Gear Design 1

download Gear Design 1

of 14

Transcript of Gear Design 1

  • 8/2/2019 Gear Design 1

    1/14

    Disclaimer: The informatiperson. Use this inform

    ClickarrowstopageadvertsClickarrowstopageadvertsClickarrowstopageadvertsClickarrowstopageadverts

    HomeDrive_IndexGearsGearboxes

    Spur Gears

    Introduction.....StaEquations.....ModContactRatio.....FProcess.....Interna

    Thenotesbelow onaseparatep

    IntroductionIntroductionIntroductionIntroduction

    Gearsaremachi normallywitha iscalledthegea

    alongoneside-i practicetheacti matingteethacti throughouttheismaintainedfix teethcomeintomovingatconst driventooththe selectedforthe Consideroneen otherendofthe andbothcylinde

    figurebelow). marked.Asthe cylinderasitwr stringunwraps.

    on on this page has not been checked by an indtion at your own risk.

    ROYMECH

    ndards.....Terminology.....SpurGearDesign.....le.....PressureAngle.....orces-Torquesetc.....StrengthDurabilitycalcs...lGears.....TableofLewisFormFactors.....

    relatetospurgears.Notesspecifictohelicalg geHelicalGears

    ineelementsusedtotransmitrotarymotionbetw onstantratio.Thepinionisthesmallestgearan

    rwheel..Arackisarectangularprismwithgear

    tisineffectagearwheelwithaninfinitepitchcir nofgearsintransmittingmotionisacamaction ngascams.Geardesignhasevolvedtosucha

    otionofeachcontactingpairofteeththevelocit edandthevelocityratioisstillfixedaseachsub ontact.Whentheteethactionissuchthatthed ntangularvelocityproducesaproportionalcons actionistermedaconjugateaction.Theteeths earteethistheinvoluteprofile.

    dofapieceofstringisfastenedtotheODofon stringisfastenedtotheODofanothercylinderp rsarerotatedintheoppositedirectionstotensio

    hepointonthestringmidwaybetweenthecylind lefthandcylinderrotatesCCWthepointmoves

    pson.Thepointmovesawayfromtherightha Thepointtracestheinvoluteformofthegeartee

    pendent

    Materials.....Basic

    ..Design

    earsareincluded

    entwoshafts, dthelargergear

    teethmachined

    lediameter.In eachpairof

    levelthat ratioofthegears

    equentpairof rivingtooth

    tantvelocityofthe apeuniversally

    cylinderandthe ralleltothefirst thestring(see

    erPis owardsthis

    ndcylinderasthe th.

  • 8/2/2019 Gear Design 1

    2/14

    Thelinesnormaltothepointofcontactofthegearsalwaysintersectsthecentrelinejoiningthegearcentresatonepointcalledthepitchpoint.Foreachgearthecirclepassingthroughthepitchpointiscalledthepitchcircle.Thegearratioisproportionaltothediametersofthetwopitchcircles.Formetricgears(asadoptedbymostoftheworldsnations)thegearproportionsarebasedonthemodule.

    m=(PitchCircleDiameter(mm))/(Numberofteethongear).

    IntheUSAthemoduleisnotusedandinsteadtheDiametricPitchd pisused

    dp=(NumberofTeeth)/DiametricalPitch(inches)

    Profileofastandard1mmmodulegearteethforagearwithInfiniteradius(Rack).

    Othermoduleteethprofilesaredirectlyproportion.e.g.2mmmoduleteethare2xthisprofile

    Manygearstrainsareverylowpowerapplicationswithanobjectoftransmittingmotionwithminiumtorquee.g.watchandclockmechanisms,instruments,toys,musicboxesetc.Theseapplicationsdonotrequiredetailedstrengthcalculations.

