Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can...

76
Shielding Tutorial Gentex EME Lab

Transcript of Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can...

Page 1: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shielding TutorialGentex EME Lab

Page 2: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shielding Course Outline:

I. Why do we need shields?II. Introduction to the Basic Shield Design Process

A. AperturesB. Materials

III. CorrosionIV. Summations and ConclusionsV. Demonstrations

A. Measuring Shielding effectiveness of various materials in a Near‐Field Magnetic Field

B. Aperture Measurement ProgramVI. QuestionsVII. References

2EME Lab Shield Tutorial

Page 3: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

3

The Question: Why do we need Shields?

EME Lab Shield Tutorial

Page 4: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Why do we need shields?

• Immunity– Prevent external energy 

from interfering with sensitive circuits 

• Emissions– Prevent noisy circuits and  

devices from interfering with neighboring devices

• Self Compatibility– Prevent a device from 

interfering with itself

EME Lab Shield Tutorial 4

Page 5: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shields: Definition and Misconception

5

Definition: A Shield is a conductive barrier enveloping an electrical circuit to prevent time varying Electromagnetic fields from coupling or radiating from the circuit.

Misconception: Most engineers take it as an almost unshakable axiom of engineering faith that a conductive surrounding will provide adequate shielding protection in all cases.

While shields can be very effective, designers will get the most performance when some key issues are kept in mind.

EME Lab Shield Tutorial

Page 6: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

What makes a good shield?

EME Lab Shield Tutorial 6

• It depends….– Frequency of interference– Type of interference:

• Magnetic‐Field• Electric‐Field

– Location of Field:• Near‐Field• Far‐Field

– Number of openings and size of openings (Apertures)– Type of shielding material (Conductivity/Permeability)– Thickness of shielding material– Available mating surface (printed circuit board)

Page 7: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

7

Introduction to the Basic Shield Design Process

EME Lab Shield Tutorial

Page 8: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

8

Aperture Considerations

EME Lab Shield Tutorial

Page 9: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Aperture Design:

9

1) Holes and slots act as windows for EM radiation to penetrate or escape a shield

2) Many small apertures allows less leakage than a  single large aperture of the same area

3) Models show that in general, the aperture length should not exceed /50 for the highest frequency to be shielded (Wavelength)

EME Lab Shield Tutorial

Page 10: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Aperture Design:

10

1) The main item determining the leakage from a slot is the maximum linear dimension (not area) of the opening.

2) Remember to take into account the highest frequency harmonic present.

3) Multiple apertures farther reduces the shielding effectiveness.  The amount of reduction depends on:

a) The spacing between the aperturesb) The frequencyc) The number of apertures

EME Lab Shield Tutorial

Page 11: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Aperture Equations:

SEdB = 20Log10(/(2L)), where L< /2

Where:SEdB = shielding effectiveness = wavelengthL = aperture length, longest dimension

This is applicable for slots with a dimension equal or less than /2 wavelength.  

The equation illustrates:  The shielding effectiveness is 0 dB when the slot is /2 long and  Increases 20 dB/decade as the length L is decreased.   Reducing the slot length by ½ increases the shielding by 6 dB.

11EME Lab Shield Tutorial

Page 12: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Effect of Aperture Length on Shield Attenuation:

12

SEdB = 20Log10(/(2L)), where L< /2

EME Lab Shield Tutorial

Page 13: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Effect of Aperture Length

EME Lab Shield Tutorial 13

Page 14: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Aperture Length vs. Frequency for Various Attenuations:

14EME Lab Shield Tutorial

Page 15: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shield Attenuation with Multiple Apertures and fixed  and Aperture Length

15

RdB = 20log10(/2L) – 20log10(n1/2)

EME Lab Shield Tutorial

Page 16: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 16

Affects of Apertures on Shield Currents

Page 17: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Aperture Design and Babinet’s Principle:

17

1. The theory behind magnetic‐field shielding provided by induced currents presumes that currents will flow as long as there are no obstacle in their path.

