GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY · GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY:...

27
GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY: basin analysis, active faults, and characterization of uncertainties Chiara D’Ambrogi & F.E. Maesano Servizio Geologico d'Italia ISPRA [email protected]

Transcript of GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY · GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY:...

GEOLOGICAL 3D MODELING OF LARGE PLAINS IN ITALY: basin analysis, active faults, and characterization of uncertainties

Chiara D’Ambrogi & F.E. MaesanoServizio Geologico d'Italia – ISPRA

[email protected]

Imag

e:

NA

SA

Geological 3D modeling of large plains: geology, economy, society

Workflow

- 3D modeling

- basin analysis

- fault characterization

- uncertainties

Communication of the results

OUTLINE

The geological challenge in large plains…

beneath our feet?What’s

Subsurface geological sheet

STATIC PRODUCTS DYNAMICALLY UPDATABLE PRODUCTS

3D model 3D model-derived maps

knowledge

mapping modeling & mapping

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Image: ESA

Po Plain population

ITALIAN POPULATION

0Po Plain exploration Po Plain production

ITALIAN E&P

Po Plain industrial

employees

ITALIAN

INDUSTRIAL

EMPLOYEES

47,820 km2 = 16% Italian territory

Geological 3D modeling of large plains: geology – economy – society

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Plain, but not tectonically stable Geology – economy – society

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

May-June 2012 Emilia seismic sequence - Mw max 6.1

Milano

Bologna

Torino

Venezia

Magnitude

Instrumental seismicity 1990 -2015 (http://iside.rm.ingv.it)Research Permits

O&G Production

Gas storage

Blind thrust

Cavone gas field

3D models – local & regional 3D crustal model –Moho and Litosphere Astenosphere System

local

regional

national

local

2010

2003

2004

2013

20142014

2012

2010

2008

2012

2015

Servizio Geologico d’Italia – 3D modeling activities

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Priority 3 “Environment and Risk

Prevention”

Total budget € 3,160,590

September 2012 - June 2015

14 institutions - 58 people

6 member states of the Alpine Space

Cooperation Area

Europe funded Project in the frame of Alpine Space Programme 2007–2013

www.geomol.eu

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Tim

eD

om

ain

Dep

thD

om

ain

3D model Velocity model

Seismic lines

Sonic logs

Stack velocities

Field data

Geological maps

Well logs

Isobath maps

Interpretation

Informatization

AnalysisInterpolation

Time-Depth

conversion3D model

Stratigraphic marker /data

Attributes

Informatization

check

SGI Databases HarmonizationHarmonization

Line drawing

horizons/faults

refinementGravimetry

Seismotectonic

Other

applications

Final 3D model

Anticline axes (younger deformed horizon)

Faults (younger displaced horizon)

Faults (geometric and kinematic parameters)

Geological horizon at depth

Depth of the target horizons

Restoration

Analysis

Time-Depth conversion

Planning the work

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Image: ESA

GeoMol

Italian pilot area5,700 km2

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Brescia

Mantova

Parma

GeoMol data

12,200 km seismic lines

130 wells

Gravimetry

Planning the “field” workDataset

courtesy

GeoMol area

Published geol.

cross-sections

ENI seismic lines

(not public)

Blind thrust

Public well log

ENI well log

(not public)

Northern Apennines

thrust front

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Nogarole Rocca

Seismic interpretation

11 u

nc

on

form

itie

s4 u

nit

top

sLarge plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

NOR

MLW

ME2ME3

SCAMAI

PL

ME1

TE

QM1

QM1QM2

QM3

QC1QC2

PL

Nogarole Rocca

Seismic interpretation

11 u

nc

on

form

itie

s4 u

nit

top

sLarge plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

4-layer cake model - interpolated V0 and k

The velocity model and Time-Depth conversion

More on uncertainties characterization…

Interpolate velocity

Interpolate gradient

Spatial overlay of v0 and k values on the [x,y,twt] ascii

(horizon/fault surface)

Depth conversion using instantaneous velocity

Analysis of well velocitiesto obtain V0 and k

Extract velocity data for each stratigraphic interval

Wells database

3D model (time domain)

3D model (depth domain)

Layer 4Layer 3Layer 2Layer 1

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

THE 3D MODELModeled horizons: 15 (Trias-Holocene)7 Pleistocene horizons

Modeled faults: 132 (L>1,000 m)Decollement levels L1/L2

Grid 500x500 m

NEXT STEPS: basin analysis - active faults - uncertainties

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Key issue: characterize blind thrusts and blind thrust-related deformation

Sclater & Christie, 1980, JGR

Dickinson, 1953, AAPG Bull

more accurate representation of basin paleo-topography

calculation of thickness

Sequential restoration (including 3D decompaction after each unfolding step)

detection of growing anticlines

better definition of volumes

calculation of sedimentation rates

BASIN ANALYSIS (sedimentation and tectonics)

detection of fold-related deformation of growing anticlines

Residual vertical separation

SW NE

RVS 1.5 Ma

RVS 1.07 Ma

topography

regional trend

calculation of uplift rates

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

200

400

800

1000

0

sh

allo

wd

ee

p

600

1200

1.5 Ma

100

200

400

500

0

sh

allo

wd

ee

p

300

6001.25 Ma

100

200

400

500

0

sh

allo

wd

ee

p

300

1.07 Ma

50

100

150

200

0

sh

allo

wd

ee

p

0.87 Ma

50

100

130

0

sh

allo

wd

ee

p

0.63 Ma

50

100

150

200

0

sh

allo

wd

ee

p

0.45 Ma

Topography (after unfolding and decompaction)