    StanStanStanStandardsdardsdardsdards

    AGMA2001-C95orAGMA-2101-C95FundamentalRatingfactorsandCalculationMethodsforinvoluteSpurGearandHelicalGearTeeth

    BS436-4:1996,ISO1328-1:1995..Spurandhelicalgears.Definitionsandallowablevaluesofdeviationsrelevanttocorrespondingflanksofgearteeth

  • 8/2/2019 Gear Design 1

    3/14

    BS436-5:1997,ISO1328-2:1997..Spurandhelicalgears.Definitionsandallowablevaluesofdeviationsrelevanttoradialcompositedeviationsandrunoutinformation

    BSISO6336-1:1996..Calculationofloadcapacityofspurandhelicalgears.Basicprinciples,introductionandgeneralinfluencefactors

    BSISO6336-2:1996..Calculationofloadcapacityofspurandhelicalgears.Calculationofsurfacedurability(pitting)

    BSISO6336-3:1996..Calculationofloadcapacityofspurandhelicalgears.Calculationoftoothbendingstrength

    BSISO6336-5:2003..Calculationofloadcapacityofspurandhelicalgears.Strengthandqualityofmaterials

    Ifitisnecessarytodesignagearboxfromscratchthedesignprocessinselectingthegearsizeisnotcomplicated-thevariousdesignformuleahaveallbeendevelopedovertimeandareavailableintherelevantstandards.Howeversignificanteffort,judgementandexpertiseisrequiredindesigningthewholesystemincludingthegears,shafts,bearings,gearbox,lubrication.Forthesame

    dutymanydifferentgearoptionsareavailableforthetypeofgear,thematerialsandthequality.Itisalwayspreferabletoprocuregearboxesfromspecialisedgearboxmanufacturers

    TerminologyTerminologyTerminologyTerminology----spurgearsspurgearsspurgearsspurgears

    Diametralpitch(dp)......Thenumberofteethperoneinchofpitchcirclediameter.

    Module.(m)......Thelength,inmm,ofthepitchcirclediameterpertooth.

    Circularpitch(p)......Thedistancebetweenadjacentteethmeasuredalongtheareatthepitchcirclediameter

    Addendum(ha)......Theheightofthetoothabovethepitchcirclediameter.

    Centredistance(a)......Thedistancebetweentheaxesoftwogearsinmesh.

    Circulartooththickness(ctt)......Thewidthofatoothmeasuredalongtheareatthepitchcirclediameter.

    Dedendum(hf)......Thedepthofthetoothbelowthepitchcirclediameter.

    Outsidediameter(Do)......Theoutsidediameterofthegear.

    BaseCirclediameter(Db)......Thediameteronwhichthe

    involuteteethprofileisbased. Pitchcircledia(p)......Thediameterofthepitchcircle. Pitchpoint......Thepointatwhichthepitchcirclediameters

    oftwogearsinmeshcoincide.

    Pitchtoback......Thedistanceonarackbetweenthepitchcirclediameterlineandtherearfaceoftherack.

    Pressureangle......Theanglebetweenthetoothprofileatthepitchcirclediameterandaradiallinepassingthroughthesamepoint.

    Wholedepth......Thetotaldepthofthespacebetweenadjacentteeth.

  • 8/2/2019 Gear Design 1

    4/14

    SpurGearDesignSpurGearDesignSpurGearDesignSpurGearDesign

    Thespurgearisissimplesttypeofgearmanufacturedandisgenerallyusedfortransmissionofrotarymotionbetweenparallelshafts.Thespurgearisthefirstchoiceoptionforgearsexceptwhenhighspeeds,loads,andratiosdirecttowardsotheroptions.Othergeartypesmayalsobepreferredtoprovidemoresilentlow-

    vibrationoperation.Asinglespurgearisgenerallyselectedtohavearatiorangeofbetween1:1and1:6withapitchlinevelocityupto25m/s.Thespurgearhasanoperatingefficiencyof98-99%.Thepinionismadefromahardermaterialthanthewheel.Agearpairshouldbeselectedtohavethehighestnumberofteethconsistentwithasuitablesafetymargininstrengthandwear.Theminimumnumberofteethonagearwithanormalpressureangleof20desgreesis18.Thepreferrednumberofteethareasfollows