2. It is essential that any and all apertures be arranged in such a way as to minimize their effect on the currents.

3. Apertures have HF resonances, so an induced HF current flowing on the shield can cause the aperture to act as a transmitting antenna (Babinet Principle or Effect).

EME Lab Shield Tutorial

Page 18: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Babinet’s Principle:  The Potential difference.  Length is the issue.

18EME Lab Shield Tutorial

Page 19: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

19

3‐D Simulation Results: (Scott Piper)

EME Lab Shield Tutorial

Page 20: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Simple Radiation Pattern

20EME Lab Shield Tutorial

Page 21: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Simple Slot Graph

21EME Lab Shield Tutorial

Page 22: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Base Line Shield

22EME Lab Shield Tutorial

Page 23: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Real Shield with Slot

23EME Lab Shield Tutorial

Page 24: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Slot Broken in Two

24EME Lab Shield Tutorial

Page 25: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Slot Broken in Four

25EME Lab Shield Tutorial

Page 26: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Summary Graph

26EME Lab Shield Tutorial

Page 27: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

CST Microwave Studio Simulation of a RCD Shield with various lifted terminations:

27EME Lab Shield Tutorial

Page 28: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 28

Shield Materials

Page 29: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Key Issues Determining Shield Performance: Shield Materials

29

Conductivity ((The measure of the ability of a material to conduct an electric current.)

Permeability (The measure of the ability of a material to support the formation of a magnetic field within itself.)

EME Lab Shield Tutorial

Page 30: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Required Material Size for Equivalent Conductivity

These squares are different metals sized for constant conductivity:

=l/(RA)Where:R is the electrical resistance 

of a uniform specimenl is the lengthA is the area  

30EME Lab Shield Tutorial

Page 31: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Key Issues Determining Shield Performance: Shield Geometry

31

1. Continuity of the shield and connections.

2. Thickness (important for low‐frequency magnetic field applications).

3. Apertures (which always impact negatively Shielding Effectiveness).

4. Near‐Field or Far‐Field Emissions (where is the source of emissions?).

EME Lab Shield Tutorial

Page 32: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shielding in a Nutshell:How do Shields Work?

32

Reflection at the boundary surfaces (Low Frequencies)

Absorption as fields attempt to transverse the shield (High Frequencies)

Magnetic Field Shunting (Very Low Frequencies)

EME Lab Shield Tutorial

Page 33: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

33

How Do Shields Work? Reflection and Absorption in a Near or Far‐Field

EME Lab Shield Tutorial

Page 34: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Notes on Near and Far Field Emissions

EME Lab Shield Tutorial 34

• 99% of the Emissions Under the Shield will be Near‐Field– Magnetic (Switched‐Mode‐Power‐Supplies)– Electric (DDR RAM, Micro)

• 85‐90% of the Emissions Outside of the Shield will be Far‐Field

• The External Near‐Field Exception:  – Handheld Antenna Testing:

Page 35: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Basic Shield Effectiveness Formulas:

35

SEdB = 20 log10(Et/Ei) (Electric Field)

SEdB = 20 log10(Ht/Hi) (Magnetic Field)

Where:SEdB is the Shielding EffectivenessEi is the Incident Electric WaveEt is the Transmitted Electric WaveHi is the Incident Magnetic WaveHt is the Transmitted Magnetic Wave

EME Lab Shield Tutorial

Page 36: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

S. A. Schelkunoff Shield Effectiveness Equation:

36

SEdB = RdB + AdB + MdB

Where:RdB is Reflected losses at the outer and inner shield surfaces

AdB is the Absorption loss through the material

MdB is the additional losses of Multiple reflections and transmissions within the shield*

*MdB can be disregarded for shield thicknesses that are much greater than a skin depth.

