d e c a s i n g r a d i u s ( L )

- r a d i u s o f g y r a t i o n ( L )

v, VR - shear f o r c e a p p l i e d a t w a l l c o n t a c t and r e a c t i o n s h e a r f o r c e ( M l t L ) .

, Y S Ymax - c a s i n g d e f l e c t i o n and maximum c a s i n g

d e f l e c t i o n ( L )

Y ' , Y " - f i r s t and second d e r i v a t i v e s , r e s p e c t i v e l y

- t e m p e r a t u r e change and t e m p e r a t u r e change when E u l e r b u c k l i n g i n i t i a t e d ( T )

e x p a n s i o n (T -1

AT, ATcr

a - l i n e a r c o e f f i c i e n t o f t h e r m a l

d P ) , d T ) - a x i a l l o a d and t h e r m a l l o a d d i s p l a c e m e n t s

& l ( Y ) , 6 d Y ) - d e f l e c t i o n d i s p l a c e m e n t s b e f o r e and a f t e r w a l l c o n t a c t ( L )

43

Page 52: Geothermal Well Casing Buckling

u a s ( Q b l m a x - axia l s t r e s s a n d maximum bending s t r e s s (MltL)

Q w / s Q w / o - t o t a l casing s t r e s s w i t h a n d without w a l l contact (MltL)

Q t - t o t a l cas ing s t r e s s (MltL)

- y i e l d s t r e s s ( M / t L ) O Y

44

Page 53: Geothermal Well Casing Buckling

A P P E N D I X B

D e r i v a t i o n o f E q u a t i o n s

Append ix B p r e s e n t s i n g r e a t e r d e t a i l t h e d e r i v a t i o n s o f p e r t i n e n t e q u a t i o n s i n t h e t e x t . The c o n c e p t s a r e q u i t e s i m p l e , b u t t h e a l g e b r a can be t e d i o u s . The c a s i n g shape d e s c r i p t i o n and t h e e x p r e s s i o n f o r maximum s t r e s s b e f o r e w a l l c o n t a c t a r e d e r i v e d f i r s t . The c a s i n g shape and s t r e s s e q u a t i o n s a f t e r w a l l c o n t a c t f o l l o w . F o r c l a r i t y , a d d i t i o n a l e q u a t i o n s and f i g u r e s were added t o t h o s e p r e s e n t e d i n t h e t e x t . They a r e p r e f i x e d w i t h t h e l e t t e r IIB."

D i f f e r e n t i a1 E q u a t i o n --- -

From t h e f r e e body d i a g r a m i n F i g u r e 6b, t h e f o l l o w i n g e q u i l i b r i u m c r i t e r i a must be met:

I f a s e c t i o n t h r o u g h t h e beam i s t a k e n b e f o r e p o i n t b ( F i g u r e B - l a ) t h e n t h e f o l l o w i n g e q u a t i o n r e s u l t s :

45

Page 54: Geothermal Well Casing Buckling

FREE BODY DIAGRAMS OF WELL CASING

HOLE WALL

F i g u r e B-1. S u p p l e m e n t a r y F r e e Body D iagrams

Page 55: Geothermal Well Casing Buckling

By assuming ( y ' ) ' i s s m a l l compared t o yi' i n t h e m a t h e m a t i c a l e x p r e s s i o n f o r c u r v a t u r e , E u l e r beam t h e o r y e x p r e s s e s t h e moment M as:

M = EIy"

2 T h i s e q u a t i o n a p p l i e s assuming: 1 ) ( y ' ) i s s m a l l , 2 ) Hook's l a w a p p l i e s , 3) E i s t h e same f o r t e n s i o n and compress ion , 4 ) a p l a n e s e c t i o n r e m a i n s p l a n e a f t e r bend ing , and 5 ) l o n g i t u d i n a l f i b e r l e n g t h s do n o t change. S u b s t i t u t i n g f o r M

The s o l u t i o n o f t h e d i f f e r e n t i a l e q u a t i o n i s

where

K 2 = P / E I

From F i g u r e 6 a i t i s e v i d e n t t h e f i x e d - e n d b o u n d a r y c o n d i t i o n s a t p o i n t a a re :

x = o , y = o

x = 0, y ' = 0

C o n s e q u e n t l y :

V (1 -cos K X ) + ( x - s i n K X ) - M R

Y = T

47

Page 56: Geothermal Well Casing Buckling

C r 5 t i c a l t e m p e r a t u r e . ---a_---- B e f o r e w a l l c o n t a c t , t h e s h e a r f o r c e -- ( V ) i s z e r o . C o n s e q u e n t l y t h e c a s i n g t a k e s t h e shape o f a r a i s e d c o s i n e f u n c t i o n :