    12 13 14 15 16 18 20 22 24 25 28 30 32 34 3840 45 50 54 6064 70 72 75 80 84 90 96 100 120 140 150 180200 220 250

  • 8/2/2019 Gear Design 1

    5/14

    MaterialsusedforgearsMaterialsusedforgearsMaterialsusedforgearsMaterialsusedforgears

    Mildsteelisapoormaterialforgearsasasithaspoorresistancetosurface

    loading.Thecarboncontentforunhardenedgearsisgenerally0.4%(min)with0.55%(min)carbonforthepinions.Dissimilarmaterialsshouldbeusedforthemeshinggears-thisparticularlyappliestoalloysteels.Alloysteelshavesuperiorfatiguepropertiescomparedtocarbonsteelsforcomparablestrengths.Forextremelyhighgearloadingcasehardenedsteelsareusedthesurfacehardeningmethodemployedshouldbesuchtoprovidesufficientcasedepthforthefinalgrindingprocessused.

    Material Notes applications

    Ferrousmetals

    Cast IronLow Cost easy tomachine with highdamping

    Large moderatepower, commercialgears

    Cast SteelsLow cost,reasonablestrength

    Power gears withmedium rating tocommercial quality

    Plain-Carbon SteelsGood machining,can be heattreated

    Power gears withmedium rating tocommercial/mediumquality

    Alloy Steels

    Heat Treatable toprovide higheststrength and

    durability

    Highest powerrequirement. Forprecision and high

    precisiont

    Stainless Steels (Aust)Good corrosionresistance. Non-magnetic

    Corrosionresistance with lowpower ratings. Up toprecision quality

    Stainless Steels (Mart)

    Hardenable,Reasonablecorrosionresistance,magnetic

    Low to mediumpower ratings Up tohigh precisionlevels of quality

    Non-Ferrousmetals

    Aluminium alloys

    Light weight, non-corrosive andgoodmachinability

    Light dutyinstrument gears upto high precisionquality

    Brass alloys

    Low cost, non-corrosive,excellentmachinability

    low costcommercial qualitygears. Quality up tomedium precision

    Bronze alloys

    Excellentmachinability, lowfriction and goodcompatability withsteel

    For use with steelpower gears.Quality up to highprecision

    Magnesium alloys Light weight withpoor corrosion

    Ligh weight lowload gears. Quality

  • 8/2/2019 Gear Design 1

    6/14

    resistance up to mediumprecision

    Nickel alloys

    Low coefficient ofthermalexpansion. Poor

    machinability

    Special gears forthermal applicationsto commercial

    quality

    Titanium alloys

    High strength, forlow weight, goodcorrosionresistance

    Special light weighthigh strength gearsto medium precision

    Di-cast alloysLow cost with lowprecision andstrength

    High production,low quality gears tocommercial quality

    Sintered powder alloysLow cost, lowquality, moderatestrength

    High production,low quality tomoderatecommercial quality

    Nonmetals

    Acetal (DelrinWear resistant,low waterabsorbtion

    Long life , low loadbearings tocommercial quality

    Phenolic laminatesLow cost, lowquality, moderatestrength

    High production,low quality tomoderatecommercial quality

    NylonsNo lubrication, nolubricant, absorbswater

    Long life at lowloads to commercialquality

    PTFE

    Low friction and

    no lubrication

    Special low friction

    gears tocommercial quality

    EquationsforbasicgearrelationshipsEquationsforbasicgearrelationshipsEquationsforbasicgearrelationshipsEquationsforbasicgearrelationships

    Itisacceptabletomarginallymodifytheserelationshipse.gtomodifytheaddendum/dedendumtoallowCentreDistanceadjustments.Anychangesmodificationswillaffectthegearperformanceingoodandbadways...

