GeometryandAlgebraof...

36

Transcript of GeometryandAlgebraof...

Page 1: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Geometry and Algebra ofHyperplane Arrangements

Franco V SaliolaCornell [email protected]

1

Page 2: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Hyperplane Arrangements

A hyperplane arrangement A is a �nite set of hyperplanes in Rn.

We'll consider central hyperplane arrangements: all hyperplanescontain 0 ∈ Rn.

2

Page 3: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Faces F

The hyperplanes partition Rn into polyhedral sets. The set of facesof these polyhedra are the faces of A.

Partial order: f ≤ g ⇐⇒ f is a face of g.The maximal faces are called chambers.

3

Page 4: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Intersection Lattice L

The intersection lattice L of A is the collection of all possibleintersections of the hyperplanes in A ordered by inclusion.

X

>>>>

>>>>

>>>>

>>>>

> Y

¡¡¡¡

¡¡¡¡

¡¡¡¡

¡¡¡¡

¡

Z

Rn

BBBB

BBBB

||||

||||

X

BBBB

BBBB

Y Z

||||

||||

0

Warning: Others order L be reverse inclusion!

4

Page 5: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Support Map

supp : F → L sends a face to the linear span of that face.

X

x==

====

====

====

====

====

====

­­­­

­­­­

­­­­

­­­­

­­­­

­­­­

­ Rn

BBBB

BBBB

||||

||||

c

22fffffffffffffffff X

BBBB

BBBB

Y Z

||||

||||

kkkkkkkkkkkkkkkkkkkkk

d

88pppppppppppppp

88qqqqqqq 0

This is an order-preserving surjection of posets.

5

Page 6: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

A Product on F

xy is the face you are in by moving a small positive distance alonga line from x to y.

x>>

>>>>

>>>>

>>>>

>>>

>>>>

>>>>

­­­­

­­­­

­­­­

­­­­

­­­­

­­

yjjjjjjjjjjjjjjjjjjj

xy

x>>

>>>>

>>>>

>>>>

>>>

>>>>

>>>>

­­­­

­­­­

­­­­

­­­­

­­­­

­­

yjjjjjjjjjjjjjjjjjjj

yx

Another charaterization: oriented matroid composition.

6

Page 7: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some Computations

x>>

>>>>

>>>>

>>>>

>>>>

>>>>

>>>

­­­­

­­­­

­­­­

­­­­

­­­­

­­

yjjjjjjjjjjjjjjjjjjj

¨§

¥¦x2 = x

7

Page 8: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some Computations

x>>

>>>>

>>>>

>>>>

>>>

>>>>

>>>>

­­­­

­­­­

­­­­

­­­­

­­­­

­­

yjjjjjjjjjjjjjjjjjjj

xy

¤£

¡¢xyx = xy

8

Page 9: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some Computations

x??

????

????

????

????

????

????

y

ªªªª

ªªªª

ªªªª

ªªªª

ªªªª

ªªª

ccy

??

jjjjjjjjjjjjjjjjjjjj''

cx

¤£

¡¢cx = c for all chambers c

9

Page 10: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some Computations

x

????

????

????

????

????

????

?

­­­­

­­­­

­­­­

­­­­

­­­­

­

jjjjjjjjjjjjjjjjjj

y

¨§

¥¦xy = x i� supp(y) ≤ supp(x).

10

Page 11: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some Computations

X

x>>

>>>>

>>>>

>>>>

>>>>

>>>>

>>>>

>

ªªªª

ªªªª

ªªªª

ªªªª

ªªªª

ªªªª

ª Rn

BBBB

BBBB

||||

||||

c = cx

22ffffffffffffffffX

BBBB

BBBB

Y Z

||||

||||

jjjjjjjjjjjjjjjjjjjjj

88qqqqqqq 0

¨§

¥¦supp(xy) = supp(x) ∨ supp(y).

Therefore, supp : F → L is a homomorphism of semigroups.

11

Page 12: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Face Semigroup Algebra

kF is the set of formal linear combinations of elements of F∑

x∈Fλxx

with multiplication de�ned using the product of F .

