Geological and Environmental Sciences Stanford University ... 5 - High Pressure Techniques.pdf ·...

54
High Pressure Techniques Wendy L. Mao Geological and Environmental Sciences Stanford University & Photon Science, SLAC National Accelerator Laboratory 1

Transcript of Geological and Environmental Sciences Stanford University ... 5 - High Pressure Techniques.pdf ·...

High Pressure Techniques

Wendy L. MaoGeological and Environmental Sciences Stanford University & Photon Science, SLAC National Accelerator Laboratory 1

Pressure changes everything

c

a

A

B

A

VIII

superionic

SymmetricH-bonding

Liquid-liquid

amorphization

modulation

2

10-32

10-24

10-16

10-8

1

108

1016

1024

1032

10-8

10-6

10-4

10-2

1

102

104

106

108

Range of Pressure in the UniversePr

essu

re (A

tmos

pher

es)

Pres

sure

(Atm

osph

eres

)

Hydrogen gas in intergalactic space

Interplanetary space

Center of neutron star

Atmosphere at 300 miles

Center of Jupiter

Center of white dwarf

Center of Sun Deepest ocean

Best mechanical pump vacuum

Water vapor at triple point

Center ofthe Earth

Atmospheric pressure (sea level)

1 GPa = 104 bar

3

High-pressure science has been enabled by experimental progress

Percy W. Bridgman 1882-1961

Before 20th Century Solids and liquids are nominally regarded as incompressible

1946 P. W. Bridgman receives Nobel prize in Physics "for the invention of an apparatus to produce extremely high pressures, and for the discoveries he made therewith in the field of high pressure physics"

1986 Diamond anvil cell (DAC) reaches beyond 300 GPa

~2000 Development of array of probes for high P & variableT characterization

Now exciting science to be reaped

DAC

APS

4

How do we reach high pressure?

Dynamic compression

Shockwave

Nuclear explosion

Gas guns

Magnetic field

Lasers

Duration: secs

P vs. curve (Hugoniot)

NIF target chamber 5

Static compression

Piston cylinder & anvil devices

Duration: indefinite

Pressure=Force/Area

How do we reach high pressure?

• Multi-anvil apparatus• Pressure: 50 GPa• Temp: 2500oC• Sample size: mm3

6

Table

Culet

Gasket Sample chamber

Force

Table

Culet

Gasket Sample chamber

Force

7

Diamond Anvil Cell

Pressure: ambient to 500 GPa (1 GPa= 10,000 bar)

Temp: mK to 5000 K

Sample size: < 0.001 mm3

Transparent to large range of E-M radiation

How do we reach high pressure?

L-N2L-HemK

Laser & Resistiveheating

How do we measure pressure?

Internal standards

Ruby fluorescence

Equation of state (Au, Ag, Pt, NaCl, etc.)

Pressure calibration

Piston-cylinder

Shock wave

Brillouin spectroscopy

Ultrasonics

Shim et al, EPSL 20028

Sample preparation

Sample

Internal pressure standard

Thermal insulation and/or pressure transmitting media

NaCl, SiO2

He

Gasket

Re, stainless steel, Be

9

Integration of Multiple in situ Probes

ResistivitySusceptibilityMössbauer

X-ray ScatteringDiffraction

Spectroscopy

RamanBrillouinUV-IROptical

Neutron ScatteringDiffraction

Spectroscopy

Theory10

Platinumelectrodes

SampleAluminalayer

Metallicgasket

PlatinumelectrodesI Ulaser-heating

cryogenic

resistive heating ambient

0

2

4

6

Tem

pera

ture

, 100

0 K

Pressure, GPa100 200 300 400 5000

core

Jupiter

4740 GPa 21800 K

Uranus

Neptune

terrestrial geotherm

800 GPa7400 K

580 GPa6500 K

2250 GPa 15500 K

Saturn

mantle

neutron

magnetism

electric

synchrotron

High P-T in-situ, x-ray, neutron, optical and electromagnetic probes

>300 GPa, 0.03 - 6000 K are reached in DAC

P-T conditions Diagnostic probes

11

High Pressure Probes Must

1.Penetrate the pressure vessel to reach the sample

optical probes can be limited depending on optical quality of window and sample.

vacuum probes (vuv, soft x-ray, and electron spectroscopy) are excluded.

x-rays, axial direction need > 10 keV, radial need > 5 keV

2.Small sample volume• neutron scattering is limited.