    Addendum ha=m=0.3183pBase Circlediameter

    Db = d.cos

    Centredistance

    a = ( d g + d p) / 2

    Circular pitch p = m.Circular tooththickness

    ctt = p/2

    Dedendum h f= h - a = 1,25m = 0,3979 pModule m = d /zNumber ofteeth z = d / mOutside D o = (z + 2) x m

  • 8/2/2019 Gear Design 1

    7/14

    diameterPitch circlediameter

    d = z . m ... (d g = gear & d p = pinion )

    Wholedepth(min)

    h = 2.25 . m

    Top landwidth(min) t o = 0,25 . m

    Module(m)Module(m)Module(m)Module(m)

    Themoduleistheratioofthepitchdiametertothenumberofteeth.Theunitofthemoduleismilli-metres.Belowisadiagramshowingtherelativesizeofteethmachinedinarackwithmodulerangingfrommodulevaluesof0,5mmto6mm

    Thepreferredmodulevaluesare

    0,50,811,251,52,5345681012162025324050

    NormalPressureangleNormalPressureangleNormalPressureangleNormalPressureangle

    Animportantvariableaffectingthegeometryofthegearteethisthenormalpressureangle.Thisisgenerallystandardisedat20

    o.Otherpressureangles

    shouldbeusedonlyforspecialreasonsandusingconsideredjudgment.Thefollowingchangesresultfromincreasingthepressureangle

    Reductioninthedangerofundercuttingandinterference Reductionofslippingspeeds Increasedloadingcapacityincontact,seizureandwear Increasedrigidityofthetoothing

    Increasednoiseandradialforces

    Gearsrequiredtohavelownoiselevelshavepressureangles15oto17.5

    o

    ContactRatioContactRatioContactRatioContactRatio

    Thegeardesignissuchthatwheninmeshtherotatinggearshavemorethanonegearincontactandtransferringthetorqueforsomeofthetime.Thispropertyiscalledthecontactratio.Thisisaratioofthelengthoftheline-of-actiontothebasepitch.Thehigherthecontactratiothemoretheloadissharedbetweenteeth.Itis

    goodpracticetomaintainacontactratioof1.2orgreater.Undernocircumstancesshouldtheratiodropbelow1.1.

  • 8/2/2019 Gear Design 1

    8/14

    Acontactratiobetween1and2meansthatpartofthetimetwopairsofteethareincontactandduringtheremainingtimeonepairisincontact.Aratiobetween2and3means2or3pairsofteetharealwaysincontact.Suchashighcontactratiogenerallyisnotobtainedwithexternalspurgears,butcanbedevelopedinthemeshingofaninternalandexternalspurgearpairorspeciallydesignednon-

    standardexternalspurgears.

    (Rgo2 - Rgb

    2 )1/2 + (Rpo2 - Rpb

    2 )1/2 - a sin

    contact ratio m =

    p cos

    Rgo=Dgo/2..RadiusofOutsideDiaofGearRgb=Dgb/2..RadiusofBaseDiaofGearRpo=Dpo/2..RadiusofOutsideDiaofPinionRpb=Dpb/2..RadiusofBaseDiaofPinionp=circularpitch.a=(dg+dp)/2=centerdistance.

    SpurgearForces,torques,velocities&PowersSpurgearForces,torques,velocities&PowersSpurgearForces,torques,velocities&PowersSpurgearForces,torques,velocities&Powers

    F=toothforcebetweencontactingteeth(atanglepressureangletopitchlinetangent.(N)

    Ft=tangentialcomponentoftoothforce(N) Fs=Separatingcomponentoftoothforce =Pressureangle d1=PitchCircleDia-drivinggear(m) d2=PitchCircleDia-drivengear(m) 1=Angularvelocityofdrivergear(Rads/s) 2=Angularvelocityofdrivengear(Rads/s) z1=Numberofteethondrivergear z2=Numberofteethondrivengear P=powertransmitted(Watts) M=torque(Nm) =efficiency

    Tangential force on gears F t = F cos

    Separating force on gears F s = F t tan

    Torque on driver gear T 1 = F t d 1 / 2

    Torque on driver gear T 2 = F t d 2 / 2

    Speed Ratio = 1 / 2 = d 2 / d 1 = z 2 /z 1

    Input Power P 1 = T1 . 1

    Output Power P 2 =.T 1 . 2

  • 8/2/2019 Gear Design 1

    9/14

    SpurgearStrengthanddurabilitycalculationsSpurgearStrengthanddurabilitycalculationsSpurgearStrengthanddurabilitycalculationsSpurgearStrengthanddurabilitycalculations