EME Lab Shield Tutorial

Page 37: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Shielding Effectiveness Equations Changeif the emissions are Far‐Field or Near‐Field

• The boundary between the Far and Near‐Field is approximately o/2.  

• Far and Near‐Field sources have differing source characteristics and E/H ratios.

37EME Lab Shield Tutorial

Page 38: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Reflection Loss (RdB):

EME Lab Shield Tutorial 38

• Occurs at a Boundary• Where the is a difference in the Conductivity (and Permeability (µ) of Two Materials (Air and Shield)

• The Greater the Difference, the Greater the Reflection Loss

• Low Frequency Dominant(Switch Mode Power Supplies)

Page 39: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Reflection Loss (RdB) General Formula for Far‐Fields:

39

RdB=168 + 10 log10(r/rf)Where:r = Conductivity relative to Copperr = Relative permeability relative to free spacef = FrequencyNote, Reflection loss is greatest for:

Low Frequency (f)High Conductivity (r)Low Permeability (r)

The larger the RdB the better the Shield.

EME Lab Shield Tutorial

Page 40: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Far‐Field Reflection Loss (RdB) Example:

40

Material r r RdB@1kHz RdB@10MHz

Copper  1.0 1.0 138 dB 98 dBNickel – Silver 1.0 0.06 126 dB 86 dBSteel 1000 0.1 98 dB 58 dB

RdB=168 + 10 log10(r/rf)

EME Lab Shield Tutorial

Page 41: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Absorption Loss (AdB):

41

Absorption Loss is the exponential decay of energy due to ohmic and heating of the material which occurs when an electromagnetic wave passes through a medium.

High Frequency Dominant(Video Data, DDR, Micro Data Communications)

EME Lab Shield Tutorial

Page 42: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

A little aside, Skin Depth ()

42

To understand Absorption Losses, there is a need to understand the term Skin Depth.What is Skin Depth?  The distance required for the wave to be attenuated to 1/e or 37% of its original value is defined as the Skin Depth () which is:

= (2/)0.5 (meters)          Or:

= 2.6/(frr)0.5 (inches)

Remember this term:  (Skin Depth) – it is important.

EME Lab Shield Tutorial

Page 43: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Back to Absorption Loss (AdB):

43

A = et/Or in dB:

AdB = 20 log10 et/Where:t = thicknessSkin Depth

Note, Absorption Loss is greatest for: Greater Thickness (t)  Smaller Skin Depth (

Higher Frequency,  Greater Conductivity (,  Greater Permeability (µ)

The Larger the AdB the better the Shield

EME Lab Shield Tutorial

Page 44: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Far‐Field Absorption Loss (AdB) for a 20 mil sheet of Copper, Nickel‐Silver, and Steel

44

AdB = 20 log10 et/

EME Lab Shield Tutorial

Page 45: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Far‐Field Summation of Reflection Loss (RdB) and Absorption Loss (AdB) of a 20 mil Copper, 20 mil Nickel‐Silver, and 20 mil Steel Shield

45

Schelkunoff Shield Effectiveness Equation: SEdB = RdB + AdB

EME Lab Shield Tutorial

Page 46: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Far‐Field Shield Absorption Loss (AdB) with Changing Shield Thicknesses for Copper, Steel, and Nickel‐Silver:

46EME Lab Shield Tutorial

Page 47: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Near Field Reflection Losses

EME Lab Shield Tutorial

For Both Magnetic and Electric Fields

47

Magnetic Field Source:Rm,dB = 14.57 + 10 log10(fr2r/r)

Electric Field Source:Re,dB = 322 + 10 log10(r/rf3r2)

Where r = distance from source

Page 48: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Near‐Field Reflection Losses for Steel, Copper, and Nickel‐Silver:

48

Reflection Losses of Magnetic Field

Reflection Losses of Electric Field

EME Lab Shield Tutorial

Page 49: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Near‐Field Absorption Losses:

49

A = et/ where t = thicknessOr

AdB = 20 log10 et/

This is the same equation as the far‐field.

