GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA7789' 8251' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5800 0 6000...

1
? ? ? ? ? ? ? ? ? ? 7 77 78 89 9' ' 8 82 25 51 1' ' 5600 5800 6000 6200 6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 5400 5600 5800 6000 6000 5600 5800 5600 5800 6000 5800 6000 6200 6200 6400 6200 6200 6000 5800 5800 5800 5600 5800 6000 6200 6200 6800 7000 6600 6400 6200 6200 6600 6800 7200 7000 6400 6600 7000 7400 7400 7200 7000 6800 6600 5800 6600 D DD DH H- -1 10 0 D DD DH H- -2 2 D DD DH H- -1 11 1 D DD DH H- -4 4 D DD DH H- -8 8 D DD DH H- -5 5 D DD DH H- -6 6 D DD DH H- -3 3 D DD DH H- -7 7 D DD DH H- -1 1, ,1 1A A B Ba ad dg ge er r S SH H. . E El lm mo or rl lu u S SH H. . B Bl la ac ck k R Ro oc ck k S SH H. . T Tu uo ol lu um mn ne e S SH H. . B Be er rk ke el le ey y S SH H. . T Tr ra am mw wa ay y S SH H. . R Ra ar ru us s S SH H. . A An na ac co on nd da a S SH H. . H Hi ig gh h O Or re e S SH H. . W We es st t C Co ol lu us sa a S SH H. . L Le eo on na ar rd d S SH H. . T Tr ro op pi ic c S SH H. . E Ea as st t C Co ol lu us sa a S SH H. . M Ma ai in n R Ra an ng ge e S SH H. . S Si ix x O O' 'c cl lo oc ck k S SH H. . B Bu ut tt te e & & L Lo on nd do on n S SH H. . M Mo ou ul lt to on n S SH H. . C Co or rr ra a S SH H. . G Gr ra ay y R Ro oc ck k S SH H. . L Le ex xi in ng gt to on n S SH H. . M Mo ou un nt ta ai in n C Co on n S SH H. . K Ke el ll le ey y S SH H. . S St te ew wa ar rd d S SH H. . O Or ri ig gi in na al l S SH H. . W We es st t G Ga ag gn no on n S SH H. . A An ns se el lm mo o S SH H. . P Pe en nn ns sy yl lv va an ni ia a S SH H. . C Co ol lo or ra ad do o S SH H. . B Be el lm mo on nt t S SH H. . O Ot ti is sc co o S SH H. . O Op ph hi ir r S SH H. . E Em mm ma a S SH H. . T Tr ra av vo on na a S SH H. . P Pi it tt ts sm mo on nt t N No o. . 3 3 S SH H. . P Pi it tt ts sm mo on nt t N No o. . 4 4 S SH H. . S Sa ar rs sf fi ie el ld d S SH H. . H Ho om me es st ta ak ke e S SH H. . B Bl lu ue e B Bi ir rd d S SH H. . G Gr re ea at t R Re ep pu ub bl li ic c S SH H. . N Ne et tt ti ie e S SH H. . Orphan Girl SH. G Gr ra an ni it te e M Mo ou un nt ta ai in n S SH H. . G Go ol ld df fl li in nt t S SH H. . K K b b g g T T l l w w T T l l w w T T l l t t T T l l w w T T l l w w T T r r p p b b 3 3 T T r r d d i i T T l l t t T T l l t t T T l l a a t t T T l l a a t t T T l l w w T T l l w w T T l l w w T T l l w w T T l l l l T T l l l l T T l l l l T T l l l l T T l l l l T T l l l l T T l l l l T T l l a a t t T T l l w w T T l l w w T T l l l l b b T T l l l l b b T T l l l l b b T T l l l l b b T T l l l l b b T T r r p p u u T T r r p p u u T T r r p p l l T T i i r r K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K a a K K q q p p Kqp K K q q p p K K q q p p K K q q p p K K q q p p K K q q p p Kqp Q Q a a l l Q Q a a l l K K m m e e K K q q p p Q Q T T a a c c Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l ? ? ? Q Q l l s s T T l l l l b b T T l l l l b b Q Q a a l l ? ? T T r r p p b b 1 1 T T l l l l T T l l l l T T l l l l b b T T l l l l b b T T l l l l b b T T l l l l b b T T l l l l b b H H i i s s t t o o r r i i c c a a l l l l a a n n d d f f i i l l l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Q Q a a l l Kqp Kqp T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T i i r r T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l t t T T l l w w T T l l w w T T l l t t T T l l w w T T l l w w T T l l w w T T l l w w T T l l w w T T l l w w T T l l w w T T l l w w T T l l w w K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g K K b b g g P Pl la ac ce er r P Pl la ac ce er r P Pl la ac ce er r P Pl la ac ce er r P Pl la ac ce er r P Pl la ac ce er r T T r r d d i i Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c Q Q T T a a c c T Tr rp pb b 2 2 T Tr rp pb b 3 3 T Tr rp pb b 3 3 T Tr rp pb b 3 3 T Tr rp pb b 3 3 T Tr rp pb b 3 3 T Tr rp pb b 2 2 T Tr rp pb b 3 3 T T r r p p u u T T i i r r T T i i r r T T i i r r T T i i r r T T r r p p b b 1 1 T Tr rp pb b 1 1 T Tr rp pb b 1 1 T T r r p p l l T T r r p p l l T T r r p p l l T T r r p p l l T T r r p p l l T T r r p p l l T Tr rp pl l T Tr rp pl l T T r r p p u u ? ? ? 3 38 8 1 15 5 4 44 4 5 57 7 4 43 3 8 84 4 5 54 4 7 79 9 3 33 3 6 62 2 6 65 5 8 88 8 8 83 3 7 79 9 6 67 7 7 72 2 4 43 3 5 58 8 6 66 6 7 73 3 8 86 6 7 71 1 8 87 7 5 57 7 8 80 0 6 65 5 5 54 4 7 74 4 3 38 8 8 81 1 5 50 0 5 56 6 3 33 3 2 24 4 4 45 5 4 42 2 1 19 9 2 29 9 6 63 3 3 38 8 2 26 6 2 24 4 4 43 3 4 43 3 3 36 6 3 36 6 2 21 1 5 55 5 8 88 8 7 71 1 2 28 8 3 31 1 1 18 8 1 17 7 3 36 6 2 22 2 2 25 5 2 20 0 4 40 0 2 22 2 4 47 7 7 76 6 4 45 5 6 65 5 6 60 0 5 53 3 5 50 0 5 58 8 3 36 6 6 65 5 8 85 5 1 12 2 7 76 6 6 66 6 3 38 8 3 33 3 2 24 4 3 34 4 2 20 0 3 34 4 5 57 7 7 75 5 7 76 6 3 30 0 4 48 8 3 31 1 5 51 1 6 62 2 4 47 7 2 29 9 2 27 7 2 26 6 4 41 1 1 19 9 4 48 8 3 32 2 3 39 9 3 33 3 4 46 6 1 17 7 2 20 0 3 31 1 4 41 1 3 36 6 3 36 6 2 24 4 4 41 1 3 35 5 4 43 3 3 39 9 4 40 0 1 19 9 2 25 5 3 31 1 3 34 4 2 25 5 4 47 7 4 41 1 7 76 6 8 85 5 1 18 8 1 10 0 1 15 5 3 35 5 8 84 4 8 87 7 7 74 4 7 72 2 8 82 2 8 85 5 8 81 1 7 79 9 8 85 5 7 74 4 8 86 6 7 76 6 1 11 1 2 23 3 8 80 0 6 60 0 5 58 8 5 54 4 4 43 3 5 54 4 5 57 7 5 50 0 5 53 3 6 66 6 8 84 4 6 65 5 7 78 8 7 70 0 8 84 4 7 78 8 4 47 7 4 45 5 7 77 7 6 64 4 5 56 6 7 75 5 6 64 4 7 78 8 8 88 8 5 50 0 8 85 5 5 57 7 4 40 0 5 58 8 6 67 7 4 43 3 4 47 7 4 40 0 5 55 5 5 57 7 4 45 5 8 86 6 6 60 0 5 56 6 6 62 2 5 50 0 4 45 5 4 45 5 2 20 0 8 85 5 5 59 9 3 33 3 3 32 2 7 73 3 7 78 8 8 87 7 7 75 5 7 70 0 8 85 5 4 46 6 5 58 8 8 85 5 5 58 8 7 71 1 6 66 6 8 80 0 5 58 8 6 61 1 8 82 2 7 70 0 7 72 2 8 80 0 7 72 2 7 75 5 7 75 5 6 65 5 4 40 0 4 43 3 5 55 5 7 73 3 8 88 8 7 78 8 7 72 2 3 38 8 5 56 6 5 50 0 8 80 0 8 80 0 5 50 0 5 57 7 5 58 8 3 34 4 3 33 3 4 42 2 5 58 8 6 64 4 7 79 9 6 66 6 8 88 8 5 50 0 5 54 4 3 37 7 2 20 0 8 80 0 8 85 5 3 35 5 5 58 8 3 35 5 4 43 3 5 51 1 8 81 1 4 41 1 4 47 7 6 60 0 5 53 3 6 69 9 5 58 8 7 78 8 8 87 7 3 38 8 8 87 7 7 79 9 7 77 7 4 49 9 6 69 9 8 85 5 3 35 5 3 33 3 3 31 1 2 28 8 2 22 2 3 38 8 2 27 7 6 66 6 5 53 3 6 62 2 5 53 3 5 5 1 17 7 3 36 6 5 51 1 4 44 4 7 75 5 8 85 5 6 67 7 8 88 8 8 87 7 8 87 7 5 55 5 7 77 7 8 85 5 8 86 6 8 82 2 8 84 4 7 72 2 8 81 1 8 80 0 7 77 7 7 76 6 8 81 1 8 85 5 5 53 3 5 50 0 5 55 5 7 75 5 8 82 2 7 71 1 3 35 5 C Co ol lu um mb bi ia a O Or ro o W Wh hi is sk ke ey y G Gu ul lc ch h C Ca an na ad da a G Gr ro ov ve e T Ti im mb be er r B Bu ut tt te e S Si il lv ve er r B Bo ow w C Cr re ee ek k B Bi ig g B Bu ut tt te e C CI IT TY Y O OF F B BU UT TT TE E A Al li ic ce e P Pi it t S St te ee ep p M Mo ou un nt ta ai in n E El lk k P Pa ar rk k B Bi is so on n C Cr re ee ek k R RA AM MP PA AR RT T M MO OU UN NT TA AI IN N E EA AS ST T S Si il lv ve er r Yankee Doodle Tailings Pond S Sa an nd d C Cr re ee ek k B Ba as si in n C Cr re ee ek k B Bl la ac ck kt ta ai il l C Cr re ee ek k B Bu ul ll l S Sh he ee ep p C CO ON NT TI IN NE EN NT TA AL L E EA AS ST T R RI ID DG GE E F FA AU UL LT T K KL LE EP PP PE ER R C CI IT TY Y O OF F R RO OC CK KE ER R G Gu ul lc ch h H Ha ai il l G Gu ul lc ch h Y Ya an nk ke ee e D Do oo od dl le e C Cr re ee ek k B Bo ow w C Cr re ee ek k F FA AU UL LT T R RI ID DG GE E C Cr re ee ek k G Gu ul lc ch h C Cr re ee ek k G Gu ul lc ch h F Fi in no o C Cr re ee ek k R Ru un n B Bu ul ll l C Cr re ee ek k R Ru un n F FA AU UL LT T S Si il lv ve er r B Bo ow w C Cr re ee ek k U Up pp pe er r M Mi is ss so ou ul la a G Gu ul lc ch h P Pl la ac ce er r D Di is sc co ov ve er re ed d 1 18 86 64 4 U UP PP PE ER R F FA AU UL LT T C CR RE EE EK K R RU UN N B BU UL LL L 15 90 15 90 90 15 15 115 R RA AR RU US S F FA AU UL LT T K KA AN NE E F FA AU UL LT T J J. .I I. .C C F FA AU UL LT T G GA AL LL LA AT TI IN N V VN N A AN ND DR RE EW WS S V VN N B BO OE EH HM ME E V VN N S SI IL LV VE ER R B BO OW W N NO O. . 1 1 V VN N B BA AL LT TI IC C V VN N O OR RI IG GI IN NA AL L N NO O. . 