Generation of Femtosecond X-ray Pulses from the Advanced ......(femto – 10-15) (atto – 10-18)...

40
RWS Sept. 2006 Robert W. Schoenlein Materials Sciences Division Lawrence Berkeley National Laboratory Generation of Femtosecond X Generation of Femtosecond X - - ray Pulses ray Pulses from the Advanced Light Source from the Advanced Light Source LBNL Instrumentation Colloquium Series Sept. 6, 2006

Transcript of Generation of Femtosecond X-ray Pulses from the Advanced ......(femto – 10-15) (atto – 10-18)...

  • RWS Sept. 2006

    Robert W. Schoenlein

    Materials Sciences DivisionLawrence Berkeley National Laboratory

    Generation of Femtosecond XGeneration of Femtosecond X--ray Pulsesray Pulsesfrom the Advanced Light Sourcefrom the Advanced Light Source

    LBNL Instrumentation Colloquium SeriesSept. 6, 2006

  • RWS Sept. 2006

    Outline

    Scientific Motivation• Structural dynamics in condensed matter on femtosecond time scale• X-ray source requirements and experimental considerations

    Generation of Femtosecond X-rays from 3rd Generation Synchrotrons• Manipulation of the stored electron beam with femtosecond laser pulses• Diagnostics (optical gain measurements, coherent THZ generation)• Results from proof-of-principle experiments at the ALS• Future prospects, limitations, practical issues – experimental applications

    New Femtosecond X-ray Facility at the Advanced Light Source• Small-gap, in-vacuum undulator• Soft x-ray and hard x-ray branchlines• High average power (high repetition rate) femtosecond laser system

    Future Femtosecond X-ray Sources

  • RWS Sept. 2006

    fundamental time scale for atomic motionvibrational period: Tvib ~ 100 fs

    Atomic Structural Dynamics

    • ultrafast chemical reactions

    • ultrafast phase transitions

    • surface dynamics

    • ultrafast biological processes

    Ultrafast X-ray ScienceRapidly emerging field of research - Physics, Chemistry and Biology

    N

    N

    Fe

    O

    Fundamental Time Scales in Condensed Matter

    fundamental time scales for electron dynamicselectron-phonon interaction times ~ 1 ps

    e-e scattering times ~10 fscorrelation time ~100 attoseconds (a/VFermi)

    Electronic Structural Dynamics

    • charge transfer

    • correlated electron systemscharge/orbital orderingCMRhigh Tc superconductivity

    Understanding the interplay between atomic and electronic structure- beyond single-electron band structure model – correlated systems (charge, spin, orbit, lattice) - beyond simple adiabatic potential energy surfaces

    • electronic phase transitions

    Fundamental Scientific Challenge in Condensed Matter:

    (femto – 10-15)

    (atto – 10-18)

  • RWS Sept. 2006

    Femtosecond Spectroscopy

    delay ∆∆∆∆t

    samplepump

    probe

    spectrometer

    CCD computer

    femtosecondlaser system

    ∆t

    - transmission- reflection- photoemission

    ~Iprobe(∆t)

    - non-linear (probe) ~[Iprobe(∆t)]n

    ∆t

    n-Wave Mixing

    harmonic ω1±ω2

    - transient four-wave mixing- photon echo

  • RWS Sept. 2006

    Rhodopsin - photoreceptor for vision• cis-trans isomerization complete in 200 fs

    Structural Dynamics of Ultrafast Biological Processes

    • vibrationally coherent

    wavelength (nm)

    500 550 600 650

    -150

    33

    100

    150

    200

    300

    400

    3000

    6000

    dela

    y (fs

    )

    T/T=2%−∆

    Schoenlein et al. Science (1991)Wang et al. Science (1994)

