Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational...

37
Geodesy, geographic Datums & Coordinate Systems What is the shape of the earth? Why is it relevant for GIS?

Transcript of Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational...

Page 1: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Geodesy, geographic Datums & Coordinate Systems

• What is the shape of the earth?• Why is it relevant for GIS?

Page 2: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

From Conceptual to Pragmatic

• Dividing a sphere into a stack of pancakes (latitude) and segments of an orange (longitude) is useful for navigation (relative to Polaris) and keeping time on a rotating sphere (15° long. = 1/24 of a rotation = 1 hr).

• How can we make graphs (= paper or digital maps) inCartesian units ( e.g. feet, meter) relative to thisconcept?

CONVERT DEGREES TO OTHER UNITSe.g. How many degrees are in a meter of Latitude or

Longitude?

Page 3: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Map‐making of Places on the Earth Involves Two Conceptually Steps:

1. Make an accurate 3D model of earth – e.g. an accurately scaled globe – to establish horizontal and vertical measurement datums – TODAY

2. Flatten all or part of that globe to a 2D (via. a projection technique) and define a Cartesian coordinate system – NEXT TIME

EARTH Globe MAP

Page 4: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Make a Map, Graph the World

• What determines spacing of 30°increments of Lat. & Lon. ?

• Dimensions and shape(“Figure”) of the earth

• Model vs Reality• Measurement Accuracy

Graph shows 30° increments of Lat. & Long.

X‐axis

Y‐axis

Del Val College40.3101° N, 75.1299° W

Page 5: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

The “Figure” of the Earth

• Reference Models• Sphere with a radius of      3963 miles• Ellipsoid (or Spheroid) with the equatorial radius (semimajor axis) of      3963 miles and a polar radius (semiminior axis) of      3950 miles

• Difference of 13 miles usually expressed as “flattening”  (ƒ) ratio of the ellipsoid:• ƒ  = difference/major axis =     1/300 for earth• Expressed also as “inverse flattening”, i.e. 300

• (Geodesy is the science of measuring the size and shape of the Earth and locations of points on its surface

Page 6: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

The Earth is Not a Sphere! It's an Ellipsoid

• The Earth is not a perfect sphere. Because it is spinning, it "bulges" at the middle. This makes the Earth a "squished sphere," or "oblate spheroid."

• "Datums" include an approximation of this spheroid.• Over the last several hundred years, datums have become more accurate.

• Different datums can have over 100 meters of error between them.• We must use the correct "Geographic Transformation" to convert between some datums.

• Typically, NAD27, WGS84, or NAD83

Page 7: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

The Earth is an Ellipsoid

• A sphere is a perfectly round 3‐dimensional object. Earth is like a big bag of molten lava spinning on its axis. Because of the "bulging" caused by the Earth spinning, the Earth is not completely round, thus, is not a sphere. Instead, we use the term "oblate spheroid," or "ellipsoid.“

Page 8: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Model Ellipsoid of Revolution / Spheroid

• Rotate an ellipse around a vertical axis

a = Semimajor axisb = Semiminor axisX,Y,Z – Reference frame

ƒ = (a‐b)/a = “flattening”1/ƒ = a/(a‐b) = “inverse flattening”

Page 9: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Two (of many) Standards Earth Reference Ellipsoids:

Ellipsoid Major Axisa (km)

Minor Axisb (km)

InverseFlattening

Clark(1866)

6,378.206 6,356.58 294.98

GRS 6,378.137 6,356.752 299.257

* At least 40 other ellipsoids in use globally

Page 10: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

And the answer is:

   7 meter difference is significant with modern software, but the real difference is the Datums with which they are typically associated.

Ellipsoid 1° of Latitude

Clark (1866)      110,591 meters

GRS 80       110,598 meters

Page 11: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Horizontal Reference Datums

Horizontal Datum = 1) shape and size of reference ellipsoid AND 2) location of the ellipsoid center relative to center of mass of the earth (geocenter)

Common North American datums:• NAD27 (1927 North American Datum)

• Clark (1866) ellipsoid, non‐geocentric (local) origin• NAD83 (1983 North American Datum)

• GRS80 ellipsoid, geocentric origin for the axis of rotation• WGS84 (1984 World Geodetic System)

• WGS84 ellipsoid; geocentric, nearly identical to NAD83• Other datums in use globally  