*R y = -p (1 - C O S K x ) ( 4 )

The d e f l e c t i o n and s l o p e a t p o i n t c i s a l s o s p e c i f i e d and e s t a b l i s h e s t w o a d d i t i o n a l b o u n d a r y c o n d i t i o n s :

x = L = 22, y = 0

x = L = 2 2 , y ' = o B o t h b o u n d a r y c o n d i t i o n s e s t a b l i s h a f u r t h e r r e s t r i c t i o n on K :

K = 2 ~ m / L , m = 0, 1, 2 ,... E q u a t i n g t h e two e x p r e s s i o n s f o r K and l e t t i n g m = 1 r e s u l t s i n :

2 2 P = 4r E I / L

F o r a t h e r m a l l y i n d u c e d l o a d :

P c r = A E a A T

S u b s t i t u t i n g f o r t h e l o a d P and s o l v i n g f o r AT :

2 4n I K A T =

( 6 - 4 )

----- Maximum S t r e s s . --- The t o t a l s t r e s s ( u t ) a f t e r t h e c a s i n g has b u c k l e d e q u a l s ( n e g l e c t i n g o v a l a t i o n s t r e s s e s ) :

- Qt - 0 + a

The e x p r e s s i o n o f u a i s :

48

Page 57: Geothermal Well Casing Buckling

u a = P c r I A = EabTcr = c o n s t a n t ( 7 )

F o r a l o n g , s l e n d e r c a s i n g i t i s r e a s o n a b l e t o assume a b = Mc/I wh i l e s t r e s s e s remain below y i e l d . From e q u a t i o n ( 6 - 2 ) where v = 0:

= MR C O S K X ( u s i n g 4 )

The maximum bending s t r e s s o c c u r s a t t h e end p o i n t s when:

(‘b)max = MRrolI

The r e s t r a i n i n g moment a f t e r buck l ing ( M R ) i s found by t h e p rocedure o u t l i n e d by Boley and Weiner ( 1 9 6 0 ) . The t h e r m a l l y induced l e n g t h change ( s ( T ) ) must equal t h e sum of t h e a x i a l l oad de fo rma t ion ( s ( P ) ) and t h e c a s i n g d e f l e c t i o n ( s ( y ) )

( F i g u r e B-2a) :

The e x p r e s s i o n s f o r t h e thermal and a x i a l d i s p l a c e m e n t s a r e

s ( T ) = a A T L ( 1 0 )

6 ( P ) = PcrL/AE = c o n s t a n t (11 1

T h e d e f l e c t i o n d i s p l a c e m e n t i s e q u i v a l e n t t o (where ds i s measured a long t h e c a s i n g ) :

q ( y ) = / o L ( d s - d x )

49

Page 58: Geothermal Well Casing Buckling

U s i n g a T a y l o r e x p a n s i o n o f t h e i n t e g r a n d and n e g l e c t i n g h i g h e r o r d e r t e r m s r e s u l t s i n :

b u t

-MRK y ’ = s i n Kx

hence

S u b s t i t u t i n g ( l o ) , ( l l ) , and ( 1 3 ) i n t o ( 9 ) and s o l v i n g f o r M:

A s a rgued i n t h e r e p o r t , once b u c k l i n g has o c c u r r e d , s ( T ) i s e n t i r e l y a b s o r b e d b y s (y ) ; hence s ( P ) r e m a i n s c o n s t a n t . C o n s e q u e n t l y u a r e m a i n s a t t h e c r i t i c a l b u c k l i n g s t r e s s . S u b s t i t u t i n g (6 -4 ) i n t o ( 9 - 5 ) y i e l d s :

I n s e r t i n g e q u a t i o n ( 1 4 ) i n t o ( 8 ) and e v a l u a t i n g I f o r a p i p e

y i e l d s :

(Ob)max = A E a A T c r [ a ( ~ T - AT,^)] 1 ’ 2 4 L r 0 / n ( r o + r i ) 2 7 (6-6)

S u b s t i t u t i n g (9-6) and ( 7 ) i n t o ( 6 ) r e s u l t s i n :

50

Page 59: Geothermal Well Casing Buckling

DISPLACEMENT RELATIONSHIPS

a)

6(T) = 6(P) + 262(P) 262(Y)

= 6(P) + 262(Y) . -

b) .

F i g u r e 6-2. Therma l , A x i a l , and Beam D e f l e c t i o n R e l a t i o n s h i p s .