2 x 2.5 mmdiamonds

Radial

Axial

2 mm Be

Supportingseats

Be gasket

>5 keVUnlimited q

> 10keV

12

Synchrotron x-ray probes couple well with high-pressure science

• Brilliance • High energy• Energy resolution• Spatial resolution• Temporal resolution• Coherence

Rapid advances and impacts in high pressure

Enormous potential to be harnessed

As yet unexplored

13

Already is an impressive suite of synchrotron techniques which are compatible with DAC, but still a lot of opportunities for further development

microXRD, PIXS IXS

microXRD

NRIXS, SMS

XMCD

NRIXS, SMS, XES, XAS, XRSXRD – single xtal & poly xtalAD & ED, cryo & laser-heatingOn-line raman system

XES, XAS, XRS XRD, tomography – DAC

& multi-anvil, laser- heating,

On-line Brillouin system

14

High E, High q XRD

IXS

XAS, XRS

IXS

tomographyHigh E, High q

XRD

HP at APS

tomography

HP XRD + laser-heated DAC

1800 K

Fs40

130 GPa

Image plate

16-IDB, HPCAT

• Gasket hole ~ 60 m (culet =150 m,bevel diameter = 300 m)

• X-ray beam ~ 6 x 7 m• Double-sided Nd:YLF laser heating

15

HP Powder XRD

Superconductivity in hydrogen- rich group IV hydride, SiH4

Implications for understanding superconductivity in hydrogen?

Eremets et al, Science 2008

113 GPa

160 GPa

16

HP Single crystal XRD

At minimum in melting curve of Na at ~118 GPa, 7 crystalline phases (many quite complex).

Gregoryanz et al, Science 2008 17

18

The need for XRD with submicron x-ray beam

Many HP structures were determined with µm-size powder XRD; assignments can be questionable.

Single-crystal XRD gives definitive answer, but requires crystals larger than the x-ray probe.

Na

SiH4

Using 200 nm focused x-ray beam we can…

A

BObserve 20 GPa/µm

gradiant & peak-pressure in 1-µm area

Separate submicron Pt, Re, Fe samples

Conduct single-crystal XRD on submicron powder

190 nm beam

5 µm beam

Wang et al., in prep.

34-ID 2-ID

Radial x-ray diffraction 100 002 101

d-spacing

Fe at 113 GPahcp-Fe

Preferred orientation 20W. Mao et al, JGR 2008

Texture in post- perovskite phase

Merkel et al, Science 2007

Measure preferred orientation in (Mg,Fe)SiO3 at high P-T, texture and deformation at Earth’s core-mantle boundary

Need to know sound velocities (phonon dispersion, elastic tensor) to explain seismic anisotropy

21

Pre-edge position and intensity: oxidation state

Edge height: concentration

XAFS: coordination & structure

HP X-ray absorption spectroscopy (XAS)

Wilke et al, Amer. Min. 2001

Phase transitions in solid Br at 25 GPa & 65 GPa

San-Miguel et al, PRL 2007

X-ray magnetic circular dichroism (XMCD) at HP

24

),(),(;

jumpttXMCD

4-ID-D, APS

Haskel et al, RSI 2007

B

B’

A-A’

B

B’

A-A’

A

A’ B

B’A

A’ B

B’

Y. Ding et al, PRL 2008

Fe3+

B

A

Fe3+A (Fe2+,Fe3+) BO4

magnetite

Fe3+

B

A

Fe3+A (Fe2+,Fe3+) BO4

magnetite

XMCD of Fe3 O4 at HP

•50% drop in net magnetic moment at 14 GPa. •loss of magnetism is attributed to a high-spin to intermediate-spin transition of Fe2+ in the octahedral site (confirmation from XES).

25

How can we study the edges of low Z elements at high pressure?