  • RWS Sept. 2006

    diffraction angle

    time delay

    time delay

    x-ray probe

    visible pum

    patomic structure in systems with long-range order/periodicityphase transitions, coherent phonons

    detector

    time-resolved x-ray diffraction

    delay

    x-ray probe

    visible pumpr

    energy

    time

    Kedge

    abso

    rptio

    n

    Femtosecond X-ray Science

    ω

    element specificmolecular systems and reactionscomplex/disordered materials

    EXAFS – local atomic structure and coordination

    NEXAFS – local electronic structure, bonding geometry, magnetization/dichroism

    (near-edge x-ray absorption fine structure)

    time-resolved x-ray spectroscopy

    (extended x-ray absorption fine structure)

    surface EXAFS, µµµµEXAFS ….( )( )

    2

    2sin~)(

    krkkr

    rfφ+

  • RWS Sept. 2006

    FeII Spin-Crossover Molecules

    low spin high spin

    • ~10-15% increase in metal-ligand bond distances

    • trigonal cage distortion?

    • electron transfer mechanistic role in biochemical processes (cytochrome P450)

    • magnetic and optical storage material

    Motivation:• relationship between structure, electronic, and magnetic properties

    Do the structural distortions facilitate the spin-crossover reaction?

    high-spin state

    MLCT(charge-transfer state)

    low-spin state

    τ~300 fs

    1A1g5T2g

    ∆∆∆∆S=2

    (t2g)6 (t2g)4 (eg)2

    Fe[tren(py)3]2+

    Fe Fe

    N

    N

    N

    N

    N

    NN

    N

  • RWS Sept. 2006

    Fe

    N

    N

    N

    N

    N

    N

    Fe(II) Spin-Crossover X-ray Spectroscopy

    M. Khalil et al., J. Phys. Chem. (2006)

    flowing jet0.5 mm, ~30 mM

    Ge crystal mono

    chopper(2 kHz)

    APDdetector

    synchrotron(70 ps, 7.1 keV)

    laser75 fs, 400 nm

    delay

    Time-resolved XAS - ALS Beamline 5.3.1)

    ∆µ

    ∆µ

    ∆µ

    ∆µ x

    10-3

    energy (eV)

    330 ps delay

    1s→→→→3d

    1s→→→→4p

    0.009

    2.15 ±0.03

    6.5 ±1

    Photoexcited 5T2 (τ = 330 ps)

    0.001σ (Å2)

    1.94 ± 0.01R (Å)

    6 ±0.5N

    Reactant1A1 (τ = 0)

    k (Å-1)