D i s p l a c e m e n t

51

Page 60: Geothermal Well Casing Buckling

~ .

A f t e r W a l l € o n t a c t ---

- C a s i n g s h a p e . A f t e r w a l l c o n t a c t o c c u r s t h e f i x e d end b o u n d a r y c o n d i t i o n s a t p o i n t "an1 s t i l l h o l d and t h u s e q u a t i o n ( 2 ) i s a p p l i c a b l e . Two new b o u n d a r y c o n d i t i o n s a t t h e p o i n t o f w a l l c o n t a c t a re :

x = R , y = e

x = R , y ' = 0

The f o u r t h b o u n d a r y c o n d i t i o n e s t a b l i s h e s :

where

K' = P / E R

The p l a u s i b i l i t y o f a c o n c e n t r a t e d s h e a r l o a d ( V ) as opposed t o a d i s t r i b u t e d l o a d a t t h e w a l l c o n t a c t i s a r g u e d i n C r a n d a l l and Dah1 (1959) . The a rgumen t i s based on t h e a s s u m p t i o n t h a t t h e beam-column i s s t r a i g h t a t t h e s u r f a c e c o n t a c t . T h i s s i t u a t i o n p r e c l u d e s t h e p o s s i b i l i t y o f a moment Mb.

P ( o r K ) b u t s e v e r a l cases a r e e v i d e n t . F i r s t whenever s i n K R and l - c o s K R e q u a l z e r o t h e e q u a t i o n h o l d s . However, when t h i s case i s i n s e r t e d i n t o t h e s t a t i c moment r e l a t i o n i t i s f o u n d

MR = -Mb. c a s i n g shape a f t e r w a l l c o n t a c t ( F i g u r e 8 b ) .

( A f t e r w a l l c o n t a c t , t h e shear f o r c e ( V ) i s n o n z e r o i n e q u a t i o n ( 3 ) . ) p o s s i b l e t o show M R = 0 a l s o .

E q u a t i o n ( 3 ) e s t a b l i s h e s a r e l a t i o n s h i p be tween MR, V and

T h i s f a c t i s n o t c o m p a t i b l e w i t h t h e de fo rmed

A n o t h e r p o s s i b i l i t y i s where MR and l - c o s K R e q u a l z e r o .

Because Mb i s assumed t o e q u a l z e r o i t i s

52

Page 61: Geothermal Well Casing Buckling

The p l a u s i b i l i t y o f t h i s f a c t can be seen b y e x a m i n i n g t h e f r e e b o d y d i a g r a m i n F i g u r e B - l c . F i g u r e B - l c i s s i m p l y t h e m i r r o r image o f F i g u r e B- lb w h i c h was used t o o b t a i n e q u a t i o n (8 -2 ) . O n l y t h e moment MR i s m i s s i n g . A n o t h e r h e u r i s t i c a rgument i s f o u n d b y assuming F i g u r e s B - l b and B - l c a r e d i v i d e d a t t h e change i n c u r v a t u r e . A t t h e p o i n t o f c o u n t e r f l e x u r e , M = 0. A sum o f moments i n F i g u r e B - l c r e s u l t s i n Pe = V R . A p p l y i n g t h i s r e l a t i o n s h i p t o t h e moment r e l a t i o n s h i p o f e q u a t i o n ( B - 1 ) where M = 0 r e s u l t s i n M R = 0. T h e r e f o r e , i f

a s t r a i g h t s e c t i o n e x i s t s i n t h e c a s i n g a t t h e w a l l c o n t a c t , b o t h end moments a r e r e p l a c e d w i t h c o n c e n t r a t e d s h e a r f o r c e s

( V ) . From t h e c o n d i t i o n MR = 0 and 1-cos K ' x = 0 i n e q u a t i o n

( 3 ) , t h e shape o f t h e c a s i n g be tween p o i n t s ' 'a" and ''b" i s :

where

K ' = 2 n / R

A t t h e moment o f c o n t a c t R = L / 2 o r K ' = 4 r l L . Use o f t h e t h i r d b o u n d a r y c o n d i t i o n r e s u l t s i n Pe = V R .

I n o r d e r t o make c o m p a r i s o n s be tween e q u a t i o n ( 4 ) and (8 -7) i t i s d e s i r a b l e t o d e f i n e K = 2 r l L i n w h i c h c a s e e q u a t i o n ( 6 - 7 ) becomes :

i

s i n 2Kx ) ( 1 6 ) V

Y = p ( X - z .