6 6 R RO OB B R RO OY Y F FA AU UL LT T M MI ID DD DL LE E F FA AU UL LT T E EM MM MA A V VN N E EL LL LA A V VN N C CO OL LU UM MB BI IA A V VN N E EX XC CE EL LS SI IO OR R V VN N G GA AG GO ON N S SO O. . V VN N O OR RP PH HA AN N G GI IR RL L V VN N O O. . B BO OY Y S SH H. . A AN NG GL LO O S SA AX XO ON N V VN N F F. .W W. . M MI IL LW WA AU UK KE EE E F FA AU UL LT T H H. .W W. . M MI IL LW WA AU UK KE EE E F FA AU UL LT T B BL LU UE E B BI IR RD D V VN N T TZ ZA AR RE EN NA A V VN N I IR RO ON N C CL LA AD D V VN N S ST TA AR R W WE ES ST T V VN N O OP PH HI IR R V VN N W WI IN ND DL LA AS SS S V VN N N NO O. . 1 14 4 V VN N N NO O. . 1 16 6 V VN N N NO O. . 1 12 2 V VN N N NO O. . 2 24 4 V VN N N NO O. . 5 50 0 V VN N N NO O. . 6 6 V VN N N NO O. . 8 8 V VN N G GA AM ME EB BE ET TT TA A V VN N B BL LU UE E V VN N D DE ER RN NI IE ER R V VN N P PA AR RR RO OT T V VN N A AN NA AC CO ON ND DA A V VN N B BE EL LL LO ON NA A V VN N O OR RI IG GI IN NA AL L V VN N B BA AN NK KE ER R V VN N G GA AM MB BR RI IN NU US S V VN N A AN NS SE EL LM MO O V VN N B BO OO ON NE ER R V VN N S ST TA AR R V VN N C CO OR RR RA A F FA AU UL LT T G GR RA AY Y R RO OC CK K V VN N L LA A P PL LA AT TA A F FA AU UL LT T M MI ID DN NI IG GH HT T V VN N S SY YN ND DI IC CA AT TE E V VN N C CH HI IE EF F J JO OS SE EP PH H V VN N S SH HY YR RM ME E V VN N G GR RA AY Y R RO OC CK K F FA AU UL LT T M MT T. . C CO ON N V VN N H HI IG GH H O OR RE E V VN N D DI IA AM MO ON ND D F FA AU UL LT T E ED DI IT TH H M MA AY Y V VN N B BE EL LL L F FA AU UL LT T J JE ES SS SI IE E V VN N C CO OL LU US SA A V VN N M MA AJ JO OR R B BU UD DD D V VN N N N. . E EM MI IL LY Y V VN N P PI IL LO OT T S SH HA AF FT T V VN N B BE ER RL LI IN N V VN N R RA AI IN NB BO OW W V VN N S ST TA AT TE E V VN N A AU UR RA AR RI IA A V VN N M MA AR RG GE ET T A AN NN N V VN N B BL LA AC CK K R RO OC CK K V VN N T Tm mq qp p R RO OC CK KE ER R F FA AU UL LT T B BE ER RK KE EL LE EY Y P PI IT T O Ou ut tl li in ne e 1 19 99 95 5 C CO ON NT TI IN NE EN NT TA AL L P PI IT T O Ou ut tl li in ne e 1 19 99 95 5 N NO O. . 3 30 0 F FA AU UL LT T E EA AS ST T F FA AU UL LT T I In nd de ep pe en nd de en nc ce e V VN N A As sp pe en n V VN N G Go ol ld d S Sm mi it th h V VN N S S i i l l v v e e r r L L u u c c k k V V N N F Fl lo or ri id da a V VN N K Ki it t C Ca ar rs so on n V VN N 4 46 6° ° N N 4 46 6° °2 2' '3 30 0" " 1 11 12 2° °2 27 7' '3 30 0" " W W 1 11 12 2° °3 30 0' ' 4 46 6° °5 5' ' N N 1 11 12 2°32' 30" 1 11 12 2° °3 35 5' ' W W 1 11 12 2° °2 27 7' '3 30 0" " W W 1 11 12 2° °3 30 0' ' 1 11 12 2° °3 32 2' ' 3 30 0" " 1 11 12 2° °3 35 5' ' W W 4 46 6° ° N N 4 46 6° °2 2' '3 30 0" " 4 46 6° °5 5' ' N N 5091 376 379 380 381 382 383 384 385000mE 386 387 388 5093 5094 5095000mN 5096 5097 5098 5099 5100 5101 5102 5103 5104 376 378 379 380 381 382 383 384 385000mE 386 387 388 5093 5096 5097 5098 5099 5100 5101 5102 5103 5104 5091 5092 377 377 5095000mN 5094 Approx. limit of alluvium & bedrock contact 1 0.5 0 1 km Contour Interval 40 feet Datum is Mean Sea Level SCALE 1:24 000 True North Magnetic North 18.5° Approximate Mean Declination, 1962 MONTANA BUTTE DISTRICT LOCATION GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA Base map modified from four U.S. Geological Survey 7.5 minute topographic quadrangles; Butte North (1989), Butte South (1989), Elk Park Pass (1985), and Homestake (1978). Butte Granite (Kbg) quartz porphyry dikes (Kqp, Tmqp) Boulder Batholith aplite dikes (Ka) granite cupola carapace B-B’ Section Rhyolite pyroclastics & vent breccia (Tiv, Tvcb, Tvwb) Rhyolite dikes (Tir) Middle Paleocene rhyodacite dike & breccia Trdi Lowland Creek Volcanics Formation Big Butte Vent Complex Sparse py/Gs veins Sericite alteration zone Pre-Main Stage Mineralization Explanation Fault, showing slip direction Main Stage vein or mineralized fault Quaternary & Tertiary sediments (Qal, QTac) Rock Types Butte Granite (Kbg) quartz porphyry dikes (Kqp, Tmqp) Boulder Batholith Magnetite vein (Cu) zone Lower quartz latite pyroclastics & sediments (Tlw, Tlat, Tlt) Tlcv Middle Paleocene rhyodacite dike & breccia Trdi Lowland Creek Volcanics Formation ZnS Interior Sericite alteration zone Pre-Main Stage Mineralization Explanation Fault, showing slip direction Main Stage vein or mineralized fault Magnetite vein (Cu) zone A Blue Bird Nettie Orphan Girl Anselmo Stewart Berkeley Pit Anaconda Dome Big Butte Post-Ore Rhyolite Intrusion Limits of Modern Exposure Milwaukee fault No. 15 fault Trdi West Cupola (Inferred) Modoc qtz ppy Cupola (Inferred) Rocker fault 2.5 km 0 1 km Pittsmont Dome Continental fault Klepper fault East Ridge fault East Cupola (Inferred) Rarus fault East fault Middle fault DDH-7 DDH-6 DDH-2 DDH-10 2.5 km 1 km 0 1 km A’ B B’ A to A’ Section B” 2 km 0 0 1 km 1 km Inferred Granite Pre-Main Stage Cupola Inferred Granite Main Stage Cupola Trdi Tmqp Limits of Modern Exposure 1,500 ft. level 2,800 ft. level Kqp Mt zone Cu Ore Front Cu Ore Front DDH-7 (proj.) DDH-1, 1A (proj.) Tailings Tlcv 0.01 Mo Top of Mo 0.02 Mo 0.05 Mo 0.005 Mo 0.03 Mo 0.05 Mo 0.05 Mo 0.05 Mo 0.02 Mo 0.03 Mo 0.03 Mo 0.03 Mo 0.05 Mo 0.03 Mo Rarus fault Middle fault Badger Leonard aplite dikes (Ka) granite cupola carapace West East North South N N3 34 4°W S S3 34 4°E Tmqp Kqp Supergene Mineralization Chalcocite dominant T T r r p p u u DESCRIPTION OF MAP UNITS QUATERNARY and TERTIARY DEPOSITS Recent Alluvium deposits - Clay, silt, sand, and gravel fluvial detritus from eroded local granitic and volcanic rocks. Includes colluvium, lacustrine and terrace deposits. Landslide deposits - Poorly sorted material derived from bedrock and surficial deposits primarily occur as slump blocks and incipient rotational slumps. Older Alluvium and colluvium deposits - Poorly sorted, unconsolidated to moderately indurated, well-rounded, arkosic silt, sand, pebble and cobble detritus locally derived from granitic and volcanic rocks. Basin fill sediments near the town of Rocker are approximately 180 to 300 m thick (Feiveson, 1997; Hammar-Klose, 1997). Recent to Miocene sedimentary rocks contain locally air-fall rhyolite tuffs. Rare fossil camel, rhinoceros, horse, and oreodont teeth and bones are present in deposits south of Silver Bow Creek (Smedes et al., 1973). Locally, includes talus deposits comprised of unsorted cobble to boulder angular rock fragments and debris flow deposits adjacent to the Rocker, Continental, Klepper, and East Ridge faults, and Recent valley fill and alluvial terrace deposits (Pleistocene and Pliocene age; Elliott and McDonald, 2009). TERTIARY VOLCANIC ROCKS Lowland Creek Volcanics Formation - Modified from Smedes, (1962) Big Butte Vent Complex Rhyolite dikes - Light gray to red-brown,porphyritic rhyolite dikes and shallow irregular intrusive bodies contain plagioclase, quartz, and biotite phenocrysts surrounded in an aphanitic groundmass. Dikes south of Big Butte contain lineated flow foliation and chilled margins parallel to intrusive contacts. North of Bull Run Creek a large rhyolite intrudes dacite lavas and may be the base of an extrusive dome. Upper rhyolite pyroclastics - Light gray to reddish, moderately to strongly welded rhyolite pyroclastic rocks (ignimbrite) contain 25 to 35 volume percent crystals of shattered crystals of quartz, oligoclase-andesine, biotite, and minor sanidine in a vitroclastic matrix. Abundant fiammé have an aspect ratio of approximately 6H:1V and are circular in plan view, suggesting simple compaction. The upper rhyolite pyroclastic rocks are petrographically similar to the lower rhyolite pyroclastic rocks (Trpl), but are locally overlying Trpl along a lithic-rich basal vitrophyre, up to 5 m thick. In the north west part of the district, the occurrence of several vitrophyres, up to 5 m thick, suggests multiple cooling units. Pyroclastic breccia - Includes three subunits consisting of angular blocks (<1 m to 30 m in diameter) of granite, aplite, quartz latite ignimbrite, dacite lava, and welded rhyolite tuff surrounded in a poorly welded matrix pyroclastic rhyolite. The matrix contains broken crystal fragments of quartz, plagioclase, sanidine, and biotite. Pyroclastic breccia (<200 m wide) locally occurs at the contact of the lower rhyolite pyroclastic (Trpl) and granite (Kbg). Three subunits are subdivided based on dominant clast lithology. Trpb 1 , dominated by granite and aplite clasts. Trpb 2 , dominated by quartz latite ignimbrite blocks that locally contain distinctive eutaxitic foliation. Trpb 