BASIN ANALYSIS (sedimentation and tectonics)

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

1.25-1.07 Ma

0.63-0.45 Ma0.87-0.63 Ma

1.07-0.87 Ma1.50-1.25 Ma

Thickness (after decompaction and unfolding)

0.45 Ma-present

T207. FOLDS AND FOLDING: EARTH’S SURFACE TO DEPTH

MONDAY 2 NOVEMBER – POSTER BOOTH 418BASIN ANALYSIS (sedimentation and tectonics)

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

BASIN ANALYSIS & ACTIVE FAULTS

Uplift rate calculation

T207. FOLDS AND FOLDING: EARTH’S SURFACE TO DEPTH

MONDAY 2 NOVEMBER – POSTER BOOTH 418

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

200

400

800

1000

0

600

1200

sh

allo

wd

ee

p

A

B

1.50 Ma

Sedimentation & Uplift rates

Base Gelasian

1.50 Ma

1.25 Ma

1.07 Ma

Base Pliocene

Well

Vertical separation - Lateral variation

A

B

Maesano & D’Ambrogi, 2015, Italian Journal of Geosciences

1.50

1.25

1.07

0.45

0.63

0.87Ma

after

identification and characterization of growing anticlines (after 3D model restoration)

we need

accuracy in positioning the fault tip (younger deformed/displaced horizon)

age constraints (deformed/displaced horizon younger than 1.6 Ma)

ACTIVE FAULTS

Inherited normal faults

possible reactivation in the

present stress field

Depth 5 + 0.5 km Depth 10 + 0.5 km

Fault upper tip/Axis

(younger displaced

or deformed horizon)

NS – N10E: Maximum horizontal stress axis orientation

(data from WSM 2008; Heidbach et al., 2008)

interpolation from

SHINE

http://shine.rm.ingv.it/

Shmax orientation

Favorably oriented planes

from structural analysis (3D model-derived) to seismotectonic characterization

New or modified

Seism Sources

Seismogenic

Sources

DISS http://diss.rm.ingv.it/diss/

Active fault/fold

related to

Seism Sources

Active fault/fold

related to potential

Seism Sources

Active fault/fold

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

collaboration with INGV

Why evaluating uncertainties?

CHARACTERIZATION OF UNCERTAINTIES

Scientific

community

Decision makers

3D modelers

Society

Drilling techniques

Geological interpretation

Velocity model

Interpolation methods

……

Pakyu

z-C

harrie

ret a

l., 2015

Epistemic uncertainties:

How evaluating uncertainties?

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

CHARACTERIZATION OF UNCERTAINTIES

Wide area and high thickness variations

Pseudo-well interval velocity data from stack velocity

Testing a method to quantify errors

related to the velocity modelInstantaneous velocity

data from well logs

3D depth

model

3D depth

model

Compare

depth at

control points

Compare

depth at

control points

Comparison

of relative errors

3D velocity model

2D velocity model

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

CHARACTERIZATION OF UNCERTAINTIES

How communicating uncertainties in our 3D model?

Not representing uncertainties may generate false expectations

Communication of results

Check the interpretation,

further analysis, orient funding

to new data acquisition

- different models

- have different uses

- need communication of different

uncertainties

Increasing depth

Maesano & D’Ambrogi, EGU2015-11362

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Relative error %

Communication of uncertainties

is relevant for….

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Geoportal & GeoMapViewer

Metadata INSPIRE (EU Directive) compliant, CS-W 2.0.2

OGC standard: WMS, WFS, WCS, KML

COMMUNICATION OF THE RESULTShttp://sgi.isprambiente.it/geoportal

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

3D geological modeling in large plains: an integrated and thorough approach

The 3D geological model of the central Po Plain contributed

to the post earthquake activities of the “Laboratorio Cavone”

(induced/triggered seismicity)

Ministry of Economic Development

Regional Administration

O&G companies

Geological survey organizations

produce public and independent geological knowledge

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

Independent & public source of geological knowledge

Support to decision makers (Geopotentials vs geohazards, EIA)

Geological Survey Organizations

Research Institutes

Industrial Companies

Public Authorities COLLABORATION

Common workflow

Comparable 3D models

Maximizing analysis

Interoperability

Geology for geoscientists

Geology for society

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

SCIENTISTS ON TRIAL:

Sound communication of results and

their reliability (uncertainties)

How reliable are our 3D models?

Nature, 2011

(44,663 stations,1 km grid, density 2.67 g/cm3)

Bouguer

anomaly map

High-pass filter

Gravimetry

Residual Bouguer

anomaly map

Structural element

thrust

normal fault

Gravimetry

discontinuity

primary

secondary

Large plains: geology - economy - society ■ ■ ■ ■ ■ Workflow: 3D modeling - analysis - uncertainties ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Communication & conclusions ■ ■ ■

contribution from F. Ferri