Up u n t i l - w a l l c o n t a c t , t h e c a s i n g shape was d e s c r i b e d b y t h e c o s i n e e x p r e s s i o n ( 4 ) . A f t e r c o n t a c t , e q u a t i o n ( 1 6 ) r e q u i r e s an i n s t a n t a n e o u s change i n c a s i n g shape. The p r e d i c a m e n t r e s u l t s f r o m t h e a s s u m p t i o n o f a s t r a i g h t s e c t i o n

a t t h e i n s t a n t o f c o n t a c t . T h e r e i s a c t u a l l y a t r a n s i t i o n zone where b o t h a moment and a shear f o r c e e x i s t , b u t t h e

53

Page 62: Geothermal Well Casing Buckling

r

s i g n i f i c a n c e o f t h e c a s i n g moment s h o u l d g r a d u a l l y d e c r e a s e a f t e r w a l l c o n t a c t . *

moment and a shear ( o r more r e a l i s t i c a l l y , a d i s t r i b u t e d f o r c e ) e x i s t s i m u l t a n e o u s l y , a more d e t a i l e d a n a l y t i c s o l u t i o n i s r e q u i r e d . However, an a l t e r n a t i v e i s t o d e s c r i b e t h e c a s i n g

Because o f t h e e x i s t e n c e o f a t r a n s i t i o n zone where b o t h a

shape as a " s p l i t c o s i n e b e l l " i n t h e t r a n s i t i o n zone. The s p l i t - c o s i n e f o r m u l a t i o n i s d e v e l o p e d i n a subsequen t s e c t i o n .

F i g u r e s B - l a and B-2b. I t i s t h e l e n g t h be tween t h e f i x e d end and t h e p o i n t o f w a l l c o n t a c t . The l e n g t h ( a ) s h o r t e n s as t h e c a s i n g segment a g a i n s t t h e w a l l l e n g t h e n s due t o i n c r e a s e d d e f o r m a t i o n . An e x p r e s s i o n f o r t h e v a r i a b l e l e n g t h ( 2 )

p e r t a i n i n g t o e q u a t i o n ( 1 6 ) i s f o u n d f r o m t h e c o n d i t i o n t h a t t h e t h e r m a l d i s p l a c e m e n t ( a ( T ) ) e q u a l s t h e sum o f t h e a x i a l l o a d d i s p l a c e m e n t ( a ( P ) ) and t w i c e t h e c a s i n g d e f l e c t i o n ( 6 * ( y ) ) ( F i g u r e B-2b):

V a r i a b l e - ---- L e n g t h -- f k ) . - -- The v a r i a b l e l e n g t h ( R ) i s shown i n

The e x p r e s s i o n s f o r d i s p l a c e m e n t s a r e e q u a t i o n s ( l o ) , ( l l ) , and ( 1 2 ) as b e f o r e . S u b s t i t u t i n g e q u a t i o n ( 1 6 ) i n t o e q u a t i o n ( 1 2 ) r e s u l t s i n :

* g i m p o r t a n c e o f t h e moment c o u l d i n c r e a s e a g a i n i f enough t h e r m a l e l o n g a t i o n o c c u r r e d such t h a t t h e c a s i n g began t o b u c k l e i n t h e r e g i o n o f w a l l c o n t a c t . (W i th a t h i n - w a l l e d . p i p e i t i s more l i k e l y t h a t p l a s t i c d e f o r m a t i o n such as k i n k i n g o r c o l l a p s e w o u l d o c c u r b e f o r e assuming a h i g h e r b u c k l i n g mode.) The b u c k l i n g phenomenon i s e a s i l y v i s u a l i z e d i f a f l e x i b l e b a r o r n o t e c a r d i s b u c k l e d a g a i n s t a s o l i d s u r f a c e .

54

Page 63: Geothermal Well Casing Buckling

f c

I t i s i m p o r t a n t t o n o t e t h e d i f f e r e n c e i n t h e c a s i n g d e f l e c t i o n be tween e q u a t i o n s ( 1 3 ) and (B-9). By c o m b i n i n g e q u a t i o n s ( 1 3 ) and (B-5) i t i s e a s i l y shown:

al(y) = aL(AT - AT^^) (B-10)

The e x p r e s s i o n f o r c a s i n g d e f l e c t i o n a f t e r w a l l c o n t a c t i s g i v e n b y (B-9) b u t V = eP/R; hence:

3 e2 9 ( Y ) = (B-11)

