General and Inorganic Chemistry I. - Lecture 1nlcd.elte.hu/szalai/pdf/lecture-5-2018.pdf · 2018....

41
General and Inorganic Chemistry I. Lecture 1 Istv´ an Szalai E¨otv¨ os University Istv´ an Szalai (E¨otv¨osUniversity) Lecture 1 1 / 29

Transcript of General and Inorganic Chemistry I. - Lecture 1nlcd.elte.hu/szalai/pdf/lecture-5-2018.pdf · 2018....

  • General and Inorganic Chemistry I.Lecture 1

    István Szalai

    Eötvös University

    István Szalai (Eötvös University) Lecture 1 1 / 29

  • Outline

    István Szalai (Eötvös University) Lecture 1 2 / 29

  • Lewis Formulas and the Octet Rule

    In most of their compounds, the representative elements (s and p field)achieve noble gas configurations.

    István Szalai (Eötvös University) Lecture 1 3 / 29

  • Lewis Formulas and the Octet Rule

    In most of their compounds, the representative elements (s and p field)achieve noble gas configurations.

    István Szalai (Eötvös University) Lecture 1 3 / 29

  • Lewis Formulas and the Octet Rule

    In most of their compounds, the representative elements (s and p field)achieve noble gas configurations.

    István Szalai (Eötvös University) Lecture 1 3 / 29

  • Resonance and Delocalization

    István Szalai (Eötvös University) Lecture 1 4 / 29

  • Dative Bond

    [Fe(CN)]4−6

    István Szalai (Eötvös University) Lecture 1 5 / 29

  • Dative Bond

    [Fe(CN)]4−6

    István Szalai (Eötvös University) Lecture 1 5 / 29

  • Limitations of the Octet Rule

    Compounds in which the central element needs a share in less than eightvalence shell electrons. bigskip

    István Szalai (Eötvös University) Lecture 1 6 / 29

  • Limitations of the Octet Rule

    Compounds in which the central element needs a share in more than eightvalence shell electrons.

    István Szalai (Eötvös University) Lecture 1 7 / 29

  • Limitations of the Octet Rule

    Compounds or ions with odd number of electrons.

    István Szalai (Eötvös University) Lecture 1 8 / 29

  • Bond Order

    single bond (σ bond [s − s, s − p, p − p])

    double bound (1 σ bond + 1 π bond [p − p])

    triple bound (1 σ bond + 2 π bonds)

    István Szalai (Eötvös University) Lecture 1 9 / 29

  • Bond Energy, Bond Length

    bond length (pm) bond energy (kJ/mol)

    H−H 74 436C−C 154 347N−N 140 159O−O 132 138F−F 128 159Si−Si 234 176C=C 134 611O=O 121 498

    C≡C 121 837N≡N 110 946

    István Szalai (Eötvös University) Lecture 1 10 / 29

  • Bond Polarity, Dipole Moments

    ~µ = Q · ~d

    István Szalai (Eötvös University) Lecture 1 11 / 29

  • Molecular Polarity

    ~µ = Q · ~d

    István Szalai (Eötvös University) Lecture 1 12 / 29

  • Metallic Bond

    It results from the electrical attractions among positively charged metalions and mobile, delocalized electrons belonging to the crystal as a whole.

    István Szalai (Eötvös University) Lecture 1 13 / 29

  • Continuous Range of Bonding Types

    ∆EN = 0 apolar covalent or metallic bond0 < ∆EN < 2 polar covalent or metallic bond2 < ∆EN ionic bond

    István Szalai (Eötvös University) Lecture 1 14 / 29

  • VSEPR Theory

    Valence shell electron pair repulsion theory: Each set of valence shellelectrons on a central atom is significant. The sets of valence shellelectrons on the central atom repel one another. They are arranged aboutthe central atom so that repulsions among them are as small as possible.Lone pairs of electrons occupy more space than bonding pairs.