3 , dominated by dacite lava and breccia clasts that contain planar flow aligned plagioclase phenocrysts surrounded in an aphanitic groundmass. The pyroclastic breccia may represent the collapse of previously erupted surface rocks into the vent. Lower rhyolite pyroclastics - Light gray to reddish-brown, moderately to strongly welded rhyolite pyroclastic rocks (ignimbrite) contain 25 to 35 volume percent crystals of shattered oligoclase-andesine, quartz, biotite and sanidine in a vitroclastic matrix. The ignimbrite is intercalated locally with thin (<10 m thick) breccia lenses. Abundant (up to 20 vol. %.) cognate clasts of rhyolite and lesser amounts of partially flattened fiammé (2H:1V to 1.5V aspect ratio) are orientated parallel to the near vertical fabric. This steeply dipping foliation becomes highly contorted, locally. The rhyolite pyroclastic rocks at Big Butte have a 40 Ar/ 39 Ar age of 52.9 ± 0.14 Ma (Dudás et al., 2010). Extrusive Dacite lava - Brown to purplish red dacite lava (<120 m) consisting of abundant flow-aligned plagioclase phenocrysts (20 vol. %), biotite-rich glomerocrysts, orthopyroxene, hornblende, quartz and trace amounts of apatite and opaques are surrounded in an aphanitic groundmass (70 vol. %). There is no age determination for these dacites at Butte, but Dudás et al. (2010) suggest an age of 52.4 Ma based on a dacite sample southwest of Butte. Volcanic breccia - Light-gray, brown to purplish red breccia consists of a lower matrix- supported part and an upper clast-supported part. The lower discontinuous part (up to 50 m thick) contains subangular (less than 1 m diameter) ash-flow tuff and dacite lava fragments (60 vol. %) supported by a light-brown to very pale orange devitrified ash matrix. This lower sequence may represent a volcanic debris flow or lahar. The upper part (up to 120 m thick) of the breccia unit is dominantly framework-supported angular porphyritic dacite lava boulders (90 vol. %) up to 2 m in diameter that are enclosed in a lavender-gray dacite lava matrix. The upper breccia sequence is an autobrecciated lava along the base of the overlying dacite lava (Tll). Quartz latite ash-flow tuff - Light gray, reddish-brown and olive, poorly to strongly welded quartz latite ignimbrite contains shattered plagioclase, biotite, and hornblende crystals in a vitroclastic matrix. Eutaxitic textures are defined by conspicuous fiammé. Normal grading of lithic fragments occurs as repeated distinct zones upward in the section and correlates to 13 thin cooling units marked by distinct welding breaks. Locally, the ignimbrite is up to 300 m thick. In general, hornblende crystal abundance increases slightly from 1 to 5 vol. % upwards in the section. A vitrophyre up to 30 cm thick locally marks the basal contact. This ignimbrite has a 40 Ar/ 39 Ar age of 52.9 ± 0.14 Ma (Dudás et al., 2010) Rhyolitic air-fall tuff and base surge deposits - Light gray, unwelded laminated and cross-bedded crystal-poor ash air-fall and base surge deposit (<50 m) with up to 15 vol. % lithic fragments. This upper unit is interpreted to be the base surge and airfall deposits precursor to the overlying quartz latite ignimbrite. Volcaniclastic sedimentary deposits - Fluvial mudstone, siltstone, sandstone, and pebble conglomerate sedimentary sequences containing reworked volcaniclastic sedimentary rocks. Laminated micaceous mudstones and siltstones grade upward into coarse-grained and rippled arkosic and tuffaceous sandstones. Cross-bedding, ripples and petrified logs indicate a SSW-NNE bi-directional fluvial flow-direction. This sedimentary unit (<50 m) was deposited on an irregular erosional surface, locally marked by deeply weathered granite (grus) surrounding intensely weathered boulders of granite and aplite. Intrusive Rhyodacite dike of Rampart Mountain - Gray, porphyritic rock contains phenocrysts of plagioclase, quartz, and biotite and rare 2 cm orthoclase set in a fine-grained aplitic groundmass (Meyer et al., 1968). From east to west, this dike transects the district for >7 km at depth. Normal displacement along the Continental fault has exposed this dike on Rampart Mountain and further east in a I-15 roadcut. In the hanging wall of the Continental fault, at approximately the 2,000 foot level, a breccia at the apex of the dike, known as the Mountain View breccia, continues upward ~100 m, but is not exposed at surface (Meyer, et al., 1968). Available 40 Ar/ 39 Ar and 206 Pb/ 238 U monazite ages suggest emplacement at ~59 Ma (Dilles et al., 2004). T Tr rp pb b 3 3 T Tr rp pb b 2 2 T Tr rp pb b 1 1 Q Q a a l l Q Q T T a a c c Q Q l l s s T T i i r r T T l l a a t t T T l l t t T T l l w w T T l l l l b b T T l l l l T T r r d d i i T Tr rp pb b 1 1 T Tr rp pb b 2 2 T Tr rp pb b 3 3 LATE CRETACEOUS PLUTONIC ROCKS Boulder Batholith Modoc quartz porphyry plug, irregular intrusions and breccia - Light gray to grayish-green, porphyritic rock contains phenocrysts of plagioclase, rounded embayed quartz, sparse large (6 to 25 mm) K-feldspar, and biotite, in a very fine-grained groundmass of quartz and K-feldspar (64 Ma; Dilles et al., 2004). The Modoc quartz porphyry forms an irregular shaped plug that reaches a maximum width of ~300 m on the 2800 foot level of the Leonard mine (Meyer et al., 1968). Contacts are sinuous with moderate fragmentation of the granite (Meyer et al., 1968). Breccia fragments contain older quartz-molybdenite veinlets characteristic of the deep porphyry Cu-Mo zone. Quartz porphyry dikes - Light colored, porphyritic rock (3 to 20 m wide) contains ca. 50 vol. % aplitic groundmass and 50 vol. % phenocrysts of euhedral plagioclase, rounded quartz eyes, orthoclase and biotite phenocrysts enclosed in a fine-grained groundmass of quartz and orthoclase (66 Ma; Lund et al., 2002). Aplite, granoaplite, and pegmatite dikes and irregular intrusions - Light colored to pink dikes consisting of orthoclase, quartz, oligoclase-andesine and trace amounts of biotite, contain local occurrences of pyrite, chalcopyrite, magnetite, albitic plagioclase and very rare pyrrhotite in quartz in the core zones (Meyer et al., 1968; Smedes et al., 1962). Black tourmaline and molybdenite also occur in miarolitic cavities and are most abundant in the deepest plutonic exposures along East Ridge. Granoaplite dikes (described as a granite-aplite hybrid rock; Roberts, 1975) contain phenocrysts of plagioclase, biotite, hornblende and rounded quartz eyes entrained in fine-grained aplitic quartz and alkali feldspar groundmass (76 Ma; Lund et al., 2002). Most dikes are gently-dipping and make up parallel sheeted sets. Aplite dikes are cm- to m-thick and typically have sharp contacts with the granite. Aplite dikes locally exceed 20 m thickness and commonly zone inward to pegmatitic cores (Meyer et al., 1968). Most granoaplite dikes occur as massive gently dipping planar sheets that exceed 20 m in thickness. Contacts are gradational with the granite. Sheeted aplite dikes are abundant in the western and eastern parts of the Butte district and intrude parallel to subhorizontal joint sets observed throughout the Butte district. Mafic enclaves - Dark-green to black ellipsoidal nodules (15 to 50 cm dia.) containing crystals of plagioclase, hornblende, biotite, quartz, magnetite and minor apatite. South and adjacent to Bull Run Creek, abundant nodules occur in a linear collection (~15 by 400 meters). At this location nodules are surrounded by fine-grained granite (Kbg). Elsewhere, isolated nodules occur throughout the district. Enclaves cut by aplite dikes. Butte Granite - Gray, medium- to coarse-grained equigranular rock consists of plagioclase (35-40 vol. %), orthoclase (20-25 vol. %), quartz (15-25 vol. %), and about 20 vol. % biotite, hornblende, magnetite, titanite, ilmenite, and apatite (76.5 Ma; Meyer et al., 1968; Martin et al., 1999; Martin and Dilles, 2000, Lund et al., 2002). The granite has distinctive euhedral poikilitic K-feldspar megacrysts up to 3 cm in length (Smedes et al., 1962; Meyer et al., 1968). Occasional mafic enclaves and aplite dikes are present throughout the granite (Houston, 2001). Contact - showing dip; dashed where approximately located; and dotted where concealed Fault - showing dip; dashed where approximately located; dotted where concealed; Names shown on principal faults Vein or mineralized fault - showing dip; dotted where concealed; Names shown on principal veins Strike and dip of beds - shown in all bedded units including sedimentary rocks and sedimentary interbeds within lava flows Strike and dip of compaction foliation structure Strike and dip of rheomorphic foliation Strike and dip of joint Bidirectional paleoflow indicator Anaconda/ARCO Deep Drill Hole Locality Productive Mine Shaft Open-pit outline: Berkeley Pit and Continental Pit Waste rock Tailings pond Historic landfill References 1. Dilles, J., 1998, 2002, 2012, 1:24,000, this study. 