2 x 2.5 mmdiamonds

Radial

Axial

2 mm Be

Supportingseats

Si (660), 9.6865 keVBe gasket>5 keV

Unlimited q

X-ray Raman Spectroscopy (XRS)

E = E - E0

Energy loss (k-edge)

Incident x-rays (monochromator)

Scattered x-rays (analyzer)

E = E - E0

Energy loss (k-edge)

Incident x-rays (monochromator)

Scattered x-rays (analyzer)

Bowron et al, PRB 200027

XRS Set-up

660

9.6865 keV 28

Pressure changes bonding in graphite conversion of half sp2 bonds to sp3

X-ray raman of graphite at high pressure showing the evolution of bonding and transformation to a new, superhard phase

9960 9970 9980 9990 10000 10010

Energy (eV)

Nor

mal

ized

Inte

nsity

horizontal

vertical

2.4 GPa7.6 GPa

10.8 GPa14.2 GPa16.7 GPa20.5 GPa23.2 GPa

23.2 GPa

9960 9970 9980 9990 10000 10010

Energy (eV)

Nor

mal

ized

Inte

nsity

horizontal

vertical

2.4 GPa7.6 GPa

10.8 GPa14.2 GPa16.7 GPa20.5 GPa23.2 GPa

23.2 GPa

W. Mao et al, Science 2003

B

A

a

c

BridgingNon-bridging

c

a

A

B

A

A

A

B

29

Pressure-induced bonding changes

Oxygen XRS

Boron XRS

in B2 O3 and Li2 B4 O7

S K Lee, et al, PRL 2007

30

S K Lee, et al, Nature Mat. 2005

Oxygen IXS near K-edge spectra of H2 O

H2 OH2 O

E0 = 9686.5 eV

12XU Spring 8

Cai et al., PRL 2005

X-ray Raman measurements reveal pressure-induced bonding changes in low P-T phases

Effect of hydrogen bond ordering on K edge spectra

Evidence for a new low-T phase

31

W. Mao et al, Science 2006

9 GPa

14 GPa

<1 GPa

>1 GPa

50 m

2.6 GPa 2.6 GPa

a) b)

c) d)

e) f)

200 m

520 540 560 580Energy loss (eV)

Nor

mal

ized

cou

nts

1.0 GPa

1.2 GPa

2.4 GPa

3.0 GPa

8.8 GPa

15.3 GPa

2.6 GPa, high-res

Novel radiation chemistry at HP

Liquid H2 O

Ice VI

Ice VII

Ice VII

Above 3 GPa, x-ray irradiation converts H2 O into a new O2 -H2 alloy

O2

32

High-pressure x-ray emission spectroscopy (XES) Observations of high spin-low spin transitions in 3d elements

FeO & Fe2 O3 (Fe,Mg)O & (Fe,Mg)SiO3

Badro et al, PRL 1999 Badro et al, PRL 2002

Badro et al, Science 2003Badro et al, Science 2004

Li et al, PNAS 2004Lin et al, Science 2007

Lin et al, Nature Geo. 2008

K’

K1,3

Energy

Inte

nsity

K1,3

K’

Low-spin

High-spin

33

XES Set-Up

16-IDD, APS

180°-2

Incident x-rays

analyzer

detector

90°

M

KBmirrors

1-m Rowland circle spectrometer

34

XES

Maddox et al., PRL 2006Mattila et al., PRL 2007

Gd

35

Phonon IXS

BL35XU, SPring-8

PANORAMIC DIAMOND ANVIL CELL

BSMMx-rays

Si 111

Si 111

mirror

analyzer

detector

36

Fiquet et al., Science 2001Antonangeli et al., PRL 2008

Farber et al., PRL 2006

Lattice dynamics of Mo to 37 GPa

Single xtal Co at high P-T

PIXS of hcp-Fe to over 100 GPa

37

Nuclear resonant inelastic x-ray scattering

APD

APD HRM M

KBmirrors

x-rays

DAC 150nsec

NRIXS signal

SMS signal

nonmagnetic

magnetic

time

Energy

Inte

nsity

Anti-stokes Stokes

Elastic line

Synchrotron 57Fe Mössbauer spectroscopy

Nuclear resonant inelastic x-ray spectroscopy

Energy = 14.4125 keV38

Extracting phonon density of states

From W. SturhahnSturhahn et al, PRL 1995 Hu et al, Nucl. Instrum. Meth. 1999Sturhahn, Hyp. Int. 2000

2322

)(

Vg

333213

SpD

D

Phonon excitation spectrum Phonon density of states

Debye velocity 39

How do we determine VP andVS ?