    ∆µ

    ∆µ

    ∆µ

    ∆µ x

    10-3

    τdelay = 330 ps

  • RWS Sept. 2006

    Characteristics for Ideal Source

    (1) temporal resolution ~ 100 fs

    • synchronization to laser trigger

    (2) high average flux 108-1013 photons/sec/0.1% BW

    (3) tunable 0.3 keV - 10 keV

    (4) rep. rate: 100 Hz - 10 kHz

    • high average brightness

  • RWS Sept. 2006

    MicroprobeMicroprobe

    CrystallographyCrystallography

    InterferometryInterferometry

    MicrofabricationMicrofabrication

    MicroscopyMicroscopy

    3rd Generation Synchrotrons - Advanced Light Source

  • RWS Sept. 2006

    3rd Generation Synchrotrons

    electron storage ring:1.9 GeV500 MHz, 400 mA70 ps bunch length

    12 straight sections for insertion devices

    36 bend magnets

    high-brightness sourceof soft x-rays 1-100 Å

    wiggler

    undulator

    bend-magnete-

    Line

    ar

    Acc

    eler

    ator

    booster ring

    Advanced Light Source

    γθK

    horiz ~∆γθ

    1~vert∆

    NnK 211

    ~2+∆

    γθ

    mceB

    K Woπ

    λ2

    =

    nNnn 1~

    λλ∆

  • RWS Sept. 2006

    laser wiggler

    bendmagnet

    mirrorbeamline x-rays

    wiggler

    femtosecond electron bunch

    bend magnet beamline

    70 ps electronbunch

    femtosecondlaser pulse

    spatial separationdispersive bend

    λλλλW

    electron-photon interaction in wiggler

    femtosecond x-rays

    e-beam

    Generation of Femtosecond X-rays from the ALS

    A. Zholents and M. Zolotorev, Phys. Rev. Lett., 76, 916,1996.

    slit

  • RWS Sept. 2006

    φωωωωω cos2),(),(~

    2

    R

    LRLRLRL AAAAdSdrErEA ∆

    ∆++=+

    � � ��

    N

    S

    S

    NS

    SN

    Nwiggler - permanent magnets

    wiggler radiation

    e-λw

    laser

    laserw

    radiated K λγλλ =+= )2/1(2

    22

    )2/1(2/

    2

    2

    KK

    A RR +≅ ωπα

    Energy Modulation in the Wiggler

    total field energy:

    wiggler radiated energy:∆E (energy mod)

    Elaser

    ωL = 1.55 eV

    ∆ωL = 27 period wiggler

    � 36 fs laser pulse

    AL = 610 µJ

    ALS beam energy spread σΕ ~1.9 MeV Eo =1.9 GeVLaser requirements:

    mceB

    K Woπ

    λ2

    =0 π/2 π

    optical phase

    electron beam

    ∆E

    ρ(E)

    ∆E

    accelerated electrons

    decelerated electrons

    σE – rms energy spread

    since σE ~ Eo2 and we want ∆Ε ∼ σEthen the required laser pulse energy

    scales as: AL ~ Eo4

    ∆E ≅ 17 MeV9σE(72 fs)

    (780 µJ)

  • RWS Sept. 2006

    Dynamics of Modulated Electron Beam

    x,E ~100 fs laser pulse~70 ps electron bunch

    z,t

    x,E

    z,t

    x,E

    z,t

    Torbit = 656 ns

    tdamp = 6 ms

    x,E

    z,t

    300 fs (BL6.3.2)100 fs (BL5.3.1)

    tx-ray

    ALS Storage Ring Dispersion

    σσσσdispersion ~ 85 fs per full arc(200 fs FWHM)

  • RWS Sept. 2006

    Laser Synchrotron Beam Slicing - Layout

    WIGGLER (W11)

    BACK TANGENT PORT

    BEAMLINE 5.3..1

    LASER SYSTEM

    BL 5.3.1X-RAY HUTCH

    LASER TRANSPORT TUBE

    SR05 SR04

    SR06

    PHOTON STOP

    ALIGNMENT AND TIMING DIAGNOSTICS

  • RWS Sept. 2006

    Laser Gain through Wiggler (FEL Gain)

    )()()( field optical total ωωω εε slasertotal e+=)()(2)()()( 222 ωωωωω εεε slaserslasertotal ee ++=

    ⋅⋅⋅⋅+∆∂

    ∂+= ωωωωω )()()( ososs

    eee

    22γλ

    λ wigglerradiated = EEdd

    r

    r

    r

    r ∆==− 2ωω

    λλ

    laserε∝∆Ε

    ( ) ηπγπ ���

    ��

    = 222 )(sin

    22

    xx

    dxd

    I

    IMgain

    A

    peak

    o

    oMx ωωωπ )( −=

    gain

    I(t)

    time

    I(ω)

    ω−ωο

    laserosss

    lasertotal eee εεε ωωξω

    ωω

    )(2)(2)(

    21 22 ++���

    ���

    ���

    ���

    Ε∂∂+=2

  • RWS Sept. 2006

    Measurement of Laser Gain through Wigglerga

    in

    λλο λ1λ2

    laser spectrumgain function

    wiggler

    laser

    e-beam

    IF λ1

    IF λ2 +-

    ( ) laserWradiated K λγλλ =+= 2/12

    22

    λW

    -60 -40 -20 0 20 40 60 80

    0

    1

    2

    3

    4

    5

    gain

    (x10

    -3)

    delay (ps)

    electron bunch laser pulse

    σ = 16.6 ps

    720 760 800 840 880

    -0.5-0.4-0.3-0.2-0.1

    00.10.20.30.40.5

    central wiggler emission λe (nm)

    gain

    (%

    )