A t t h e i n s t a n c e o f w a l l c o n t a c t , e = ymax = 2MR/P. E x p r e s s i n g MR b y ( B - 5 ) and s u b s t i t u t i n g i n t o (B-11) y i e l d s :

2 6,(y) = aL(AT - AT^^) 6 / r (B-12)

2 E q u a t i o n s (B-10) and (B-12) d i f f e r b y t h e f a c t o r 6 1 ~ . A r e l a t i o n s h i p f o r t h e v a r i a b l e l e n g t h i s f o u n d b y

s u b s t i t u t i n g ( l o ) , (ll), and (B-11) i n t o (B-8) w h i c h y i e l d s :

(B-13)

- b u t

(8 -1 5 ) 2 2 = 471 E I / L ' c r

. S u b s t i t u t i n g t h i s e x p r e s s i o n i n t o (8-13) , e v a l u a t i n g I and A, and s o l v i n g f o r R ( A T > AT^^ 1:

2 1 = 7 e 2 L / [ a A T t - r2(r i+ r: )] (B-14) R

n

I t can be shown !tl = ( 1 2 / r L ) L a t t h e i n s t a n t o f c o n t a c t r a t h e r

t h a n 1 / 2 L.

55

Page 64: Geothermal Well Casing Buckling

I n t h e above f o r m u l a t i o n , i t was assumed t h e d i s p l a c e m e n t

f r o m t h e a x i a l l o a d r e m a i n e d c o n s t a n t ( P = P c r ) . new c r i t i c a l b u c k l i n g l o a d e x i s t s f o r t h e s h o r t c a s i n g o f l e n g t h ( a ) w h i c h i s 4 t i m e s as g r e a t .

However, a

2 4r E 1 P = ''7 4

F r i c t i o n a l o n g t h e w a l l c o u l d p r o v i d e a mechanism f o r t h i s new t h r e s h o l d t o be reached . A l s o i f t h e c a s i n g was t o assume a h i g h e r b u c k l i n g mode, l a r g e r a x i a l l o a d s t h a n t h e c r i t i c a l l o a d a s s o c i a t e d w i t h t h e f i r s t b u c k l i n g mode seemed p o s s i b l e . C o n s e q u e n t l y , an e x p r e s s i o n f o r R was d e r i v e d w h i c h p e r m i t t e d an i n c r e a s e i n t h e a x i a l l o a d ( P ) , A q u a d r a t i c e x p r e s s i o n r e s u l t s :

(B-16) 5 = (3e + [9e4 + ~ A T L 2 2 r (do+d i ) ]1 '2 } 2 2 /4aATL

The l o a d P was e x p r e s s e d as r 2 E I / R 2 . T h i s i s t h e i n i t i a l v a l u e o f t h e l o a d P. The t h r e s h o l d f o r t h e l o a d P w o u l d b e 4 r E I I R . The two e x p r e s s i o n s f o r R , e q u a t i o n s (B-14) and (B-15) a r e compared i n T a b l e B - I . From t h e d i s c r e p a n c i e s i n T a b l e B-1, i t i s e v i d e n t t h a t t h e l e n g t h ( 2 ) i s a l i k e l y s o u r c e o f e r r o r i n t h e a n a l y t i c a l e x p r e s s i o n f o r t h e maximum s t r e s s d e r i v e d be low. (Good agreement e x i s t s be tween (B-16) and ( 1 7 ) and w i l l be d i s c u s s e d i n a subsequen t s e c t i o n . ) The a p p r o x i m a t i o n f o r beam d e f l e c t i o n d i s p l a c e m e n t ( s ( y ) ) was examined as a p o s s i b l e s o u r c e o f e r r o r i n t h e t h e o r e t i c a l d e t e r m i n a t i o n o f R. The second t e r m i n t h e T a y l o r e x p a n s i o n o f s ( y ) was i n c o r p o r a t e d b u t i t s i n f l u e n c e was i n s i g n i f i c a n t as o r i g i n a l l y assumed.

a f t e r t h e c a s i n g has b u c k l e d and c o n t a c t e d t h e w a l l i s e x p r e s s e d b y t h e sum o f u a and e x p r e s s i o n f o r ( ab )max i s a g a i n M c / I .