2. Dilles, J., Stein, H., and Martin, M., and Rusk B., 2004, Re-Os and U-Pb ages for the Butte Copper District, Montana: IAVCEI Meeting, Púcon, Chile. 3. Dresser, H., 2000, Stereo Picture Guidebook to Big Butte Volcanics: Tobacco Root Geological Society, Annual Meeting, Butte, MT, August 3-6, 73 p. 4. Duaime, T., Kennelly, P., and Thale, P., 2004, Butte, Montana: Richest Hill on Earth, 100 years of underground mining, Montana Bureau of Mines and Geology: Miscellaneous Contribution 19, 1 sheet, 1:9,000. 5. Dudás, F., Ispolatov, V., Harlan, S., and Snee, L., 2010, 40 Ar/ 39 Ar Geochronology and Geochemical Reconnaissance of the Eocene Lowland Creek Volcanic Field, west-central Montana: The Journal of Geology, v. 118, No. 3, p. 295-304. 6. Elliott, C. and McDonald, C., 2009, Geologic map and geohazard assessment of Silver Bow County, Montana: Open-File Report 585, Montana Bureau of Mines and Geology, 81 p., 3 plates. 7. Feiveson, D., 1997, Seismic reflection investigation to support the existence of a normal fault in Rocker, Montana: Unpublished Senior thesis, Northfield, Minnesota, Department of Geology, Carleton College, 4 p. 8. Hammar-Klose, E., 1997, A high-resolution seismic reflection at Rocker Timber Treatment and Framing Plant site, Rocker, Montana: The College of Wooster, Keck Research Symposium in Geology, 10th, Wooster, Ohio, April 1997, p. 302–305. 9. Houston, R., 1998, 1999, mapped at 1:12,000 and 1:24,000, compiled at 1:24,000; this study. 10. Houston, R., 2001, Geology and structural history of the Butte district, Montana: Unpublished M.Sc. thesis, Corvallis, Oregon, Oregon State University, 45 p., 10 plates. 11. Lewis, R., 1998, Geologic map of the Butte 1° x 2° quadrangle, Southwestern Montana: Montana Bureau of Mines and Geology, Open File report 363, scale 1:100,000, 1 sheet, 17 p. 12. Lund, K. Aleinikoff, J., Kunk, M., Unruh, D., Zeihen, G., Hodges, W., Du Bray, E., and O‘Neill, J., 2002, SHRIMP U-Pb and 40Ar/39Ar age contrasts for relating plutonism and mineralization in the Boulder Batholith region, Montana: Economic Geology, v. 97, p. 241-267. 13. Martin, M. and Dilles, J., 2000, Timing and duration of the Butte porphyry system: Tobacco Root Geological Society, Annual Meeting, Butte, Montana, August 3-6, 2000, p. 1. 14. Martin, M., Dilles, J., and Proffett, J.M, 1999, U-Pb geochronologic constraints for the Butte porphyry system [abs.]: Geological Society of America Abstracts with Programs, v. 31, no. 7, p. A380. 15. Meyer, C., Shea, E., Goddard, C., Jr., and Staff, 1968, Ore deposits at Butte, Montana, in Ridge, J., ed., Ore deposits of the United States, 1933-67, v. 2: New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, p. 1373-1416. 16. Proffett, J.M., Jr., 1973, Structure of the Butte district, Montana: in Miller, R., ed., Guidebook for the Butte field meeting of the Society of Economic Geologists, The Anaconda Company, Butte, Montana, p. G-1 to G-12, plus figures. 17. Proffett, J.M., Burns, G., and Anaconda staff, 1982, Geologic map of the Butte district, Montana: Anaconda Archives, American Heritage Museum, Laramie, Wyoming, scale 1:12,000. 18. Reed, M., 1979 a and b, written communication. 19. Roberts, S., 1975, Early hydrothermal alteration and mineralization in the Butte district, Montana: Ph.D. thesis, Cambridge, Mass., Harvard University, 173 p. 20. Sales, R., 1914, Ore deposits at Butte, Montana: American Institute of Mining and Metallurgical Engineers Transactions, v. 46, p. 4-106. 21. Smedes, H., 1962, Lowland Creek Volcanics, an Upper Oligocene formation near Butte, Montana: Journal of Geology, v. 70, p. 255-266. 22. Smedes, H., 1967, Preliminary geologic map of the northeast quarter of Butte South Quadrangle, Montana: U.S. Geological Survey, Open File Map, 1:24,000. 23. Smedes, H., 1968, Preliminary geologic map of part of the Butte North Quadrangle, Silver Bow, Deer Lodge and Jefferson Counties, Montana: U.S. Geological Survey Open-File Report, Scale 1:48,000. 24. Smedes, H., Klepper, M., Pinckney, D., Becraft, G., and Ruppel, E., 1962, Preliminary geologic map of the Elk Park Quadrangle, Jefferson and Silver Bow Counties, Montana: U.S. Geological Survey map MF-246, Scale 1:24,000. 25. Smedes, H., Klepper, M., and Tilling, R., 1973, The Boulder Batholith, Montana: in Miller, R., ed., Guidebook for the Butte field meeting of the Society of Economic Geologists, The Anaconda Company, Butte, Montana, p. E-1 to E-16. 26. Smedes, H., Klepper, M., and Tilling, R., 1988, Preliminary map of plutonic units of the Boulder Batholith, southwestern Montana: Montana Bureau of Mines and Geology, Open-File Report 88-283, Scale 1:200,000 (& digital reprinted USGS Data Series 454, 2009). 27. Weed, W.H., 1912, Geology and ore deposits of the Butte district, Montana: U.S. Geological Survey Professional Paper 74, 262 p. Acknowledgments This research was supported by grants from the Tobacco Root Geological Society to Houston, and by NSF grants EAR-9614683 and EAR-0001230 to Dilles and Cyrus Field of Oregon State University. We greatly thank the many geologists who contributed scientific research to advance the knowledge of the geology of the Butte deposit over the last 140 years, and we acknowledge the research sponsorship until 1986 by the Anaconda Company and its successor the Atlantic Richfield Company. Steve Czehura of Montana Resources Inc. kindly provided many informative discussions as well as unpublished data of the Butte district, including geologic maps made by George Burns and John Proffett. Review of an earlier version by Professors Cyrus Field, Edward Taylor and Robert Yeats, when it was part of a M.Sc. thesis by Houston, is greatly appre- ciated. We gratefully acknowledge two Economic Geology reviewers John Proffett and David Cooke, who reviewed the map as part of the formal review process of the manuscript (Houston and Dilles, 2013). Finally, the senior author is indebted to the residents of the study area who freely gave their permission to traverse their properties. K K a a K K q q p p K K b b g g K K m m e e T T m m q q p p D U 78 85 D U 64 25 15 10 75 DDH-8 25 9 1, 9, and 23 9, 17, and 23 9, 17, 16, 1, 27, 24, 22, 15, 26, 4, 11, 20 and 18 Complied by R.A. Houston Index Map showing credit for geologic mapping noted by reference number Montana Bureau of Mines and Geology Open File MBMG 627 GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA Robert A. Houston 1 and John H. Dilles 2 2013 1 Oregon Department of Geology and Mineral Industries, Albany, Oregon 2 Oregon State University, Corvallis, Oregon This map supplements Houston and Dilles, 2013, Structural Geologic Evolution of the Butte District, Montana: Economic Geology, v. 108, no. 6, p. 1397-1424. Q Q T T a a c c T T r r p p l l T T l l l l T T l l t t T T l l w w K K a a K K q q p p K K b b g g T T r r d d i i K K m m e e T T l l l l b b T T r r p p u u T T i i r r Q Q a a l l T T l l a a t t T T m m q q p p Q Q l l s s Main Stage Mineralization Eocene Late Cretaceous QUATERNARY Paleocene CRETACEOUS TERTIARY Recent Recent to Miocene Pre-Main Stage Mineralization CORRELATION OF MAP AND CROSS SECTION UNITS T T r r p p l l Maps may be obtained from: Publications Office Montana Bureau of Mines and Geology 1300 West Park Street Butte, Montana 59701-8997 Phone: (406) 496-4167 Fax: (406) 496-4451 http://www.mbmg.mtech.edu Open File MBMG 627, Plate 1 of 1 Geology of the Butte mining district, MT, 2013 MONTANA BUREAU OF MINES AND GEOLOGY A Department of Montana Tech of The University of Montana A AA A B B B BB B