EME Lab Shield Tutorial

Page 50: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Comparison of Near‐Field Reflection Loss (Electric and Magnetic) and Absorption Loss in a 20 mil Steel,Nickel‐Silver, and Copper Shield:

50

AdB = 20 log10 et/ Rm,dB = 14.57 + 10 log10(fr2r/r) Re,dB = 322 + 10 log10(r/rf3r2)

= (2/)1/2 (meters)EME Lab Shield Tutorial

Page 51: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Summary of Fields and Losses:

51

I. For far‐field sources:A. Reflection loss is predominant at the lower frequenciesB. Absorption loss is predominant at the higher frequencies.  

II. For near‐field, electric sources:A. Reflection loss is predominant at the lower frequenciesB. Absorption loss is predominant at the higher frequencies.  

III. For near‐field, magnetic sources:A. Absorption loss is the dominant shielding mechanism for all 

frequencies.  B. However, both reflection and absorption losses are quite small 

for near‐field, magnetic sources at low frequencies.  

EME Lab Shield Tutorial

Page 52: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Low Frequency Magnetic Shielding in the Near‐Field:

52

Basic methods for shielding against low‐frequency sources:

1. Diversion of the magnetic flux with high‐materials

2. Generation of opposing flux via Faraday’s law commonly known as the shorted turn method.

EME Lab Shield Tutorial

Page 53: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Magnetic Shunting ‐ diverting the magnetic flux:

53

1. Requires a high‐material to divert magnetic flux.2. Problems with high‐materials (Mumetal):

1. High‐materials are expensive2. Permeability () is:

NonlinearDecreases with increasing frequency Decreases with increasing magnetic field strengthChanges with Mechanical Handling/TreatmentDominant at Very‐Low‐Frequencies

(High‐materials are only effective for magnetic fields below 1 kHz.  “This is why shielding enclosures for switching power supplies are constructed from steel rather than Mumetal.”  Professor Clayton Paul, Introduction to Electromagnetic Compatibility, Second Edition, Page 743.) 

EME Lab Shield Tutorial

Page 54: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Magnetic Shunting:

54

No effect at High‐Frequencies: The  is approaching in this high‐material.

EME Lab Shield Tutorial

Page 55: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Faraday’s Law or Shorted Turn:

55

A changing current in one wire causes a changing magnetic field that induces a current in the opposite direction in an adjacent wire.

EME Lab Shield Tutorial

Page 56: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Magnetic Shielding:

EME Lab Shield Tutorial

What is a Magnetic Shield?

56

• A shield of high permeability that can “shunt,” “divert,” “attract,” “Channel,” or “guide” (like a duct) a magnetic field.

Because:

• High‐permeability magnetic materials have low reluctance.

Therefore:

• A magnetic field follows the path of least reluctance similar to how current follows the path of least resistance.

Page 57: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Degree of magnetic shielding is determined by:

EME Lab Shield Tutorial 57

– Material

– Thickness

– Shape

– Position relative to the applied Magnetic Field

Page 58: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 58

Shield Effectiveness (SE) of Flat Sheets of Different Materials in a Magnetic Field  15 mil Thick

Aluminum

Stainless Steel  (430)Cold‐Rolled Steel (SAE 1045)

Copper

0 1100 2200 3300 4400 5500 6600 7700 8800 9900 110000

100

200

300

400

500500

0

NISE.1 f( )

10000100 f

Nickel0 1100 2200 3300 4400 5500 6600 7700 8800 9900 11000

0

100

200

300

400

500500

0

FESE.1 f( )

10000100 f0 1100 2200 3300 4400 5500 6600 7700 8800 9900 11000

0

100

200

300

400

500500

0

SSSE.1 f( )

10000100 f0 1100 2200 3300 4400 5500 6600 7700 8800 9900 11000

0

100

200

300

400

500500

0

CUSE.1 f( )

10000100 f0 1100 2200 3300 4400 5500 6600 7700 8800 9900 11000

0

100

200

300

400

500500

0

ALSE.1 f( )

10000100 f

Page 59: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 59

Corrosion

Page 60: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

THEORY OF CORROSION:

EME Lab Shield Tutorial 60

Galvanic and electrolytic corrosion are two types of corrosion suspected in shielding degradation.  