222

34

)(

SPK

VPVK

7 8 9 10 11 12 13 14 15 16 17 182-theta

Rel

ativ

e co

unts

d-spacing (Å)2.7 2.3 2 1.8 1.6 1.5 1.4 1.3 1.2 1.1

Diffraction angle (2)

Rel

ativ

e in

tens

ity

ppv

022

ppv

023

ppv

131

ppv

132

ppv

113

ppv

004

ppv

152,

062

ppv

044

ppv

110

ppv

200

ppv

025

ppv

222

ppv

111

ppv

040

ppv

042

ppv

133

ppv

151

ppv

114

Pt Pt

PtPt

ppv

041

7 8 9 10 11 12 13 14 15 16 17 182-theta

Rel

ativ

e co

unts

d-spacing (Å)2.7 2.3 2 1.8 1.6 1.5 1.4 1.3 1.2 1.1

Diffraction angle (2)

Rel

ativ

e in

tens

ity

ppv

022

ppv

023

ppv

131

ppv

132

ppv

113

ppv

004

ppv

152,

062

ppv

044

ppv

110

ppv

200

ppv

025

ppv

222

ppv

111

ppv

040

ppv

042

ppv

133

ppv

151

ppv

114

Pt Pt

PtPt

ppv

041

W. Mao et al, Science 2006

Fs40 ppv, 140 GPa

116

118

120

122

124

126

120 130 140 150 160 170Pressure (GPa)

Volu

me

(A3)

Vol

ume

(Å3 )

Pressure (GPa)

Fs40, ppv

116

118

120

122

124

126

120 130 140 150 160 170Pressure (GPa)

Volu

me

(A3)

Vol

ume

(Å3 )

Pressure (GPa)

Fs40, ppv

0 20 40 60 80 100 120

Fs40, ppv

Energy (meV)

Pho

non

DO

S, g

(E)

0 20 40 60 80 100 120

Fs40, ppv

Energy (meV)

Pho

non

DO

S, g

(E)

VP, km/sec VS, km/sec PREM, mantle side of CMB 13.72 7.26 ULVZ (Thorne, JGR 2004) 12.35 5.08 Fs40 ppv at 130 GPa-300 K 12.72 4.86 Fs40 ppv at 130 GPa-3000 K 11.91 4.05

Mao et al, Science 2001

Elasticity and thermodynamic parameters of Fe to 153 GPa by NRIXS

KG

VP

VS

D

Ek

Ez

Svib

Cvib

Phon

on D

ensi

ty o

f St

ates

41

Lin et al., Science 2005

NRIXS at high P and high T

Need x-ray and laser beam stability over many hours Calibration of temperature

42

XOR, 3-ID

Micro-tomography

432-BM

High P-T Neutron Probes

SNAP -- HP neutron diffraction beamline to be completed in commissioning phase at the new Spallation Neutron Source (SNS) at ORNL

• hydrogen (deuterium)• magnetic ordering• large q• phonon dynamics

44

Survey of Neutron HP cells

200400600800100012001400

1

10

100

opposed anvil devices

hydrualic piston(solids), some clamped

dynamic chargedgas cells

Paris-Edinburgh/TAP98with sintered diamondanvils

Paris-Edinburg cellwith micro-furnace

Mcwhan Hi-TAl2O3 Bicone

McWhan Hi-TK-B cellTiZr insert

McWhanhydrualic piston

ILL BeCuClampedISIS liquids

TiZrMultisample

ORNL LiquidsTiZr

SEPD Gas

ORNL Sapphire

Pres

sure

(kba

r)