Transcript of GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA7789' 8251' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5800 0 6000...

Page 1: GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA7789' 8251' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5800 0 6000 5600 0 0 5800 0 0 0 0 0 0 0 0 0 0 0 0 5600 5800 0 0 0 0 0 0 0 0 0 0 0 7200 7000

??

??

??

??

?

?

77778899''

88225511''

5600

5800

6000

6200

6400

6600 6800

7000

7200

7400

7600 7800

8000

8200

5400

5600

5800

6000

6000

5600

5800

5600

5800

6000

5800

6000

6200 6200 6400

6200

6200

6000

5800

5800

5800

5600

5800

6000

6200

6200

6800

7000

6600

6400

6200

6200

6600

6800

7200

7000

6400

6600

7000

7400

7400

7200

7000

6800

6600

5800

6600

DDDDHH--1100

DDDDHH--22

DDDDHH--1111

DDDDHH--44

DDDDHH--88

DDDDHH--55

DDDDHH--66

DDDDHH--33

DDDDHH--77

DDDDHH--11,,11AA

BBaaddggeerr SSHH..

EEllmmoorrlluu SSHH.. BBllaacckk RRoocckkSSHH..

TTuuoolluummnneeSSHH..

BBeerrkkeelleeyySSHH..

TTrraammwwaayy SSHH..

RRaarruuss SSHH..

AAnnaaccoonnddaa SSHH..

HHiigghh OOrreeSSHH..

WWeesstt CCoolluussaaSSHH.. LLeeoonnaarrdd

SSHH..

TTrrooppiiccSSHH..

EEaasstt CCoolluussaaSSHH..

MMaaiinn RRaannggeeSSHH..

SSiixx OO''cclloocckkSSHH..BBuuttttee && LLoonnddoonn

SSHH..

MMoouullttoonnSSHH..

CCoorrrraa SSHH..

GGrraayy RRoocckk SSHH..

LLeexxiinnggttoonnSSHH..

MMoouunnttaaiinnCCoonn SSHH..

KKeelllleeyySSHH..SStteewwaarrdd

SSHH..OOrriiggiinnaall

SSHH..WWeesstt GGaaggnnoonn

SSHH..AAnnsseellmmooSSHH..

PPeennnnssyyllvvaanniiaaSSHH..

CCoolloorraaddooSSHH..

BBeellmmoonnttSSHH..

OOttiissccoo SSHH..

OOpphhiirrSSHH..

EEmmmmaaSSHH..

TTrraavvoonnaa SSHH..

PPiittttssmmoonnttNNoo.. 33 SSHH..

PPiittttssmmoonntt NNoo.. 44SSHH..

SSaarrssffiieellddSSHH..

HHoommeessttaakkeeSSHH..

BBlluuee BBiirrddSSHH..

GGrreeaattRReeppuubblliicc SSHH..

NNeettttiieeSSHH..

OrphanGirl SH.

GGrraanniittee MMoouunnttaaiinnSSHH..

GGoollddfflliinnttSSHH..

KK bb gg

TT ll ww

TT ll ww

TT ll tt

TT ll ww

TT ll ww

TT rr pp bb 33

TT rr dd ii

TT ll tt

TT ll tt

TT ll aa tt

TT ll aa tt

TT ll ww

TT ll ww

TT ll ww

TT ll ww

TT ll ll

TT ll ll

TT ll ll

TT ll ll

TT ll ll

TT ll ll

TT ll ll

TT ll aa tt

TT ll ww

TT ll ww

TT ll ll bbTT ll ll bb

TT ll ll bb

TT ll ll bb

TT ll ll bb

TT rr pp uu

TT rr pp uu

TT rr pp ll

TT ii rr

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aaKK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK aa

KK qq pp

K q p

KK qq pp

KK qq pp

KK qq pp

KK qq pp

KK qq pp

K q p

QQ aa ll

QQ aa ll

KK mm ee

KK qq pp

QQ TT aa cc

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

??

?

QQ ll ss

TT ll ll bb

TT ll ll bb

QQ aa ll

??

TT rr pp bb 11

TT ll llTT ll ll

TT ll ll bb

TT ll ll bb

TT ll ll bb

TT ll ll bbTT ll ll bb

HH ii ss tt oo rr ii cc aa llll aa nn dd ff ii ll ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

QQ aa ll

K q p

K q p

TT ii rr

TT ii rr

TT ii rrTT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT ll tt

TT ll tt

TT ll tt

TT ll tt

TT ll tt

TT ll tt

TT ll tt

TT ll ttTT ll tt

TT ll tt

TT ll tt

TT ll ww

TT ll ww

TT ll tt

TT ll ww

TT ll ww

TT ll ww

TT ll ww

TT ll wwTT ll ww

TT ll ww

TT ll ww

TT ll ww

KK bb gg

KK bb gg

KK bb gg

KK bb gg

KK bb ggKK bb gg

KK bb gg

KK bb gg

KK bb gg

KK bb gg

PPllaacceerr PPllaacceerrPPllaacceerr

PPllaacceerr

PPllaacceerr

PPllaacc

eerr

TT rr dd ii

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

QQ TT aa cc

TTrrppbb22

TTrrppbb33

TTrrppbb33

TTrrppbb33

TTrrppbb33

TTrrppbb33

TTrrppbb22

TTrrppbb33

TT rr pp uu

TT ii rr

TT ii rr

TT ii rr

TT ii rr

TT rr pp bb 11

TTrrppbb11

TTrrppbb11

TT rr pp ll

TT rr pp llTT rr pp ll

TT rr pp ll

TT rr pp ll

TT rr pp ll

TTrrppll

TTrrppll

TT rr pp uu

?

?

?

3388

1155

4444

5577

4433

88445544

7799 33336622

66558888

88337799 6677

772244335588

66667733

8866

7711

88775577

8800

665555447744

3388

8811

550055663333

22444455

44221199

2299

6633

33882266 2244

44334433

33663366

22115555

88887711

228833111188

1177

3366

2222

2255

2200

44002222

4477

7766 4455

66556600

553355005588

3366

6655

8855

112277666666

3388

33332244

3344

22003344

5577

7755

77663300

4488 3311

5511

66224477

2299 22772266

4411

1199

4488332233993333

4466

1177

2200

3311

44113366

3366

2244

4411

33554433

3399 4400

11992255

33113344

2255

4477

4411

7766

88551188

11001155

3355

8844

8877

7744

7722

8822 8855 8811

77998855

7744

8866

7766

1111 2233

8800 66005588 5544

4433

55445577

5500

5533

66668844

6655

7788 7700

8844

7788

4477 4455

777766445566 7755

66447788

8888

5500

88555577

4400

55886677

4433

4477

4400

5555 55774455

8866

6600

5566

6622

5500

4455

4455

2200

8855

5599

3333

3322

7733

7788

88777755

7700

8855

4466

5588

8855

55887711

66668800

5588

6611

8822

7700

7722

88007722

7755

77556655

44004433

5555

7733

888877887722

3388

5566

5500

88008800

5500

5577

5588

3344

3333

44225588

6644 7799

66668888

5500

55443377

2200

8800

8855

3355

5588 3355

4433

5511 8811

441144776600

5533 6699 5588

77888877

3388

8877 7799

77774499

66998855 3355

3333

33112288

2222

3388

2277

6666

5533

66225533

55

1177

33665511

4444

77558855

6677

88888877

8877

5555

7777

8855

88668822

8844 7722

8811

8800

7777

7766

8811

8855

55335500

55557755

88227711

3355

CCoolluummbbiiaa

OOrroo

WWhhii

sskkeeyy

GGuull

cchh

CCaann

aaddaa

GGrroovvee

TTiimmbbeerrBBuuttttee

SSiillvveerr BBooww CCrreeeekk

BBiiggBBuuttttee

CCIITTYY OOFFBBUUTTTTEE

AAlliiccee PPiitt

SStteeeeppMMoouunnttaaiinn

EEllkk

PPaarrkk

BBiissoonn CCrreeee

kk

RRAAMMPPAARRTTMMOOUUNNTTAAIINN

EEAASSTT

SSiillvvee

rr

Yank

eeDo

odle

Tailin

gsPo

nd

SSaannddCC

rreeeekk

BBaassiinnCC

rreeeekk

BBllaacckkttaaiill CCrreeeekk

BBuullll

SShheeeepp

CCOO

NNTTII

NNEE

NNTTAA

LL

EEAA

SSTT

RRIIDD

GGEE

FFAAUULLTT

KKLLEE

PPPP

EERR

CCIITTYY OOFFRROOCCKKEERR

GGuull

cchh

HHaaiill

GGuullcchh

YYaannkkeeeeDDooooddllee

CCrreeeekk

BBooww

CCrreeeekk

FFAAUU

LLTT

RRIIDD

GGEE

CCrreeeekk

GGuullcchh

CCrree

eekk

GGuullcchhFFiinnoo

CCrreeee

kk

RRuunn

BBuullllCCrreeeekk

RRuunn

FFAAUU

LLTT

SSiillvveerr BBooww

CCrreeeekk

UUppppeerr

MMiiss

ssoouull

aaGG

uullcchh

PPllaa

cceerr DD

iissccoo

vveerree

dd1188

6644

UUPPPP

EERR

FFAAUULL

TT

CCRREEEEKK

RRUUNN

BBUULLLL

1590

1590

90

15

15

115

RRAARRUUSS FFAAUULLTT

KKAANNEE FFAAUULLTT

JJ..II..CC FFAAUULLTTGGAALLLLAATTIINN VVNN

AANNDDRREEWWSS VVNNBBOOEEHHMMEE VVNN

SSIILLVVEERR BBOOWW NNOO.. 11 VVNN

BBAALLTTIICCVVNN

OORRIIGGIINNAALL NNOO.. 66RROOBB RROOYY FFAAUULLTT

MMIIDDDDLLEE FFAAUULLTT

EEMMMMAA VVNN

EELLLLAA VVNN

CCOOLLUUMMBBIIAA VVNN

EEXXCCEELLSSIIOORR VVNNGGAAGGOONN SSOO.. VVNN

OORRPPHHAANN GGIIRRLL

VVNN

OO.. BBOOYYSSHH..