2 2

Maximum s t r e s s a f t e r wall c o n t a c t . -I_ The t o t a l s t r e s s ( u t )

( e q u a t i o n 5). The The v a l u e f o r M i s

- ---

56

Page 65: Geothermal Well Casing Buckling

T a b l e B - I . Comparison o f A n a l y t i c R e s u l t s f o r 13-318 i n c h 54.5 D D f N-80 C a s i n q w i t h an 'Unsupportede L e n g t h o f l O O D -

(ATCr = 71.7 F =: 22'C)

temp h o l e unsupported l e n g t h c h an a e d i s D 1 ace me n t qap c o n s € a n t P v a r . F- S P l l t maximum s t r e s s

Yma x - A T n c r D

- . e - 2 a 1 D L

2R3 - L

- awl 0 pwl = Y O Y

1.5 0.978 .250 . 500 . 750 . 978

2.0 1.370 . 250 .500 .750

1 . 000 1.370

. 079 . 318

.714 1.215

. 040

.162 . 364 . 649 1.214

.828 - 8 7 0 0944

1.044

- 7 1 8 .750 - 8 0 5 .888

1.073

.825 . 860 - 9 2 0

1. 000

- 7 1 6 .743 .786 .854

1 . 000

. 300 0 4 1 1 .486 . 519 0745

. 344 - 7 0 9 ,602 . 660

- 6 5 9 ,659

4.0 2.380 . 500 .054 .520 -517 - 8 3 9 . 750 .120 .547 .538 1 . 094 1.268 1. 000 - 2 1 4 . 587 - 5 7 1

1.500 . 048 - 7 1 3 - 6 7 1 1 . 362 2.380 1.214 1.131 1.000 1.466 1.021

Page 66: Geothermal Well Casing Buckling

f o u n d f r o m e q u a t i o n (B-2) where MR = 0.

e q u a t i o n ( 1 1 ) and s u b s t i t u t i n g i n t o ( 8 - 2 ) r e s u l t s i n :

E x p r e s s i n g y b y

s i n K ' X K' M =

The maximum moment w i l l o c c u r a t t h e q u a r t e r p o i n t s : X / R = 1 / 4 o r X / R = 3 /4 . ( T h i s d i f f e r s f r o m t h e c o s i n e e q u a t i o n ( 4 ) where t h e maximum b e n d i n g s t r e s s o c c u r s a t x = L / 2 . ) Thus:

( 'b) max = V r o / K ' I

b u t

1 / 2 K ' = 2n /R = ( P / E I )

h en ce

) = n E e r o / 2 R 2 'b(max

T h e r e f o r e

u t = EaATCr + r E e r o / 2 R 2

where i s d e s c r i b e d b y e q u a t i o n 8-14 o r B-16. The use o f t h e n u m e r i c a l l y d e t e r m i n e d R i n e q u a t i o n ( 1 9 ) d i d i m p r o v e t h e c o r r e s p o n d e n c e w i t h t h e n u m e r i c a l r e s u l t s .

I t s h o u l d b e n o t e d t h a t an i n c o n s i s t e n c y e x i s t s i n t h e above d e r i v a t i o n . t h e e x p r e s s i o n o f R (B-16) w h i l e t h e a x i a l s t r e s s c a n n o t e x c e e d P c r / A i n e q u a t i o n ( 1 9 ) .

r e s u l t s i n t h e t o t a l s t r e s s ( a t ) i n c r e a s i n g much f a s t e r w i t h i n c r e a s i n g AT. The r e s u l t i n g v a l u e s do n o t c o r r e s p o n d w i t h t h e n u m e r i c a l r e s u l t s and t h u s e q u a t i o n ( 1 9 ) was n o t a l t e r e d .

The a x i a l l o a d (P ) i n c r e a s e s beyond P c r i n

R e p l a c i n g AT^^ w i t h A T i n ( 1 9 )

58

Page 67: Geothermal Well Casing Buckling

.

f o u n d f r o m e q u a t i o n ( 6 - 2 ) where MR = 0.

e q u a t i o n ( 1 1 ) and s u b s t i t u t i n g i n t o ( 6 - 2 ) r e s u l t s i n : E x p r e s s i n g y b y

M = { , s i n K

The maximum moment w i

X

1 o c c u r a t t h e q u a r t e r p o i n t s : X / & = 1 / 4 o r X / R = 3 / 4 . ( T h i s d i f f e r s f r o m t h e c o s i n e e q u a t i o n ( 4 ) where t h e maximum b e n d i n g s t r e s s o c c u r s a t x = L / 2 . ) Thus:

. . = V r o / K I I ( O b ) ma x

b u t

V = Pe /R

K ' = 2 r / R = ( P / E I ) 1 / 2

hence

2 = r E e r o / 2

T h e r e f o r e

( 1 9 ) ut = EaAT,, + r E e r 0 / 2 R 2

where ! t i s d e s c r i b e d b y e q u a t i o n 6-14 o r 6-16. The use o f t h e n u m e r i c a l l y d e t e r m i n e d R i n e q u a t i o n ( 1 9 ) d i d i m p r o v e t h e c o r r e s p o n d e n c e w i t h t h e n u m e r i c a l r e s u l t s .