  • RWS Sept. 2006

    CalculatedElectron Density

    Distribution

    -3σx to +3σx +3σx to +8σx +4σx to +8σx

    -1200-1000 -800 -600 -400 -200 0 200

    60

    80

    100

    120

    140

    160

    delay (fs)-1200 -1000 -800 -600 -400 -200 0 200

    80100120140160180200220240260

    delay (fs)-1000 -500 0 500 1000

    18001900200021002200

    2300240025002600

    coun

    ts

    delay (fs)

    -1000 -500 0 500 1000 0

    .2

    .4

    .6

    .8

    1.0

    0

    1

    2

    3

    4

    -4

    -3

    -2

    -1

    time (fs)

    x/σσ σσ x

    Schoenlein et al., Science, 287, 2237 (2000)

    Femtosecond Pulses of Synchrotron Radiation

    wiggler

    bendmagnet

    mirrorbeamline

    e-beam

    modulated electron bunch

    visible synchrotron radiation

    Laser System

    BBO

    ωωωω2 = ~2 eV

    ωωωω1 = 1.55 eV �

    ωωωω1+

    ωωωω2

    delay

    slit

  • RWS Sept. 2006

    CalculatedElectron Density

    Distribution

    -1000 -500 0 500 1000 0

    .2

    .4

    .6

    .8

    1.0

    0

    1

    2

    3

    4

    -4

    -3

    -2

    -1

    time (fs)

    x/σσ σσ x

    Femtosecond Pulses of Synchrotron Radiation

    195 fs(FWHM)

    delay (fs)-800 -600 -400 -200 0 200 400 600 800

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    wigglerbend

    magnet mirror

    beamlinee-beam

    modulated electron bunch

    visible synchrotron radiation

    Laser System

    BBO

    ωωωω2 = ~2 eV

    ωωωω1 = 1.55 eV �

    ωωωω1+

    ωωωω2

    delay

    slit

  • RWS Sept. 2006

    Coherent Infrared Radiation from Modulated Electron Bunch

    ( )2/sin2 θρ=photonAB

    ρθ=eAB

    24

    3θρλ ≈=− Rphotone ABAB

    R

    oRformation ZL λ

    πωρθ2

    =≅=

    • longitudinal modulation of electron density ~λIR• vacuum chamber aperture must accommodate source divergence (formation length)

    2/30

    2/1 ωρλ −≤R θ

    A B

    ωo

    ρ

    zo zo+λIR

    θ

    Coherent Synchrotron Radiation

    λR ≤ 1.4 mm (ρ = 4 m, ωo = 2 cm)

  • RWS Sept. 2006

    Coherent Infrared – Measurement Schematic

    bolometer

    vacuum windowfused silica

    silicon

    FTIRSpectrometer

    BL5.3.1

    e-

    J. Byrd, Z. Hao, M. Martin, D. Robin, F. Sannibale, R. Schoenlein, A. Zholents, M. Zolotorev, PRL, 96, 2006

    dP/d

    ω(µ

    W c

    m) c

    alc.

    freq. (cm-1)

    Coherent Synchrotron Radiation

    -1000 -500 0 500 1000

    elec

    tric

    field

    time (fs)

    0

    -1000 -500 0 500 1000 0

    .2

    .4

    .6

    .8

    1.0

    01234

    -4-3-2-1

    time (fs)

    x/σσ σσ x

    e-

    ~ 1.5 m ~ 3 m

    1 cm

    ∆L ~ 12 µm∆ν ~ 11 cm-1

    vacuum window

    Coherent IR Detection

    Waveguide Effects

  • RWS Sept. 2006

    bend magnetsource

    1:1 focusing toroid

    crystalmonochromator

    1000 Åcarbon foil slits

    selection offs x-ray pulse

    hutch0 m 12 m 24 m

    visible light (to hutch)for diagnostics

    differential pumping

    chopperangular slitse-beam

    Femtosecond x-ray Beamline 5.3.1

    • 1:1 image of bend magnet source250 µm (H) x 50 µm (V)

    • white beam, 0.1-12 keV(possibility for Laue diffraction)