AANNGGLLOO

SSAAXXOONN VVNN

FF..WW

.. MMIILL

WWAAUU

KKEEEE

FFAAUULL

TT

HH..WW

.. MMIILL

WWAAUU

KKEEEE

FFAAUULL

TT

BBLLUUEE BBIIRRDD VVNN

TTZZAARREENNAA VVNN IIRROONN CCLLAADD VVNNSSTTAARR WWEESSTT VVNN

OOPPHHIIRR VVNN

WWIINNDDLLAASSSS VVNN

NNOO.. 1144 VVNN

NNOO.. 1166 VVNNNNOO.. 1122 VVNN

NNOO.. 2244 VVNN

NNOO.. 5500 VVNN

NNOO.. 66 VVNN

NNOO.. 88 VVNN

GGAAMMEEBBEETTTTAA VVNN

BBLLUUEE VVNN

DDEERRNNIIEERR VVNN

PPAARRRROOTT VVNNAANNAACCOONNDDAA VVNNBBEELLLLOONNAA VVNN

OORRIIGGIINNAALL VVNN

BBAANNKKEERR VVNN

GGAAMMBBRRIINNUUSS VVNNAANNSSEELLMMOO VVNNBBOOOONNEERR VVNN

SSTTAARR VVNN

CCOORRRRAA FFAAUULLTT

GGRRAAYY RROOCCKK VVNN

LLAA PPLLAATTAA FFAAUULLTT

MMIIDDNNIIGGHHTT VVNN

SSYYNNDDIICCAATTEE VVNN

CCHHIIEEFF JJOOSSEEPPHH VVNNSSHHYYRRMMEE VVNN

GGRRAAYY RROOCCKK FFAAUULLTT

MMTT.. CCOONN VVNN HHIIGGHHOORREE VVNN

DDIIAAMMOONNDD FFAAUULLTT

EEDDIITTHH MMAAYY VVNN

BBEELLLL FFAAUULLTT

JJEESSSSIIEE VVNN

CCOOLLUUSSAA VVNN

MMAAJJOORR BBUUDDDD VVNNNN.. EEMMIILLYY VVNN

PPIILLOOTT SSHHAAFFTT VVNN

BBEERRLLIINNVVNN

RRAAIINNBBOOWW VVNN

SSTTAATTEE VVNN

AAUURRAARRIIAA VVNN

MMAARRGGEETT AANNNNVVNN

BBLLAACCKK RROOCCKK VVNN

TTmmqqpp

RROO

CCKK

EERRFFAA

UULLTT

BBEERRKKEELLEEYY PPIITTOOuuttlliinnee 11999955

CCOONNTTIINNEENNTTAALL PPIITTOOuuttlliinnee 11999955

NNOO.. 3300

FFAAUULLTT

EEAASSTT FFAAUULLTT

IInnddeeppeennddeennccee

VVNN

AAssppeenn VVNN

GGoolldd SSmmiitthh VVNN

SS ii ll vv ee rr LL uu cc kkVV NN

FFlloorriiddaa VVNN

KKiitt CCaarrssoonn VVNN

4466°°NN

4466°°22''3300""

111122°°2277''3300"" WW111122°°3300''

4466°°55''NN

111122°32' 30"

111122°°3355'' WW

111122°°2277''3300"" WW111122°°3300''111122°°3322'' 3300""111122°°3355'' WW

4466°°

NN4466

°°22''33

00""4466

°°55''NN

5091

376

379 380 381 382 383 384 385000mE 386 387 388

5093

5094

5095

000m

N

5096

5097

5098

5099

5100

5101

5102

5103

5104

376 378 379 380 381 382 383 384 385000mE 386 387 388

5093

5096

5097

5098

5099

5100

5101

5102

5103

5104

5091

5092

377

377

5095

000m

N

5094

Approx. limit ofalluvium

& bedrock contact

1 0.5 0 1 km

Contour Interval 40 feetDatum is Mean Sea Level

SCALE 1:24 000

True

Nor

thM

agne

ticN

orth

18.5°

Approximate MeanDeclination, 1962

MONTANA

BUTTE DISTRICT LOCATION

GEOLOGY OF THE BUTTE MINING DISTRICT, MONTANA

Base map modified from four U.S. Geological Survey 7.5 minute topographic quadrangles;Butte North (1989), Butte South (1989), Elk Park Pass (1985), and Homestake (1978).

Butte Granite(Kbg)

quartz porphyry dikes(Kqp, Tmqp)

Boulder Batholithaplite dikes(Ka)

granite cupolacarapace

B-B

’S

ectio

n

Rhyolite pyroclastics & ventbreccia (Tiv, Tvcb, Tvwb)

Rhyolite dikes(Tir)

Middle Paleocenerhyodacite dike & brecciaTrdi

Lowland Creek VolcanicsFormation Big Butte VentComplex Sparse py/Gs veins

Sericite alteration zone

Pre-Main Stage MineralizationExplanationFault, showingslip directionMain Stage vein ormineralized fault

Quaternary &Tertiary sediments(Qal, QTac)

Rock Types

Butte Granite(Kbg)

quartz porphyry dikes(Kqp, Tmqp)

Boulder BatholithMagnetite vein (Cu) zone

Lower quartz latite pyroclastics& sediments (Tlw, Tlat, Tlt)Tlcv

Middle Paleocenerhyodacite dike & brecciaTrdi

Lowland Creek VolcanicsFormation

ZnSInterior

Sericite alteration zone

Pre-Main Stage MineralizationExplanationFault, showingslip directionMain Stage vein ormineralized fault

Magnetite vein (Cu) zone

A

Blue Bird NettieOrphan Girl

Anselmo Stewart

Berkeley Pit

Anaconda DomeBig Butte Post-OreRhyolite Intrusion

Limits ofModernExposure

Milwau

kee fau

lt

No.

15fa

ult

TrdiWest

Cupola(Inferred)

Modoc qtz ppyCupola (Inferred)

Rocker fault

2.5 km

0

1 km

Pittsmont Dome

Continental faultKlepper fault

East

Rid

gefa

ult

EastCupola

(Inferred)

Rarus

fault East fault

Middle fault

DD

H-7

DD

H-6

DD

H-2

DD

H-1

0

2.5 km

1 km

0

1 km

A’B B’ A to A’

SectionB”

2 km

00

1 km

1 km

Inferred GranitePre-Main Stage

CupolaInferred Granite

Main Stage Cupola

Trdi

TmqpLimits ofModernExposure

1,500 ft. level

2,800 ft. level

Kqp

Mtzone

Cu

Ore

Fron

t

Cu

Ore

Front

DD

H-7

(pro

j.)

DD

H-1

,1A

(pro

j.)

TailingsTlcv

0.01 Mo

Topof Mo

0.02 Mo0.05 Mo 0.005

Mo

0.03 Mo

0.05M

o0.05 Mo

0.05 Mo

0.02 Mo

0.03 Mo

0.03 Mo 0.03M

o 0.05M

o0.03

Mo

Rarus fault

Middle faultBadger Leonard

aplite dikes(Ka)

granite cupolacarapace

West East

NorthSouthNN3344°W

SS3344°E

Tmqp

Kqp

Supergene MineralizationChalcocite dominant

TTrrppuu

DESCRIPTION OF MAP UNITS

QUATERNARY and TERTIARY DEPOSITS

Recent Alluvium deposits - Clay, silt, sand, and gravel fluvial detritus from eroded localgranitic and volcanic rocks. Includes colluvium, lacustrine and terrace deposits.

Landslide deposits - Poorly sorted material derived from bedrock and surficial depositsprimarily occur as slump blocks and incipient rotational slumps.

Older Alluvium and colluvium deposits - Poorly sorted, unconsolidated to moderatelyindurated, well-rounded, arkosic silt, sand, pebble and cobble detritus locallyderived from granitic and volcanic rocks. Basin fill sediments near the town ofRocker are approximately 180 to 300 m thick (Feiveson, 1997; Hammar-Klose,1997). Recent to Miocene sedimentary rocks contain locally air-fall rhyolite tuffs.Rare fossil camel, rhinoceros, horse, and oreodont teeth and bones are present indeposits south of Silver Bow Creek (Smedes et al., 1973). Locally, includes talusdeposits comprised of unsorted cobble to boulder angular rock fragments and debrisflow deposits adjacent to the Rocker, Continental, Klepper, and East Ridge faults,and Recent valley fill and alluvial terrace deposits (Pleistocene and Pliocene age;Elliott and McDonald, 2009).