I t , s h o u l d be n o t e d t h a t an i n c o n s i s t e n c y e x i s t s i n t h e above d e r i v a t i o n . The a x i a l l o a d ( P ) i n c r e a s e s beyond Pcr i n

t h e e x p r e s s i o n o f R ( 6 - 1 6 ) w h i l e t h e a x i a l s t r e s s c a n n o t exceed P c r / A i n e q u a t i o n ( 1 9 ) . r e s u l t s i n t h e t o t a l s t r e s s (u t ) i n c r e a s i n g much f a s t e r w i t h

i n c r e a s i n g AT. The r e s u l t i n g v a l u e s do n o t c o r r e s p o n d w i t h t h e n u m e r i c a l r e s u l t s and t h u s e q u a t i o n ( 1 9 ) was n o t a l t e r e d .

R e p l a c i n g AT^^ w i t h A T i n ( 1 9 )

5 9

Page 68: Geothermal Well Casing Buckling

1 1

SD 1 i t-Cos i n e F o r mu 1 a t i on

F i g u r e 10a d e m o n s t r a t e s t h e two a n a l y t i c a l e x p r e s s i o n s ( 3 ) and ( 1 6 ) do n o t a g r e e i n shape when c o n t a c t o c c u r s . T h e r e i s a t r a n s i t i o n p e r i o d f r o m e q u a t i o n ( 3 ) and ( 1 6 ) . R a t h e r t h a n r e s o r t t o a more c o m p l i c a t e d m a t h e m a t i c a l d e s c r i p t i o n o f t h e c a s i n g d u r i n g t h e t r a n s i t i o n , t h e c a s i n g shape was d e s c r i b e d as

a s p l i t - c o s i n e b e l l . One mus t assume t h e end moments c o n t i n u e t o a c t a f t e r w a l l c o n t a c t . Summing moments a b o u t an end o f t h e f r e e b o d y d i a g r a m y i e l d s :

MR = P e / 2 (B-17)

The f o l l o w i n g shape d e s c r i p t i o n r e s u l t s when t h e end moment e x p r e s s i o n i s s u b s t i t u t e d i n t o ( 3 ) :

y = 7 e ( 1 - C O S K x ) (B-18)

An i d e n t i c a l e x p r e s s i o n pops o u t f r o m e q u a t i o n ( 2 ) i f V i s s e t e q u a l t o z e r o and t h e b o u n d a r y c o n d i t i o n s a p p l i c a b l e a f t e r w a l l con t a c t a r e a p p l i e d .

d e s c r i p t i o n o f l e n g t h ( a 3 ) f o l l o w s t h e s t e p s o u t l i n e d i n t h e p r e v i o u s s e c t i o n . E q u a t i o n (B-8) d e s c r i b e s t h e t h e r m a l d i s p l a c e m e n t ( s ( T ) ) . E q u a t i o n (8 -13) d e s c r i b e s t h e beam

d i s p l a c e m e n t ( ~ ( y ) ) . The a x i a l d i s p l a c e m e n t t e r m c o r r e s p o n d s t o ( 1 1 ) e x c e p t t h a t t h e a x i a l l o a d i s a l l o w e d t o i n c r e a s e beyond P c r .

L e n q t h d e s c r i p t i o n R 3 . The d e r i v a t i o n f o r t h e

I t f o l l o w s t h a t R 3 i s r e p r e s e n t e d by :

(6-19) 2 P R 3 = ( n e ) / (8LoAT - m) 2 I f t h e e x p r e s s i o n f o r t h e l o a d P = 7 E I / R 2 i s s u b s t i t u t e d i n

( 6 - 1 8 ) and t h e r e s u l t i n g q u a d r a t i c i s s o l v e d f o r R 3 , t h e n :

1 / 2 = ( ( n e ) A'+ [ ( x ~ ) ~ A ' + 256L 2 2 n IAaAT] ) / 1 6 L A t r ~ T R 3

60

Page 69: Geothermal Well Casing Buckling

. i

V a l u e s of k3 f o r v a r i o u s t e m p e r a t u r e changes ( A T ) and h o l e

gaps a r e t a b u l a t e d i n T a b l e B - I . The agreement be tween ( 1 7 ) and (B-19) i s v e r y good.