    • flux ~1013 ph/sec/0.1% BW (30 ps pulse duration)

    flux ~105 ph/sec/0.1% BWbrightness ~108 ph/s/mm2/mrad2/0.1% BW

    100 fs pulse duration(5 kHz repetition rate)

  • RWS Sept. 2006

    Separation of Femtosecond X-rays

    • laser modulation of e-beam energy (∆E)laser power, wiggler matching

    • storage ring dispersion (∆E→∆x)emittance and lifetime degradation

    • beamline image qualitymirror scattering (non-specular)depth of source effects

    Sig (fsec)background > 1

    Requirement – gated detectors for isolating individual bunchesavalanche photodiodesgated microchannel plates

    laser wiggler

    femtosecond electron bunch femtosecond x-rays

    e-beam slits

    ∆E ∆x

    L

    2 nsec

    e-bunch pattern

  • RWS Sept. 2006

    2 4 6 8 10 12 140

    0.5

    1

    1.5

    2

    2.5

    3x 10

    -4

    ∆E/σEdN

    x/σE

    x 10

    -4

    ∆ρ(E) = ρ(E)laser on - ρ(E)laser offModulation: 3σE to 10σE τlaser/τe = 10-3

    -10 -5 0 5 10

    -10

    -8

    -6

    -4

    -2

    0

    2

    4

    ∆E/σE

    dNx/σ

    Ex

    10-4

    Calculated Electron Density Distribution

    -1000

    01234

    -4-3-2-1

    -500 0 500 1000 0

    .2

    .4

    .6

    .8

    1.0

    time (fs)

    x/σ x

    Differential Beam Profiles

  • RWS Sept. 2006

    5 mrad

    ∆x

    -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.510-4

    10-3

    10-2

    10-1

    100

    ∆x (mm)

    coun

    ts (n

    orm

    .)

    σx = 100 µmλ = 1.2 Å

    APD

    Si(111)

    - fraction of e-beam that is modulated = 75 fs × 0.1 /75 psec = 10-4

    σE/∆E=1/10

    Beam Profile Measurements – BL5.3.1 Camshaft Bunch

  • RWS Sept. 2006

    Femtosecond X-ray Profile Measurements – BL5.3.1

    0

    20

    40

    60

    80

    100

    120

    140

    -1000 -500 0 500 1000∆x (µm)

    diffe

    renc

    e co

    unts

    −∆Emax=6σE (11.4 MeV)−∆Emax=7σE (13.3 MeV)−∆Emax=8σE (15.2 MeV)

    Calculated Electron Density Distribution

    -1000

    01234

    -4-3-2-1

    -500 0 500 1000 0

    .2

    .4

    .6

    .8

    1.0

    time (fs)

    x/σ x

    Peak Laser Power ~ 10 GW(0.8 mJ, 75 fs)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    -1000 -500 0 500 1000∆x (µm)

    Sig

    nal/b

    kg r

    atio

    Differential Beam Profile (Laser On-Laser Off) Femtosecond Flux / Background

    σx = 100 µm

  • RWS Sept. 2006

    • mÅ charge displacement – THz phonon-polariton mode in LiTaO3A.Cavalleri et al., Phys. Rev. Lett., 95, 067405, (2005).

    • Ultrafast insulator-metal transition in VO2 - XANESA.Cavalleri et al., Phys. Rev. Lett., 95, 067405, (2005).

    • Time-resolved EXAFS - spin-crossover transition in Fe[tren(py)3]2+M. Khalil et al., J. Phys. Chem. (in press)

    • Bonding Properties of Liquid Silicon and Liquid CarbonS. L. Johnson et al., Phys. Rev. Lett., 94, 057407 (2005)S. L. Johnson et al., Phys. Rev. Lett. 91, 157403 (2003)

    • X-ray/laser ionization dynamics in atomic systemsM. Hertlein, A. Belkacem et al.