TERTIARY VOLCANIC ROCKS

Lowland Creek Volcanics Formation - Modified from Smedes, (1962)

Big Butte Vent ComplexRhyolite dikes - Light gray to red-brown, porphyritic rhyolite dikes and shallow irregular

intrusive bodies contain plagioclase, quartz, and biotite phenocrysts surrounded in anaphanitic groundmass. Dikes south of Big Butte contain lineated flow foliation andchilled margins parallel to intrusive contacts. North of Bull Run Creek a large rhyoliteintrudes dacite lavas and may be the base of an extrusive dome.

Upper rhyolite pyroclastics - Light gray to reddish, moderately to strongly welded rhyolitepyroclastic rocks (ignimbrite) contain 25 to 35 volume percent crystals of shatteredcrystals of quartz, oligoclase-andesine, biotite, and minor sanidine in a vitroclasticmatrix. Abundant fiammé have an aspect ratio of approximately 6H:1V and arecircular in plan view, suggesting simple compaction. The upper rhyolite pyroclasticrocks are petrographically similar to the lower rhyolite pyroclastic rocks (Trpl), but arelocally overlying Trpl along a lithic-rich basal vitrophyre, up to 5 m thick. In the northwest part of the district, the occurrence of several vitrophyres, up to 5 m thick,suggests multiple cooling units.

Pyroclastic breccia - Includes three subunits consisting of angular blocks (<1 m to 30 m indiameter) of granite, aplite, quartz latite ignimbrite, dacite lava, and welded rhyolitetuff surrounded in a poorly welded matrix pyroclastic rhyolite. The matrix containsbroken crystal fragments of quartz, plagioclase, sanidine, and biotite. Pyroclasticbreccia (<200 m wide) locally occurs at the contact of the lower rhyolite pyroclastic(Trpl) and granite (Kbg). Three subunits are subdivided based on dominant clastlithology. Trpb1, dominated by granite and aplite clasts. Trpb2, dominated by quartzlatite ignimbrite blocks that locally contain distinctive eutaxitic foliation. Trpb3,dominated by dacite lava and breccia clasts that contain planar flow alignedplagioclase phenocrysts surrounded in an aphanitic groundmass. The pyroclasticbreccia may represent the collapse of previously erupted surface rocks into the vent.

Lower rhyolite pyroclastics - Light gray to reddish-brown, moderately to strongly weldedrhyolite pyroclastic rocks (ignimbrite) contain 25 to 35 volume percent crystals ofshattered oligoclase-andesine, quartz, biotite and sanidine in a vitroclastic matrix.The ignimbrite is intercalated locally with thin (<10 m thick) breccia lenses. Abundant(up to 20 vol. %.) cognate clasts of rhyolite and lesser amounts of partially flattenedfiammé (2H:1V to 1.5V aspect ratio) are orientated parallel to the near vertical fabric.This steeply dipping foliation becomes highly contorted, locally. The rhyolitepyroclastic rocks at Big Butte have a 40Ar/39Ar age of 52.9 ± 0.14 Ma (Dudás et al.,2010).

ExtrusiveDacite lava - Brown to purplish red dacite lava (<120 m) consisting of abundant flow-aligned

plagioclase phenocrysts (20 vol. %), biotite-rich glomerocrysts, orthopyroxene,hornblende, quartz and trace amounts of apatite and opaques are surrounded in anaphanitic groundmass (70 vol. %). There is no age determination for these dacitesat Butte, but Dudás et al. (2010) suggest an age of 52.4 Ma based on a dacitesample southwest of Butte.

Volcanic breccia - Light-gray, brown to purplish red breccia consists of a lower matrix-supported part and an upper clast-supported part. The lower discontinuous part (upto 50 m thick) contains subangular (less than 1 m diameter) ash-flow tuff and dacitelava fragments (60 vol. %) supported by a light-brown to very pale orange devitrifiedash matrix. This lower sequence may represent a volcanic debris flow or lahar. Theupper part (up to 120 m thick) of the breccia unit is dominantly framework-supportedangular porphyritic dacite lava boulders (90 vol. %) up to 2 m in diameter that areenclosed in a lavender-gray dacite lava matrix. The upper breccia sequence is anautobrecciated lava along the base of the overlying dacite lava (Tll).

Quartz latite ash-flow tuff - Light gray, reddish-brown and olive, poorly to strongly weldedquartz latite ignimbrite contains shattered plagioclase, biotite, and hornblendecrystals in a vitroclastic matrix. Eutaxitic textures are defined by conspicuous fiammé.Normal grading of lithic fragments occurs as repeated distinct zones upward in thesection and correlates to 13 thin cooling units marked by distinct welding breaks.Locally, the ignimbrite is up to 300 m thick. In general, hornblende crystal abundanceincreases slightly from 1 to 5 vol. % upwards in the section. A vitrophyre up to 30 cmthick locally marks the basal contact. This ignimbrite has a 40Ar/39Ar age of 52.9 ±0.14 Ma (Dudás et al., 2010)

Rhyolitic air-fall tuff and base surge deposits - Light gray, unwelded laminated andcross-bedded crystal-poor ash air-fall and base surge deposit (<50 m) with up to 15vol. % lithic fragments. This upper unit is interpreted to be the base surge and airfalldeposits precursor to the overlying quartz latite ignimbrite.

Volcaniclastic sedimentary deposits - Fluvial mudstone, siltstone, sandstone, andpebble conglomerate sedimentary sequences containing reworked volcaniclasticsedimentary rocks. Laminated micaceous mudstones and siltstones grade upwardinto coarse-grained and rippled arkosic and tuffaceous sandstones. Cross-bedding,ripples and petrified logs indicate a SSW-NNE bi-directional fluvial flow-direction.This sedimentary unit (<50 m) was deposited on an irregular erosional surface, locallymarked by deeply weathered granite (grus) surrounding intensely weatheredboulders of granite and aplite.

IntrusiveRhyodacite dike of Rampart Mountain - Gray, porphyritic rock contains phenocrysts of

plagioclase, quartz, and biotite and rare 2 cm orthoclase set in a fine-grained apliticgroundmass (Meyer et al., 1968). From east to west, this dike transects the districtfor >7 km at depth. Normal displacement along the Continental fault has exposedthis dike on Rampart Mountain and further east in a I-15 roadcut. In the hanging wallof the Continental fault, at approximately the 2,000 foot level, a breccia at the apexof the dike, known as the Mountain View breccia, continues upward ~100 m, but isnot exposed at surface (Meyer, et al., 1968). Available 40Ar/39Ar and 206Pb/238Umonazite ages suggest emplacement at ~59 Ma (Dilles et al., 2004).

TTrrppbb33

TTrrppbb22

TTrrppbb11

QQaall

QQTTaacc

QQllss

TTii rr

TTllaatt

TTll tt

TTllww

TTll llbb

TTll ll

TTrrddii

TTrrppbb11 TTrrppbb22 TTrrppbb33

LATE CRETACEOUS PLUTONIC ROCKSBoulder Batholith

Modoc quartz porphyry plug, irregular intrusions and breccia - Light gray to grayish-green,porphyritic rock contains phenocrysts of plagioclase, rounded embayed quartz, sparselarge (6 to 25 mm) K-feldspar, and biotite, in a very fine-grained groundmass of quartzand K-feldspar (64 Ma; Dilles et al., 2004). The Modoc quartz porphyry forms an irregularshaped plug that reaches a maximum width of ~300 m on the 2800 foot level of theLeonard mine (Meyer et al., 1968). Contacts are sinuous with moderate fragmentation ofthe granite (Meyer et al., 1968). Breccia fragments contain older quartz-molybdeniteveinlets characteristic of the deep porphyry Cu-Mo zone.

Quartz porphyry dikes - Light colored, porphyritic rock (3 to 20 m wide) contains ca. 50 vol. %aplitic groundmass and 50 vol. % phenocrysts of euhedral plagioclase, rounded quartzeyes, orthoclase and biotite phenocrysts enclosed in a fine-grained groundmass ofquartz and orthoclase (66 Ma; Lund et al., 2002).

Aplite, granoaplite, and pegmatite dikes and irregular intrusions - Light colored to pinkdikes consisting of orthoclase, quartz, oligoclase-andesine and trace amounts of biotite,contain local occurrences of pyrite, chalcopyrite, magnetite, albitic plagioclase and veryrare pyrrhotite in quartz in the core zones (Meyer et al., 1968; Smedes et al., 1962).Black tourmaline and molybdenite also occur in miarolitic cavities and are most abundantin the deepest plutonic exposures along East Ridge. Granoaplite dikes (described as agranite-aplite hybrid rock; Roberts, 1975) contain phenocrysts of plagioclase, biotite,hornblende and rounded quartz eyes entrained in fine-grained aplitic quartz and alkalifeldspar groundmass (76 Ma; Lund et al., 2002). Most dikes are gently-dipping andmake up parallel sheeted sets. Aplite dikes are cm- to m-thick and typically have sharpcontacts with the granite. Aplite dikes locally exceed 20 m thickness and commonly zoneinward to pegmatitic cores (Meyer et al., 1968). Most granoaplite dikes occur as massivegently dipping planar sheets that exceed 20 m in thickness. Contacts are gradationalwith the granite. Sheeted aplite dikes are abundant in the western and eastern parts ofthe Butte district and intrude parallel to subhorizontal joint sets observed throughout theButte district.

Mafic enclaves - Dark-green to black ellipsoidal nodules (15 to 50 cm dia.) containing crystals ofplagioclase, hornblende, biotite, quartz, magnetite and minor apatite. South and adjacentto Bull Run Creek, abundant nodules occur in a linear collection (~15 by 400 meters). Atthis location nodules are surrounded by fine-grained granite (Kbg). Elsewhere, isolatednodules occur throughout the district. Enclaves cut by aplite dikes.