    Designingspurgearsisnormallydoneinaccordancewithstandardsthetwomostpopularseriesarelistedunderstandardsabove:

    Thenotesbelowrelatetoapproximatemethodsforestimatinggearstrengths.Themethodsarereallyonlyusefulforfirstapproximationsand/orselectionofstockgears(reflinksbelow).Detaileddesignofspurandhelicalgearsisbestcompletedusingthestandards.Booksareavailableprovidingthenecessaryguidance.Softwareisalsoavailablemakingtheprocessveryeasy.Averyreasonablypricedandeasytousepackageisincludedinthelinksbelow(Mitcalc.com)Thedeterminationofthecapacityofgearstotransfertherequiredtorqueforthedesiredoperatinglifeiscompletedbydeterminingthestrengthofthegearteethinbendingandalsothedurabilityi.eoftheteeth(resistancetowearing/bearing/scuffingloads)..Theequationsbelowarebasedonmethods

    usedbyBuckingham..

    Bending

    ThebasicbendingstressforgearteethisobtainedbyusingtheLewisformula

    =Ft/(ba.m.Y)

    Ft=Tangentialforceontooth =ToothBendingstress(MPa) ba=Facewidth(mm) Y=LewisFormFactor m=Module(mm)

    Note:TheLewisformulaisoftenexpressedas

    =Ft/(ba.p.y)

    Wherey=Y/andp=circularpitch

    Whenagearwheelisrotatingthegearteethcomeintocontactwithsomedegreeofimpact.Toallowforthisavelocityfactor(Kv)isintroducedintotheequation.ThisisgivenbytheBarthequation...

    V=thepitchlinevelocity=d./2(m/s)

  • 8/2/2019 Gear Design 1

    10/14

    TheLewisformulaisthusmodifiedasfollows

    =Kv.Ft/(ba.m.Y)

    SurfaceDurability

    This calculation involves determining the contact stress between the gearteeth and uses the Herz Formula

    w=2.F/(.b.l)

    w = largest surface pressureF = force pressing the two cylinders (gears) togetherl = length of the cylinders (gear)

    b = halfwidth =

    d 1 ,d 2 Are the diameters for the two contacting cylinders.1, 2 Poisson ratio for the two gear materialsE 1 ,E 2 Are the Young's Modulus Values for the two gears

    To arrive at the formula used for gear calculations the following changes are

    madeF is replaced by F t/ cos d is replaced by 2.rl is replaced by WThe velocity factor K v as described above is introduced.Also an elastic constant Z E is created

    When the value of E used is in MPa then the units of Cp are MPa = KPa

  • 8/2/2019 Gear Design 1

    11/14

    The resulting formula for the compressive stress developed is as shownbelow

    The dynamic contact stress c developed by the transmitted torque must beless than the allowable contact stress Se...

    Note: Values for Allowable stress values Se and ZE for some materials areprovided at Gear Table

    r1 = d1 sin /2r2 = d2 sin /2Important Note: The above equations do not take into account the variousfactors which are integral to calculations completed using the relevant

    standards. These equations therefore yield results suitable for first estimatedesign purposes only...

    DesignProcessDesignProcessDesignProcessDesignProcessToselectgearsfromastockgearcatalogueordoafirstapproximationforageardesignselectthegearmaterialandobtainasafeworkingstresse.gYieldstress/FactorofSafety./Safefatiguestress

    Determinetheinputspeed,outputspeed,ratio,torquetobetransmitted Selectmaterialsforthegears(pinionismorehighlyloadedthangear) Determinesafeworkingstresses(uts/factorofsafetyoryieldstress/factorofsafetyor

    Fatiguestrength/Factorofsafety)

    DetermineAllowableenduranceStressSe Selectamodulevalueanddeterminetheresultinggeometryofthegear Usethelewisformulaandtheenduranceformulatoestablishtheresultingfacewidth Ifthegearproportionsarereasonablethen-proceedtomoredetailedevaluations Iftheresultingfacewidthisexcessive-changethemoduleormaterialorbothandstart

    again

    Thegearfacewidthshouldbeselectedintherange9-15xmoduleorforstraightspurgears-upto60%ofthepiniondiameter.

