Generalizations of Bohr Model and D-scaling Method Alexey Sergeev 1.Hydrogen atom 2.Helium 3.H 2...

47
Generalizations of Bohr Model and D- scaling Method Alexey Sergeev 1.Hydrogen atom 2.Helium 3.H 2 molecule 4.Many-electron atoms (with new results)

Transcript of Generalizations of Bohr Model and D-scaling Method Alexey Sergeev 1.Hydrogen atom 2.Helium 3.H 2...

Generalizations of Bohr Model and D-scaling Method

Alexey Sergeev

1. Hydrogen atom2. Helium3. H2 molecule4. Many-electron atoms (with new results)

WittenMlodinow

andPapanicolaou …

http://www.dimensionality.info/ refs/index.htm

LewisLangmuir

BohrGeneralization

of angular momentum

M. Scully et al.

Herschbachet al.

Trend?

2

2010

3

4

5

6

7

8

Hydrogen atom, Bohr model and large D limit

),()/2(121

/ ml

lln

nrlnlm YnrLer

Bohrmodel

3D circular Rydberg states

at l→∞

Ground state at D→∞

9

Ground state

re100

Bohr model

10

states

400

4n

410 411 420 421

422 430 431 432 433

11

Circular Rydberg stateslmnl ,1

)1,1,( nnn

5n

12

)10(9,9,10 n

13

)20(19,19,20 n

14

)50(49,49,50 n

15

)100(99,99,100 n

n

16

)( 0

22 rrr

17

Interdimensional degeneracy

m=l state: )()()( riyxr l

0)()(2

1 )1(2)1(2

rErVdr

dr

dr

d

rl

l

l=0 state in D dimensions: )()()( rRrD

0)()(2

1 11

rRErVdr

dr

dr

d

rD

D

m=l state (D=3) l=0 state (D=3+2l)18

Two-electron atomsl=0 state in D dimensions:

),,(),( 2121)( rrrrD

0),,(),,(sinsin

111

11

2

1

21212

222

21

2

12

21

21

11

11

1

rrErrVrr

dr

dr

dr

d

rdr

dr

dr

d

r

DD

D

D

D

D

Circular states of heliumin four dimensions

),,()()(),( 21221121 rriwziyxrr ll

000

000

000

000

l

l

l

l

L

ijjiijjiij pqpqpqpqL 22221111

20

Interdimensional degeneracy

l-state (D=4) l=0 state (D=4+2l)

24 whichin

function for the Equation

4)(D function the

for Equation

lD

R

21

Bohr orbits for helium in four dimensions (x, y, z, w)

0/1 12 r

0)(

0)(

sin)(

cos)(

1

1

1

1

tw

tz

tRty

tRtx

tRtw

tRtz

ty

tx

sin)(

cos)(

0)(

0)(

2

2

2

2

Rwwzzyyxxtr

Rwzyxtr

Rwzyxtr

2)()()()()(

)(

)(

2/1221

221

221

22112

2/122

22

22

222

2/121

21

21

211

90

22

J. A. West et al., Classical limit states of the helium atom. Phys. Rev. A, 58,

186, 1998

23

Probability distribution of an electron in a helium atom in D dimensions

24

L. G. Yaffe, Physics Today

(1982)

25

26

1/D-expansion

30.95

738.2min E

27

Atoms in the large D limit

28

Hydrogen molecule

30

Traditional D-scaling

Alternative D-scaling

31

ground state

Classical limit of large D

32

0 1 2 3 4-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Alternative scaling

exact

Traditional scaling

E, a

.u.

R, a.u.

Results for H2

33

Many-electron atoms

35

36

37

38

39

40

41

Alternative D-scaling for many-electron atoms

Svidzinsky et al. considered minimization in 3D space(when r1, …, rN have 3 components).

Total number of minimization variables 3N-3

General theory requires minimization in arbitrary dimensional space. It lowers the energy.The total number of variables is only nmax

because of symmetry.

42

Comparison of 3D vs. arbitrary D minimization

43

44

45

46

Conclusions

In the generalized Bohr model for helium, electrons move on stable circular orbits in 4D space and form rigid triangle configuration.

Alternative D-scaling for atoms requires consideration of arbitrary dimensional configurations of electrons. It gives some improvement in accuracy in comparison with the earlier model in 3D space.

Combining Bohr model with Thomas-Fermi theory considerably improves accuracy