Page 12: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datums and Geocenter

• Geocenter = center of the mass of earth• Local Datum vs. Geocentric Datum

Page 13: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

National Geodetic Survey (NGS) “Geodetic Datum”

• Set of constraints specifying the coordinate system used for the geodetic control; a fitted reference surface e.g. NAD83 (1986)

• Surface based on precisely determined coordinates for a set of points – “benchmarks – empirically derived from astronomical, satellite and distance measurements

• Used for calculating the coordinates of points on Earth• NAD83 is the modern (legal) horizontal geodetic datum for US, Canada, Mexico and Central America

• Different versions, e.g. NAD83(1996), NAD83(2011) are different “realizations”. refinements  

Page 14: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Adjustments to NAD83

• HARN (or HPGN) – High Accuracy Reference Network  (Empirical corrections to NAD83(1986)

• Cooperative initiative between N.G.S. and states using GPS to refine NAD83 network of control points

• Network of      16,000 stations surveyed from 1989‐2004, allowing network accuracy of 5mm for state NAD83(HARNs)

• Subsequent refinements based on      70,000 GPS stations: NAD83(CORSxx), NAD83(2011)

Page 15: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

World Geodetic System 1984 – WGS84 Datum

• Devised by Department of Defense for global use• Introduced in 1987• Uses WGS84 ellipsoid (=GRS80)• Several “realizations”. e.g. WGS84(G873), WGS84(G1150), all yielding slightly (<1m) different locations for points

• Commonly the default datum for GPS instruments• Equating to NAD83 with out conversion can yield up to 2m errors.

Page 16: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum “Shifts”

• Coordinate shift by application of wrong datum can result in a horizontal positioning errors as great as 800 m

• An example compares the NAD83 location of middle of the plaza in downtown Arcata, California with the NAD27

Page 17: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum “Shifts”

• Below is another example of two datasets that are shifted because of mistakes with datums.

Page 18: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum “Shifts”

• This image shows the amount of shift between the NAD 27 and NAD 83 datums throughout the continental US. Notice that the western edge of the US is one of the worst locations for shift between these datums.

Page 19: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum Transformations ‐ Theoretical

• A datum transformation is a set of math formulas that converts point coordinates from one datum to another.

• Datum transformations take place in three‐dimensional space, but you can get a sense of how they work from a two‐dimensional example. Suppose you have two different maps of the same set of points. The differences between them can be expressed in terms of linear distance, spatial orientation, and scale. 

Page 20: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum Transformations ‐ Theoretical

Two sets of points representing the same locations on earth.

The systems are put into common coordinate space.

The challenge is to get the two sets of points into alignment—say, by aligning the points in Datum 2 with the points in Datum 1. The datum transformation is the math you use to do this.

The first step is to put the two sets of points 

into a common coordinate space.

Page 21: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum Transformations ‐ Theoretical

Next, you align the origins of the two systems by moving a certain number of units in the x‐direction and a certain number of units in the y‐direction. Then you rotate the axes into alignment. Finally, you apply a scale factor.

Left: the origins are aligned, bringing the two sets of points into proximity. Center: the axes are rotated, and the points almost match up. Right: the axes are scaled and the transformation is complete.

Page 22: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Datum transformations in ArcGIS• When you work with spatial data in ArcMap, you add data sets as layers to a data frame. Every data set you add has a geographic 

coordinate system associated with it, describing the data's latitude‐longitude coordinates. If the data set is already in a map projection, then it is also associated with a projected coordinate system, describing the projection and its parameters. The geographic coordinate system is still there, however—lurking below the surface, so to speak.

• A data frame is not inherently associated with a coordinate system, but it adopts the coordinate system—the GCS and the PCS, if any—of the first layer that is added to it. (You also have the option to set the data frame to the coordinate system of your choice at any time.) If the coordinate systems of subsequently‐added layers do not match this system, then they must be changed to match it—this is how ArcMap ensures that all layers in a data frame are in correct spatial alignment.

• If a layer has the same GCS as the data frame but a different PCS, ArcMap resolves the PCS mismatch through a process called on‐the‐fly projection. It simply "undoes" the layer's projection and uses the common GCS to re‐project the layer to the specifications of the data frame's PCS.