    Science at time-resolved x-ray science beamline (ALS BL5.3.1)

    Fe

    N

    N

    N

    NN

    N

  • RWS Sept. 2006

    • pulse duration η2 = τlaser / τsynchrotron = 10-3 (τx-ray ≈ 170 fs)(70 fs) (70 ps)

    • repetition rate η3 = flaser / fsynchrotron = 2x10-6(1 kHz) (500 MHz)

    • flux ~1013 ph/sec/0.1% BW• brightness ~1016 ph/sec/0.1% BW

    • flux ~1015 ph/sec/0.1% BW• brightness ~1019 ph/sec/0.1% BW

    Bend Magnet Undulator

    Femtosecond X-ray Facility – Scaling the X-ray Flux

    flaser / fsynchrotron flimit ≈ 3× =150 kHz(40 kHz) (500 MHz)

    number of bunchesτdamping

    Average Femtosecond X-ray Flux ~ Average Femtosecond Laser Power

    • phase factor η1 = 0.1 (fraction of electrons in optimum phase)

  • RWS Sept. 2006

    Femtosecond Undulator Beamline – Overview

    I. Insertion Device

    • small-gap undulator/wiggler (1.5 T, 50 x 3cm period)

    III. Laser: average power/repetition rate• 30 W (1.5 mJ per pulse, 20 kHz)

    sector 6 - proximity to existing wiggler 200 fs x-rays

    x102 increase in flux, x103 increase in brightness

    x10 increase in flux

    • highest possible flux and brightness 0.2-10 keV

    II. Beamlines for Femtosecond X-ray Science

    IV. Storage Ring Modifications• local vertical dispersion bump – sector 6 and/or 5

    • isolation of femtosecond x-ray, 0.2-2 keV, 2-10 keV

    wiggler

    mirror

    beamline

    femtosecondx-rayse-beam

    undulator

    laser

    monochroma

    torspectro

    graph

    bend magnet

  • RWS Sept. 2006

    magnetic structurevacuum chamber

    In-Vacuum Undulator/Wiggler

    SpecificationsMagnetic gap 5.5 mmPeriod 30 mmNo. periods 50Vacuum gap >5 mmBo 1.45 T

    S. Marks et al.

  • RWS Sept. 2006

    ALS Femtosecond Undulator Beamline 6.0 Layout

    soft x-ray branchline(250 eV – 2 keV)

    hard x-ray branchline(2-10 keV)

    soft x-ray spectrograph

    hard x-ray hutchSeparate M1 mirrors for hard and soft x-rays

    sample chamber(dispersive soft x-ray)

    slits(intermediate focus)

    20 kHz choppers

    crystal monochromator20 kHz femtosecond

    laser system 2x – 30 W

    P. Heimann, D. Plate, H. Padmore, R. Duarte, D. Cambie et al.

  • RWS Sept. 2006

    ALS Femtosecond Undulator BranchlinesP. Heimann, D. Plate, H. Padmore, R. Duarte, D. Cambie et al.

    soft x-ray branch (0.2-2 keV)

    Focus: 710 µm (H), 72 µm (V)Focus: 60 µm (H), 37 µm (V)

    ∆E3000

    commissionFall 2006

  • RWS Sept. 2006

    X-ray Chopper

    • Absorbed x-ray power: ~500 W • Slot dimensions: 3 mm horizontal x 300 mm vertical• Rotating disk, water-cooled, in vacuum – ferro-fluidic feedthroughs• Frequency: 20 kHz matched to laser repetition rate (100 slots at >12,000 RPM)• Synchronization to the laser frequency: allowable phase error 250 ns• LBNL/Rigaku design

  • RWS Sept. 2006

    M203

    Gratingmono

    SampleChamberand slits

    M201(behind wall)

    First Light10/4/05

    Femtosecond Soft X-ray Beamline 6.0.1.2

  • RWS Sept. 2006

    Femtosecond Laser System

    Electron beam interaction requirements:~1.5 mJ pulse energy, 60 fs FWHM, at ~800 nm20 kHz repetition rate, 30 W average powerdiffraction limited focusing, beam parameter: M2 �1.1

    Excitation pump pulses for time-resolved experiments:~1 mJ pulse energy at 800 nm (OPA)60 fs pulse duration, 20 kHz repetition rate~500 ns relative delay