12

Page 13: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Markov Chains

� A class of Markov chains can be encoded as random walks on thechambers of A.� A step in the chain: From c move to xc with probability px.� The transition matrix of the Markov chain is the matrix of thelinear transformation of left multiplication by

x∈Fpxx,

where px is the probability measure on the faces F .

13

Page 14: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Descent Algebra

� Let W be a �nite Coxeter group. Solomon de�ned a subalgebra ofthe group algebra kW called the descent algebra of W .� W is generated by re�ections, so the hyperplanes �xed by are�ection of W form a hyperplane arrangement.� W acts on the faces F , hence also on the semigroup algebra kF .

Theorem: [Bidigare] The invariant subalgebra (kF)W

is isomorphic to Solomon's descent algebra.

14

Page 15: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Representations of kF

supp : kF // // kL aa∼=

!!DDDD

DDDD

kernel is nilpotent

77oooooooooooooo ∏

(semisimple)k

=⇒ Representations are one-dimensional and indexed by X ∈ L:

χX : kF → k

χX(y) =

1, if supp(y) ≤ X,

0, if supp(y) 6≤ X.

15

Page 16: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Quivers

A quiver Q is a directed graph. The path algebra kQ of a quiver isthe k-vector space spanned by the paths of Q with multiplicationthe composition of paths.

◦r

¾¾666

6666

666

p

¤¤©©©©

©©©©

©©

◦q

¾¾666

6666

666 ◦

¤¤©©©©

©©©©

©©

q·p = qp

p · q = 0p · r = 0◦ · ◦ = ◦

16

Page 17: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Quivers

If all the simple modules of an algebra A are one-dimensional, thenthere exists a quiver Q and an algebra surjection kQ → A.

¨§

¥¦What is the quiver Q of kF?

(The quiver of an algebra is canonical, but the surjection is not.)

17

Page 18: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Vertices and Arrows of a Quiver

� The vertices and the arrows of Q generate the path algebra kQ,so they must map to generators of A.� The vertices map to idempotents in A.� The arrows, being nilpotent and generators, map to elements in

rad(A)/ rad2(A).

� So the number of arrows from X to Y is

dimk

(Y · rad(A)/ rad2(A) ·X)

.

18

Page 19: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Number of Vertices

Idempotents �correspond� to isomorphism classes of simplemodules, so the number of vertices of the quiver is the number ofisomorphism classes of irreducible representations.

¨§

¥¦Q0 = L.

19

Page 20: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Number of Arrows

The number of arrows X → Y is

dimk

(Y · rad(A)/ rad2(A) ·X)

= dimk Ext1kF (kX , kY ),

where kX is a simple module corresponding to the vertex X.

20

Page 21: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

I Know What You Are Thinking.

21

Page 22: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Ext?!

22

Page 23: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

What do I need to know about Ext?

To compute ExtikF (kX , kY ) you need a projective resolution of kX .

A projective resolution is an exact sequence of kF-modules

· · · −→ Pi −→ · · · −→ P1 −→ P0 −→ kX −→ 0

where the modules Pi are projective modules.

We'll use the geometry of the arrangement to construct one.

23

Page 24: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Projective Resolutions of Simple Modules

� Intersect the arrangement with a sphere centered at the origin.� The dual cell decomposition of the sphere is a zonotope Z.

� The face poset of Z is the opposite of the face poset of F .

24

Page 25: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

� Therefore the augmented cellular chain complex of Z can beidenti�ed with the sequence

¨§

¥¦· · · ∂−−−−→ kFp

∂−−−−→ · · · ∂−−−−→ kF0χ−−−−→ k −−−−→ 0,

where Fp is the set of codimension p faces in F .� This sequence is exact since Z has trivial homology.

25

Page 26: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

®

­

©

ª· · ·¤£

¡¢∂

−−−−→ kFp

¤£

¡¢∂

−−−−→ · · ·¤£

¡¢∂

−−−−→ kF0χ−−−−→ k −−−−→ 0

The boundary operator ∂ is de�ned by constructing a set ofincidence numbers for the faces F .

• Pick an orientation εX for each subspace X ∈ L.• If x ≤ y, then pick a positively oriented basis {~e1}i of supp(x)

and pick a vector ~v in y.

• De�ne [x : y] = εX(~e1, . . . , ~er, ~v).