Butte Granite - Gray, medium- to coarse-grained equigranular rock consists of plagioclase(35-40 vol. %), orthoclase (20-25 vol. %), quartz (15-25 vol. %), and about 20 vol. %biotite, hornblende, magnetite, titanite, ilmenite, and apatite (76.5 Ma; Meyer et al.,1968; Martin et al., 1999; Martin and Dilles, 2000, Lund et al., 2002). The granitehas distinctive euhedral poikilitic K-feldspar megacrysts up to 3 cm in length (Smedes etal., 1962; Meyer et al., 1968). Occasional mafic enclaves and aplite dikes are presentthroughout the granite (Houston, 2001).

Contact - showing dip; dashed where approximately located; anddotted where concealed

Fault - showing dip; dashed where approximately located;dotted where concealed; Names shown on principal faults

Vein or mineralized fault - showing dip; dotted where concealed;Names shown on principal veins

Strike and dip of beds - shown in all bedded units includingsedimentary rocks and sedimentary interbeds within lava flows

Strike and dip of compaction foliation structure

Strike and dip of rheomorphic foliation

Strike and dip of joint

Bidirectional paleoflow indicator

Anaconda/ARCO Deep Drill Hole Locality

Productive Mine Shaft

Open-pit outline: Berkeley Pit and Continental Pit

Waste rock Tailings pond Historic landfill

References1. Dilles, J., 1998, 2002, 2012, 1:24,000, this study.2. Dilles, J., Stein, H., and Martin, M., and Rusk B., 2004, Re-Os and U-Pb ages for the Butte

Copper District, Montana: IAVCEI Meeting, Púcon, Chile.3. Dresser, H., 2000, Stereo Picture Guidebook to Big Butte Volcanics: Tobacco Root Geological

Society, Annual Meeting, Butte, MT, August 3-6, 73 p.4. Duaime, T., Kennelly, P., and Thale, P., 2004, Butte, Montana: Richest Hill on Earth, 100 years

of underground mining, Montana Bureau of Mines and Geology: MiscellaneousContribution 19, 1 sheet, 1:9,000.

5. Dudás, F., Ispolatov, V., Harlan, S., and Snee, L., 2010, 40Ar/39Ar Geochronology andGeochemical Reconnaissance of the Eocene Lowland Creek Volcanic Field, west-centralMontana: The Journal of Geology, v. 118, No. 3, p. 295-304.

6. Elliott, C. and McDonald, C., 2009, Geologic map and geohazard assessment of Silver BowCounty, Montana: Open-File Report 585, Montana Bureau of Mines and Geology, 81 p.,3 plates.

7. Feiveson, D., 1997, Seismic reflection investigation to support the existence of a normal fault inRocker, Montana: Unpublished Senior thesis, Northfield, Minnesota, Department ofGeology, Carleton College, 4 p.

8. Hammar-Klose, E., 1997, A high-resolution seismic reflection at Rocker Timber Treatmentand Framing Plant site, Rocker, Montana: The College of Wooster, Keck ResearchSymposium in Geology, 10th, Wooster, Ohio, April 1997, p. 302–305.

9. Houston, R., 1998, 1999, mapped at 1:12,000 and 1:24,000, compiled at 1:24,000; this study.10. Houston, R., 2001, Geology and structural history of the Butte district, Montana: Unpublished

M.Sc. thesis, Corvallis, Oregon, Oregon State University, 45 p., 10 plates.11. Lewis, R., 1998, Geologic map of the Butte 1° x 2° quadrangle, Southwestern Montana:

Montana Bureau of Mines and Geology, Open File report 363, scale 1:100,000, 1 sheet,17 p.

12. Lund, K. Aleinikoff, J., Kunk, M., Unruh, D., Zeihen, G., Hodges, W., Du Bray, E., andO‘Neill, J., 2002, SHRIMP U-Pb and 40Ar/39Ar age contrasts for relating plutonism andmineralization in the Boulder Batholith region, Montana: Economic Geology, v. 97,p. 241-267.

13. Martin, M. and Dilles, J., 2000, Timing and duration of the Butte porphyry system: TobaccoRoot Geological Society, Annual Meeting, Butte, Montana, August 3-6, 2000, p. 1.

14. Martin, M., Dilles, J., and Proffett, J.M, 1999, U-Pb geochronologic constraints for the Butteporphyry system [abs.]: Geological Society of America Abstracts with Programs, v. 31,no. 7, p. A380.

15. Meyer, C., Shea, E., Goddard, C., Jr., and Staff, 1968, Ore deposits at Butte, Montana, inRidge, J., ed., Ore deposits of the United States, 1933-67, v. 2: New York, AmericanInstitute of Mining, Metallurgical, and Petroleum Engineers, p. 1373-1416.

16. Proffett, J.M., Jr., 1973, Structure of the Butte district, Montana: in Miller, R., ed., Guidebookfor the Butte field meeting of the Society of Economic Geologists, The AnacondaCompany, Butte, Montana, p. G-1 to G-12, plus figures.

17. Proffett, J.M., Burns, G., and Anaconda staff, 1982, Geologic map of the Butte district,Montana: Anaconda Archives, American Heritage Museum, Laramie, Wyoming, scale1:12,000.

18. Reed, M., 1979 a and b, written communication.19. Roberts, S., 1975, Early hydrothermal alteration and mineralization in the Butte district,

Montana: Ph.D. thesis, Cambridge, Mass., Harvard University, 173 p.20. Sales, R., 1914, Ore deposits at Butte, Montana: American Institute of Mining and

Metallurgical Engineers Transactions, v. 46, p. 4-106.21. Smedes, H., 1962, Lowland Creek Volcanics, an Upper Oligocene formation near Butte,

Montana: Journal of Geology, v. 70, p. 255-266.22. Smedes, H., 1967, Preliminary geologic map of the northeast quarter of Butte South

Quadrangle, Montana: U.S. Geological Survey, Open File Map, 1:24,000.23. Smedes, H., 1968, Preliminary geologic map of part of the Butte North Quadrangle, Silver

Bow, Deer Lodge and Jefferson Counties, Montana: U.S. Geological Survey Open-FileReport, Scale 1:48,000.

24. Smedes, H., Klepper, M., Pinckney, D., Becraft, G., and Ruppel, E., 1962, Preliminarygeologic map of the Elk Park Quadrangle, Jefferson and Silver Bow Counties, Montana:U.S. Geological Survey map MF-246, Scale 1:24,000.

25. Smedes, H., Klepper, M., and Tilling, R., 1973, The Boulder Batholith, Montana: in Miller, R.,ed., Guidebook for the Butte field meeting of the Society of Economic Geologists, TheAnaconda Company, Butte, Montana, p. E-1 to E-16.

26. Smedes, H., Klepper, M., and Tilling, R., 1988, Preliminary map of plutonic units of theBoulder Batholith, southwestern Montana: Montana Bureau of Mines and Geology,Open-File Report 88-283, Scale 1:200,000 (& digital reprinted USGS Data Series 454,2009).

27. Weed, W.H., 1912, Geology and ore deposits of the Butte district, Montana: U.S. GeologicalSurvey Professional Paper 74, 262 p.

AcknowledgmentsThis research was supported by grants from the Tobacco Root Geological Society toHouston, and by NSF grants EAR-9614683 and EAR-0001230 to Dilles and Cyrus Field of OregonState University. We greatly thank the many geologists who contributed scientific research toadvance the knowledge of the geology of the Butte deposit over the last 140 years, and weacknowledge the research sponsorship until 1986 by the Anaconda Company and its successorthe Atlantic Richfield Company. Steve Czehura of Montana Resources Inc. kindly provided manyinformative discussions as well as unpublished data of the Butte district, including geologic mapsmade by George Burns and John Proffett. Review of an earlier version by Professors Cyrus Field,Edward Taylor and Robert Yeats, when it was part of a M.Sc. thesis by Houston, is greatly appre-ciated. We gratefully acknowledge two Economic Geology reviewers John Proffett and DavidCooke, who reviewed the map as part of the formal review process of the manuscript (Houstonand Dilles, 2013). Finally, the senior author is indebted to the residents of the study area whofreely gave their permission to traverse their properties.

KKaa

KKqqpp

KKbbgg

KKmmee

TTmmqqpp

DU

78

85

DU

64

25

15

10

75

DDH-8

25 9

1, 9,and 23 9, 17,

and 23

9, 17, 16, 1, 27,24, 22, 15, 26,

4, 11, 20 and 18Complied byR.A. Houston

Index Map showing credit for geologicmapping noted by reference number

Montana Bureau of Mines and GeologyOpen File MBMG 627

GEOLOGY OF THE BUTTE MINING DISTRICT,MONTANA

Robert A. Houston1 and John H. Dilles2

2013

1Oregon Department of Geology and Mineral Industries, Albany, Oregon2Oregon State University, Corvallis, Oregon

This map supplements Houston and Dilles, 2013, StructuralGeologic Evolution of the Butte District, Montana: Economic

Geology, v. 108, no. 6, p. 1397-1424.

QQTTaacc

TTrrppll

TTll ll

TTll tt

TTllww

KKaa

KKqqpp

KKbbgg

TTrrddii

KKmmee

TTll llbb

TTrrppuu

TTii rr

QQaall

TTllaatt

TTmmqqpp

QQllss

Main Stage Mineralization

Eocene

LateCretaceous

QUATERNARY

Paleocene

CRETACEOUS

TERTIARY

RecentRecent toMiocene

Pre-Main Stage Mineralization

CORRELATION OF MAP AND CROSS SECTION UNITS

TTrrppll

Maps may be obtained from:Publications Office

Montana Bureau of Mines and Geology1300 West Park Street

Butte, Montana 59701-8997Phone: (406) 496-4167 Fax: (406) 496-4451

http://www.mbmg.mtech.edu

Open File MBMG 627, Plate 1 of 1Geology of the Butte mining district, MT, 2013

MONTANA BUREAU OF MINES AND GEOLOGYA Department of Montana Tech of The University of Montana

AA’’AA

BB

BB’’

BB’’’’