Maximum s t r e s s . e x p r e s s e d b y e q u a t i o n s (6), ( 7 ) , and ( 8 ) e x c e p t t h a t MR i s e q u i v a l e n t t o P e / 2 (B-17) . An e x p r e s s i o n i d e n t i c a l t o ( 1 9 ) r e s u l t s .

The t o t a l maximum s t r e s s ( u t ) i s ----_II

61-62

Page 70: Geothermal Well Casing Buckling

.

Page 71: Geothermal Well Casing Buckling

. . D i s t r i b u t i o n : T ID-4500-R66-UC-66~ ( 5 0 7 )

Tom Anderson V e n t u r e I n n o v a t i o n s P. 0. Box 35845 Hous ton , TX 77035

Ed Bingman - b e l l O i l Company two S h e l l P l a z a P. 0. Box 2099 Hous ton , TX 77001

L a r r y Diamond D y n a - D r i l l

I r v i n e , CA 92713 P. 0. B O X C-19576

John E. F o n t e n o t NL P e t r o l e u m S e r v i c e s P. 0. Box 60087 Hous ton , TX 77205

D r . M e l v i n F r i e d m a n P r o f e s s o r o f Geology Cen t e r f o r Tec t ono phys i c s

and Dep t . o f Geo logy Texas A&M U n i v e r s i t y C o l l e g e S t a t i o n , TX 77843

Tom T u r n e r P h i l l i p s P e t r o l e u m Company Geo the rma l O p e r a t i o n s 655 E a s t 4500 S o u t h S a l t Lake C i t y , UT 84107

Jim K i n g s o l v e r Geo the rma l O p e r a t i o n s S m i t h T o o l

I r v i n e , CA 92713 P. 0. B O X C-19511

James W. L a n g f o r d S e c u r i t y D i v i s i o n D r e s s e r I n d u s t r i e s , I n c . P. 0. Box 24647 D a l l a s , TX 75224

H a r v e y E. M a l l o r y P. 0. Box 54696 T u l s a , OK 74155

Gene P o l k NL B a r o i d 6400 Uptown B l v d . NE, 365W A lbuquerque , NM 87110

Del E. P y l e U n i o n Geo the rma l D i v i s i o n U n i o n O i l Co. o f C a l i f o r n i a Un ion O i l C e n t e r Los Angeles, CA 90017

John C. Rowley Los Alamos N a t i o n a l Labs M a i l S t o p 570 Los Alamos, NM 87545

W i l l i a m D. Rumbaugh Research and Deve lopmen t O t i s P. 0. Box 34380 D a l l a s , TX 75234

D w i g h t Smith H a l l i b u r t o n Drawer 143 1 Duncan, OK 73533

Tom Warren Amoco P r o d u c t i o n Company R e s e a r c h C e n t e r P. 0. Box 591 T u l s a , OK 74102

Ed M a r t i n S u p e r i o r O i i E a s t e r n D i v i s i o n P. 0. Box 51108 O C S L a f a y e t t e , LA 70505

B. J. L i v e s a y 129 L i v e r p o o l C a r d i f f , CA 92007

U. S. D e p a r t m e n t o f Energy ( 4 ) Geo the rma l Hydropower

Techno1 o g i e s D i v i s i o n F o r r e s t a l B l d g . CE324 1000 Independence Ave. S.W. Washington, D.C. 20585 A t t n : J . B r e s e e

D. C lemen ts R. Toms D. A l l e n

63

Page 72: Geothermal Well Casing Buckling

W. P. Grace, DOE/AL N u c l e a r & Geosc iences D i v i s i o n

1500 1510 1520 1521 1522 1522 1522 1523 1524 1530 1540 3141 3151 9000 9700 9730 9740 9741 9741 9743 9746 9747 9750 9760 9770 8214

W. Herrmann D. B. Hayes T. 8. Lane R. D. K r i e g T. G. P r i d d y R. P. Rechard K. W. S c h u l e r R. C. R e u t e r W. N. S u l l i v a n L. W. D a v i s o n W. C. L u t h L. J. E r i c k s o n ( 5 ) W. L. Garne r ( 3 ) G. A. F o w l e r E. H. Beckner W. D. Wear t R. K. T r a e g e r J. R. K e l s e y ( 1 0 ) 6. C. Caskey ( 5 ) H. C. Hardee B. G r a n o f f P. J. Hommert V. L. Dugan R. W. Lynch G. E. B r a n d v o l d M. A. Pound

6 4

0 V . S . GOVERNMENT PRINTING OFFICE: 1983-0-676-027/525