∂(x) =∑ymx

[x : y]y.

26

Page 27: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

®

­

©

ª· · · ∂−−−−→

¨§

¥¦kFp

∂−−−−→ · · · ∂−−−−→¨§

¥¦kF0

χ−−−−→ k −−−−→ 0

De�ne the action of F on Fp by

x · y =

xy, if supp(x) ≤ supp(y)

0, if supp(x) 6≤ supp(y).

Then ∂ is a left kF-module homomoprhism.

27

Page 28: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

®

­

©

ª· · · ∂−−−−→ kFp∂−−−−→ · · · ∂−−−−→ kF0

¤£

¡¢χ

−−−−→¤£

¡¢k −−−−→ 0

For χ : kF0 → k to be a module morphism, we must have

χ(y) = 1 for all y ∈ F .

28

Page 29: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Some History

This construction was used by Brown and Diaconis to compute themultiplicities of the eigenvalues of the random walk on thechambers of the hyperplane arrangement.

29

Page 30: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

®

­

©

ª· · · ∂−−−−→ kFp∂−−−−→ · · · ∂−−−−→ kF0

¤£

¡¢χ

−−−−→¤£

¡¢k −−−−→ 0

Observe that χ : kF0 → k

χ(y) = 1 for all y ∈ F

is the irreducible representation χRn : kF → k

χRn(y) = 1 if supp(y) ≤ Rn.

So¤£

¡¢k is the simple module kRn .

30

Page 31: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

kFp is Projective!

®

­

©

ª· · · ∂−−−−→

¨§

¥¦kFp

∂−−−−→ · · · ∂−−−−→¨§

¥¦kF0

χ−−−−→ k −−−−→ 0

Fix x ∈ F with support X. De�ne elements

eX = x−∑

Y >X

xeY .

They form a complete set of primitive orthogonal idempotents and

xeY =

xeY , if supp(x) ≤ Y,

0, if supp(x) 6≤ Y.

This is isomorphic to the action of F on Fp.

31

Page 32: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

Theorem: The quiver Q of kF coincides with theHasse diagram of L.

Rn

BBBB

BBBB

||||

||||

X

BBBB

BBBB

Y Z

||||

||||

0

Rn

ÃÃBBB

BBBB

B

²²}}||||

||||

X

!!BBB

BBBB

B Y

²²

Z

~~||||

||||

0

32

Page 33: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

The Relations

For every interval of length two in L take the sum of all the pathsof length that in the interval.

ÂÂ@@@

@@@@

²²ÄÄÄÄÄÄ

ÄÄÄ

ÂÂ@@@

@@@@

²²

ÄÄÄÄÄÄ

ÄÄÄ

=

ÄÄÄÄÄÄ

ÄÄÄ

ÂÂ@@@

@@@@

+

²²◦

²²◦

+

ÂÂ@@@

@@@@

ÄÄÄÄÄÄ

ÄÄÄ

◦²

±

¯

°Theorem: Let ρ denote the sum of all paths of length 2 in Q.

Then kF ∼= kQ/〈ρ〉.

33

Page 34: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

¨§

¥¦kF depends only on L.

Therefore, hyperplane arrangements with isomorphic intersectionlattices have isomorphic face semigroup algebras although the facesemigroups need not be isomorphic.

34

Page 35: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

¨§

¥¦kF is a Koszul algebra.

A Koszul algebra is an algebra where the simple modules haveprojective resolutions of �this form�.

Therefore,

• The Ext-algebra of kF is the incidence algebra I(L).

• The Ext-algebra of I(L) is kF .

35

Page 36: GeometryandAlgebraof HyperplaneArrangementslacim.uqam.ca/~saliola/maths/talks/slides/GeomAlgHypArrs.pdf · TheFaces F Thehyperplanespartition Rn intopolyhedralsets.Thesetoffaces ofthesepolyhedraarethe

'

&

$

%

¨§

¥¦Connections with poset cohomology.

� The poset cohomology of L embeds into kF .� The poset cohomology of every interval of L embeds into kF .� The Whitney cohomology of L embeds into kF .� A slight modi�cation to the de�nition of poset cohomology gives acohomology ring with a cup product that is isomorphic to kF .

36