    60 fs1.5 mJ

    Oscillator Stretcher

    Compressor2-Pass Amplifier 0.5 ns

    2 mJ 0.5 ns300 µµµµJ

  • RWS Sept. 2006

    Femtosecond Laser System

    Electron beam interaction requirements:~1.5 mJ pulse energy, 60 fs FWHM, at ~800 nm20 kHz repetition rate, 30 W average powerdiffraction limited focusing, beam parameter: M2 �1.1

    Excitation pump pulses for time-resolved experiments:~1 mJ pulse energy at 800 nm (OPA)60 fs pulse duration, 20 kHz repetition rate~500 ns relative delay

    Ti:SAPPHIRE RODFARADAY

    ROTATOR

    Ti:SAPPHIRE ROD

    OUTPUT BEAM

    INPUT BEAM

    HIGH REFLECTOR

    PUMP BEAMNd:YLF (2ωωωω)

    ~90 W, 10 kHz

    PUMP BEAMNd:YLF (2ωωωω)

    ~90 W, 10 kHz

    PUMP BEAMNd:YLF (2ωωωω)

    ~90 W, 10 kHz

    PUMP BEAMNd:YLF (2ωωωω)

    ~90 W, 10 kHz

    λλλλ/2 wave plate 77 K

    77 K

    cryogenic power amplifier

    R. Wilcox, R. Schoenlein

  • RWS Sept. 2006

    Femtosecond Pulse Compression

    Diffraction Grating Compressor Transmission Grating Compressor

    Power Densities: 10-100 W/cm2

  • RWS Sept. 2006

    Femtosecond X-ray Flux

    HHG flux from F. Krausz, laser: 10 fs, 3 mJ/pulse, 30 W

    Plasma source flux in mrad2 laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 105 improvement)

    103 104

    104

    105

    106

    107

    108

    photon energy (eV)

    flux

    (ph/

    s/0.

    1% B

    W)

    bend magnet flux (150 fs, 1 kHz)

    undulator flux (200 fs, 20 kHz)(3 cm period, 1.5 m length, Bmax= 1.5 T)

    HHG

    plasma Kα

    fs plasma continuum

    ALS typical average x-ray fluxundulator ~1015 ph/s/0.1% BWbend-magnet ~1013 ph/s/0.1% BW

    Cu Kα - 1010 ph/s/4π (proj. 1012 with Hg target)cont. 6x107 ph/s/4π (integ. from 7-8 keV)

    300

  • RWS Sept. 2006

    Ultrafast X-ray Facilities

    • Femtosecond soft x-ray ‘slicing’ beamline – BESSY (operational)

    • Femtosecond hard x-ray ‘slicing’ beamline – Swiss Light Source (commissioning)

    • Femtosecond x-ray beamline – SOLEIL (planning)

    • VUV free electron laser – DESSY (operational)

    • X-ray free-electron laser – LCSL SLAC (under construction)

    • X-ray free-electron laser – EURO X-FEL Hamburg (planning)

    • FERMI@ELETTRA soft x-ray FEL – Trieste (design/construction)

    • Soft x-ray FEL – BESSY (planning)

  • RWS Sept. 2006

    A. Cavalleri – VO2M. Rini

    M. Khalil – Fe(II) Materials Sciences Division

    LBNL

    P.A. HeimannT.E. GloverH. Padmore

    ALS - Experimental Systems GroupLBNL

    A. PatersonM. Howells

    Z. HaoAdvanced Light Source

    LBNL

    A. ZholentsM. Zolotorev

    Accel. and Fusion Res. DivisionLBNL

    R.W. FalconeU.C. Berkeley

    C. Steier W. Wittmer

    W. WanH. Nishimura

    D. RobinALS – Accel. Physics Group

    LBNL

    D. PlateS. MarksR. Wilcox

    R. SchlueterR. DuarteD. Cambie

    Engineering DivisionLBNL

    Femtosecond Undulator Beamline Development

    Acknowledgements