In both cases the anode metal gets corroded. 

Page 61: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Galvanic corrosion: 

EME Lab Shield Tutorial 61

A natural phenomenon produced:1. When two dissimilar metals are brought in 

contact with each other 2. In the presence of acidic atmospheric 

moisture.   An electrochemical process where the metal with higher anodic index voltage corrodes and an external electric current is produced by an internal chemical reaction.  

Page 62: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Electrolytic Corrosion

EME Lab Shield Tutorial 62

• An electrochemical process:– Where the corrosive internal chemical reaction is induced by an externally applied electric potential 

– Although the metals may be similar as opposed to galvanic corrosion (dissimilar metals)

Page 63: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 63

Material Electrochemical Potentials

Page 64: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Galvanic Corrosion Risk

EME Lab Shield Tutorial 64

Page 65: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

65

Summations and Conclusions:

EME Lab Shield Tutorial

Page 66: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Summations and Conclusions: Shields

66

1. Shield the Whole active circuit2. Use THICK Steel for Magnetic Shielding‐

Switch‐Mode‐Power Supplies3. Know what type of field (Near/Far) is 

the threat(If you want to keep the field on the board then the field is near.  If you want to keep the field off of the board then the field is usually far.)

EME Lab Shield Tutorial

Page 67: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Summations and Conclusions: Shields 

67

1. Reflection loss is large for electric fields.2. Reflection loss in normally small for low‐frequency 

magnetic fields.3. Magnetic fields are harder to shield against than electric 

fields.4. Use a good conductor to shield against electric fields and 

high‐frequency magnetic fields.5. Use a magnetic material to shield against low‐frequency 

magnetic fields.

EME Lab Shield Tutorial

Page 68: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Summations and Conclusions: Apertures

68

Keep Apertures’ dimensions minimalKeep number of Apertures few

EME Lab Shield Tutorial

Page 69: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

69

Demonstrations: Measuring Shielding effectiveness of various materials in a Near‐Field Magnetic Field

Aperture Measurement Program

Palantir Shield Simulations

EME Lab Shield Tutorial

Page 70: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Plane Wave

EME Lab Shield Tutorial

Setup overview

70

Page 71: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Overview of Plane Wave

EME Lab Shield Tutorial

Cross Section of Camera

71

Page 72: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

Field Comparison inside of Camera

EME Lab Shield Tutorial

H‐field probe

72

Page 73: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

That’s all…

EME Lab Shield Tutorial 73

• Question and Answer Time

• Thank you for attending.

Page 74: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 74

Questions?

Page 75: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

EME Lab Shield Tutorial 75

References

Page 76: Gentex Shield Tutorial for ME and PCB Designers Shield Tutorial for ME and... · While shields can be very effective, designers will get the most performance when some key issues

References:

76

• Henry W. Ott, Electromagnetic Compatibility Engineering, Wiley, 2009

• Clayton, R. Paul, Introduction to Electromagnetic Compatibility, Wiley Interscience, 2nd. Ed, 2006

• Ralph Morrison, Grounding and Shielding Circuits and Interference, Wiley Interscience, 5th. Ed, 2007

• Tom van Doren, Grounding and Shielding Electronic Systems, T. Van Doren, 1997

• Gary Fenical, The Basic Principles of Shielding, In Compliance Magazine, June 2010

• Scott Piper (Gentex Corp.) CST Microwave Studio Simulations

EME Lab Shield Tutorial