• If, however, the layer has a different GCS from the data frame, then a datum transformation is required. ArcMap™ will alert you to this, and it will even perform the transformation—but, except for one particular case, it doesn't do the transformation automatically. Instead, ArcMap presents you with a list of various possible transformations—sometimes just one, sometimes upwards of twenty—and it's up to you to pick one. 

Page 23: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Latitude and Longitude

• Historical Development• Coordinate on an ellipsoidal earth

Page 24: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Coordinates Have Roots in Maritime Navigation

• Latitude: measures by vertical angle to Polaris (N. Hemisphere) or to other stars and constellations (S. Hemisphere)

• Longitude: determined by the local time of the day vs. standard time (e.g. GMT)

• Requires accurate clocks; 1 hour difference = 15° of Longitude

Page 25: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Latitude (ɸ) on the Ellipsoidal Earth

• Latitude of point U calculated by:1) Defining the tangent plane (fg) to the 

ellipsoid at U.2) Defining the line perpendicular to the

tangent plane (cd) passing through U.3) Latitude (ɸ) is the angle that the 

perpendicular in (2) makes with the equatorial plane (angle cde)

Page 26: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Latitude facts:

• Lines of latitude (parallels) are evenly spaced (“small circles”) from 0° at the equator (a “great circle”) to 90° at poles.

• 60 nautical miles (     110km/1°,    1.8 Km/minute and       30m/second of latitude.

• North latitudes are positive, south latitudes are negitive

Page 27: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Longitude (λ)

Page 28: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Longitude facts:

• Lines of longitude (meridians) converge at the poles; the distance of a degree of longitude varies with latitude.

• Zero longitude is the Prime Meridian (PM); longitude is measures from 0‐180° east and west of the PM.

• East longitudes are positive, wetlongitudes are negative

Page 29: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Units of Measure

• Decimal degrees (DD) e.g. ‐90.50°, 35.40°• Ordor by long., than lat.• Fromate used by ArcGIS software

• Degrees, minutes, seconds (DMS) e.g. ‐90° 30’ 00”, 35° 24’ 00”• Degrees, decimal minutes (DDM) e.g. ‐90° 30.0’, 35° 24.0”

Page 30: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Vertical Datums

• Mean Sea Level (MLS) – historical datum only, not level!!!• Geoid (datum for Orthometric Height)

• Geoid = surface of constant gravitational potential that best fits MLS• Governed by mass distribution of earth• Shape is empirically (measured) based – not geometrical model• Datum that most closely approaches historical MLS

• Ellipsoid (datum for Height above ellipsoid: HEA)• Geometrically simple (level) surface• Datum used by most GPS recievers

Page 31: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Vertical Datums

• Can’t directly observe Geoid or Ellipsoid• So traditionally MLS heights found by level line surveys away from coasts.

• Use plumb bob to establish horizontal• Use optical instruments and trigonometric relationships

Page 32: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Sea Level (MLS), Geoid

• Measure gravity (via satellites) and connect with tide gauge(s) on land to “calibrate” geoid to elevation.  Set zero, or more commonly to nonzero historical match.

• Sea “level” (geogrid) not level asmuch as 85 to ‐105 m of reliefglobally,

Page 33: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Geoid, Ellipsoid and Elevation (H)

Page 34: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Geoid of Conterminous US

Page 35: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Potsdam Gravity Potato (Geoid 2011)

From GRACE satellites measurements

Page 36: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

North American Vertical Datums

• National Geodetic Vertical Datum 1929 (NGVD29)• Mean seal level height based on 26 tide gauges and 1000’s of benchmarks. Not MLS, not Geoid, not an equipotential surface

• Failed to account for sea topography (Unknow at that time)

• North American Vertical Datum 1988 (NAVD88)• Latest, established 1991• Fixed to one tidal benchmark in Quebec• Based on best fit to vertical obs. of US, Canada and Mexico benchmarks

Page 37: Geodesy, geographic Datums & Coordinate Systemsgis.weavsplace.com/Lectures/Lecture 3.pdfNational Geodetic Survey (NGS) “Geodetic Datum” • Set of constraints specifying the coordinate

Next time: How do we get from 3D earth models to 2D maps?

• Map Projections – transforming a curved surface to a flat map• Rectangular coordinate systems for smaller regions – UTM, SPCS, PLS