    A: central atom, X: shared electron pairs, E: lone (unshared) pairs

    AXnEm

    István Szalai (Eötvös University) Lecture 1 15 / 29

  • VSEPR Theory

    AX2 BeCl2, CdI2, HgBr2 linear

    AX3 BF3,BF3, NO−3 trigonal planar

    AX2E SO2, NO−2 angular

    István Szalai (Eötvös University) Lecture 1 16 / 29

  • VSEPR Theory

    AX2 BeCl2, CdI2, HgBr2 linear

    AX3 BF3,BF3, NO−3 trigonal planar

    AX2E SO2, NO−2 angular

    István Szalai (Eötvös University) Lecture 1 16 / 29

  • VSEPR Theory

    AX2 BeCl2, CdI2, HgBr2 linear

    AX3 BF3,BF3, NO−3 trigonal planar

    AX2E SO2, NO−2 angular

    István Szalai (Eötvös University) Lecture 1 16 / 29

  • VSEPR Theory

    AX4 CH4, CCl4, NH+4 tetrahedral

    AX3E NH3, SO2−3 trigonal pyramidal

    AX2E2 H2O angular

    István Szalai (Eötvös University) Lecture 1 17 / 29

  • VSEPR Theory

    AX4 CH4, CCl4, NH+4 tetrahedral

    AX3E NH3, SO2−3 trigonal pyramidal

    AX2E2 H2O angular

    István Szalai (Eötvös University) Lecture 1 17 / 29

  • VSEPR Theory

    AX4 CH4, CCl4, NH+4 tetrahedral

    AX3E NH3, SO2−3 trigonal pyramidal

    AX2E2 H2O angular

    István Szalai (Eötvös University) Lecture 1 17 / 29

  • AX5 PF5, SbCl5 trigonal bipyramidal

    AX4E SF4 seesaw

    AX3E2 ClF3 T-shaped

    AX2E3 XeF2, I−3 linear

    István Szalai (Eötvös University) Lecture 1 18 / 29

  • AX5 PF5, SbCl5 trigonal bipyramidal

    AX4E SF4 seesaw

    AX3E2 ClF3 T-shaped

    AX2E3 XeF2, I−3 linear

    István Szalai (Eötvös University) Lecture 1 18 / 29

  • AX5 PF5, SbCl5 trigonal bipyramidal

    AX4E SF4 seesaw

    AX3E2 ClF3 T-shaped

    AX2E3 XeF2, I−3 linear

    István Szalai (Eötvös University) Lecture 1 18 / 29

  • AX5 PF5, SbCl5 trigonal bipyramidal

    AX4E SF4 seesaw

    AX3E2 ClF3 T-shaped

    AX2E3 XeF2, I−3 linear

    István Szalai (Eötvös University) Lecture 1 18 / 29

  • AX6 SF6, SeF6 octahedral

    AX5E BrF5 square pyramidal

    AX4E2 XeF4 square planar

    István Szalai (Eötvös University) Lecture 1 19 / 29

  • AX6 SF6, SeF6 octahedral

    AX5E BrF5 square pyramidal

    AX4E2 XeF4 square planar

    István Szalai (Eötvös University) Lecture 1 19 / 29

  • AX6 SF6, SeF6 octahedral

    AX5E BrF5 square pyramidal

    AX4E2 XeF4 square planar

    István Szalai (Eötvös University) Lecture 1 19 / 29

  • Valence Bond (VB) Theory

    Valence bond theory describes covalent bonding as electron pair sharingthat results from the overlap of orbitals from two atoms. Usually, ”pureatomic” orbitals do not have the correct energies and orientations todescribe the where the electrons are when an atom is bounded to otheratoms. When other atoms are nearby as in a molecule, an atom cancombine its valence shell orbitals (hybridization) to form a new set oforbitals (hybrid orbitals).

    István Szalai (Eötvös University) Lecture 1 20 / 29

  • Valence Bond (VB) Theory

    Linear GeometryBeCl2: Be [He] 2s

    2 Cl [Ne] 3s2 3p5

    Be 2s2 −−−−−→hybridize

    sp

    István Szalai (Eötvös University) Lecture 1 21 / 29

  • Valence Bond (VB) Theory

    Trigonal Planar GeometryBF3: B [He] 2s

    2 2p1 F [He] 2s2 2p5

    B 2s2 2p1 −−−−−→hybridize

    sp2

    István Szalai (Eötvös University) Lecture 1 22 / 29

  • Valence Bond (VB) Theory

    Tetrahedral GeometryCH4: C [He] 2s

    2 2p2 H 1s1

    C 2s2 2p2 −−−−−→hybridize

    sp3

    István Szalai (Eötvös University) Lecture 1 23 / 29

  • Valence Bond (VB) Theory

    Trigonal Pyramidal GeometryH3: N [He] 2s

    2 2p3 H 1s1

    N 2s2 2p3 −−−−−→hybridize

    sp3

    István Szalai (Eötvös University) Lecture 1 24 / 29

  • Valence Bond (VB) Theory

    Angular GeometryH2O: O [He] 2s

    2 2p4 H 1s1

    O 2s2 2p4 −−−−−→hybridize

    sp3

    István Szalai (Eötvös University) Lecture 1 25 / 29

  • Valence Bond (VB) Theory

    Trigonal Bipyramidal GeometryPF5: P [Ne] 3s

    2 3p3 F [He] 2s2 2p5

    P 3s2 3p3 −−−−−→hybridize

    sp3d

    István Szalai (Eötvös University) Lecture 1 26 / 29

  • Valence Bond (VB) Theory

    Octahedral GeometrySF6: S [Ne] 3s

    2 3p4 F [He] 2s2 2p5

    S 3s2 3p4 −−−−−→hybridize

    sp3d2

    István Szalai (Eötvös University) Lecture 1 27 / 29

  • Valence Bond (VB) Theory

    Double BoundsA double consists of one sigma and one pi bond. A sigma bond resultingfrom head-on overlap of atomic orbitals. A pi bond resulting from side-onoverlap of atomic orbitals.C 2s2 2p2 −−−−−→

    hybridizesp2

    István Szalai (Eötvös University) Lecture 1 28 / 29

  • Valence Bond (VB) Theory

    Triple BoundsA triple bound consists of one sigma and two pi bonds.C 2s2 2p2 −−−−−→

    hybridizesp

    István Szalai (Eötvös University) Lecture 1 29 / 29