Temperature (K)

Adapted from C. Tulk 45

Paris-Edinburgh HP Cell

- First opposed anvil (WC or sintered diamond) device designed specifically for use at pulsed neutron source, ISIS. Relies on compression of gasket to reduce sample cell volume (200-400 ton press) - Temperature ranges from < 100 - 1200 K with pressures up to ~ 25 GPa- Primarily used for solid powdered crystals, but has been used for single crystals and amorphous solids

Adapted from C. Tulk 46

Large volume anvil cells

• Large anvil required for the goal of 1 mm3 samples (25 ct). Currently, synthetic sapphire, moissanite (hexagonal SiC), or diamonds are candidates.

• Natural diamonds far too expensive and likely not defect free.

Adapted from C. Tulk47

- Inelastic scattering extreme P-T- Sub-ps, nanoscale measurements- New sources: ERL, LCLS, NSLSII

SYNCHROTRON RADIATION

NEUTRON SCATTERING

Future opportunities in high pressure

-large volume diamond cell

Size

Single-crystal

Strength

Spectroscopic quality

New-generation high-pressure devices: need better diamonds than provided by Mother Nature

Size -- 1,000 ct anvil? Rapid, unlimited growth

Single-crystal -- epitaxial growth

Strength -- hardness/toughness

Spectroscopic quality -- from UV to IR

New-generation high-pressure devices: need better diamonds than provided by Mother Nature

Diamond Growing in a Plasma Reactor

Yan et al. Phys. Stat. Sol. 2004

Production of regular diamond anvil • 2.45 mm high• 0.28 carats• Grown in 1 day• reached 200 GPa

Growth rate improved from 1 µm/hr to 300- 500 µm/hr

Yan et al. PNAS 2002

Giant, perfect, single-crystal diamonds can be grown by chemical vapor deposition (CVD) process

10 carat, single- crystal, colorless CVD diamond

7 mm diameter, 12 mm length

51

~

2000 K~10 GPa

~

5000 K ~300 GPa

~

7000 K ~800 GPa

~

70 K~0.1 MPa

0 10 0 20 0 30 0 4 00

10 0 0

30 0 0

50 0 0

70 0 0

90 0 0

T h e o ry

S h o c k W a v e

S ta tic

Tem

pera

ture

(K)

P re s su re (G P a )

Fe

Pressure opens a new dimension for all sciences• Earth and Planetary Sciences

In situ measurements from crust to core conditionsIcy satellites and extrasolar bodies

•Other Applied Fields Biology: Life at extreme conditions, protein xtallographyMaterials Science: Electronic, magnetic, superhard, nano-,

energy-related materials •Fundamental Chemistry & Physics

Novel behavior and new phases

52

Pressure opens a new dimension for all sciences• Earth and Planetary Sciences

In situ measurements from crust to core conditionsIcy satellites and extrasolar bodies

•Other Applied Fields Biology: Life at extreme conditions, protein xtallographyMaterials Science: Electronic, magnetic, superhard, nano-,

energy-related materials •Fundamental Chemistry & Physics

Novel behavior and new phases

PtN2

in pyrite structure

Phase D

Phase E

Ir

and IrN2

at 64 GPaOs and OsN2

at 43 GPa

Degtyareva et al, Nature Mat. 2005Crowhurst et al, Science 2006 Young et al, PRL 2006

Sharma et al, Science 2002Evidence for microbial activity up to 1.6 GPa

Fourme et al, Structure 2002

Ambient 7 kbar

Lysozyme

53

Pressure opens a new dimension for all sciences

• Pressure-induced metallization?Wigner & Huntington, J. Chem. Phys. 3, 1935

• Exotic properties: Room-T super-conductor Ashcroft, Phys. Rev. Lett. 21, 1968

• Earth and Planetary SciencesIn situ measurements from crust to core conditionsIcy satellites and extrasolar bodies

•Other Applied Fields Biology: Life at extreme conditions, protein xtallographyMaterials Science: Electronic, magnetic, superhard, nano-,

energy-related materials •Fundamental Chemistry & Physics

Novel behavior and new phases

54