    InternalGearsInternalGearsInternalGearsInternalGearsAdvantages:

    1. Geometryidealforepicyclicgeardesign2. Allowscompactdesignsincethecenterdistanceislessthanforexternalgears.3. Ahighcontactratioispossible.4. Goodsurfaceenduranceduetoaconvexprofilesurfaceworkingagainstaconcave

    surface.

    Disadvantages:

    1. Housingandbearingsupportsaremorecomplicated,becausetheexternalgearnestswithintheinternalgear.

    2. Lowratiosareunsuitableandinmanycasesimpossiblebecauseofinterferences.3. Fabricationislimitedtotheshapergeneratingprocess,andusuallyspecialtoolingis

  • 8/2/2019 Gear Design 1

    12/14

    required.

    LewisformfactorLewisformfactorLewisformfactorLewisformfactor.Tableoflewisformfactorsfordifferenttoothformsandpressureangles

    NoTeeth

    Load Near Tip of TeethLoad at Near Middle ofTeeth

    14 1/2 deg 20 deg FD 20 deg Stub 25 deg 14 1/2 deg 20 deg FD

    Y y Y y Y y Y y Y y Y y

    10 0,176 0,056 0,201 0,064 0,261 0,083 0,238 0,076

    11 0,192 0,061 0,226 0,072 0,289 0,092 0,259 0,082

    12 0,21 0,067 0,245 0,078 0,311 0,099 0,277 0,088 0,355 0,113 0,415 0,132

    13 0,223 0,071 0,264 0,084 0,324 0,103 0,293 0,093 0,377 0,12 0,443 0,141

    14 0,236 0,075 0,276 0,088 0,339 0,108 0,307 0,098 0,399 0,127 0,468 0,149

    15 0,245 0,078 0,289 0,092 0,349 0,111 0,32 0,102 0,415 0,132 0,49 0,156

    16 0,255 0,081 0,295 0,094 0,36 0,115 0,332 0,106 0,43 0,137 0,503 0,16

    17 0,264 0,084 0,302 0,096 0,368 0,117 0,342 0,109 0,446 0,142 0,512 0,163

    18 0,27 0,086 0,308 0,098 0,377 0,12 0,352 0,112 0,459 0,146 0,522 0,166

    19 0,277 0,088 0,314 0,1 0,386 0,123 0,361 0,115 0,471 0,15 0,534 0,17

    20 0,283 0,09 0,32 0,102 0,393 0,125 0,369 0,117 0,481 0,153 0,544 0,17321 0,289 0,092 0,326 0,104 0,399 0,127 0,377 0,12 0,49 0,156 0,553 0,176

  • 8/2/2019 Gear Design 1

    13/14

    22 0,292 0,093 0,33 0,105 0,404 0,129 0,384 0,122 0,496 0,158 0,559 0,178

    23 0,296 0,094 0,333 0,106 0,408 0,13 0,390 0,124 0,502 0,16 0,565 0,18

    24 0,302 0,096 0,337 0,107 0,411 0,131 0,396 0,126 0,509 0,162 0,572 0,182

    25 0,305 0,097 0,34 0,108 0,416 0,132 0,402 0,128 0,515 0,164 0,58 0,185

    26 0,308 0,098 0,344 0,109 0,421 0,134 0,407 0,13 0,522 0,166 0,584 0,186

    27 0,311 0,099 0,348 0,111 0,426 0,136 0,412 0,131 0,528 0,168 0,588 0,187

    28 0,314 0,1 0,352 0,112 0,43 0,137 0,417 0,133 0,534 0,17 0,592 0,188

    29 0,316 0,101 0,355 0,113 0,434 0,138 0,421 0,134 0,537 0,171 0,599 0,191

    30 0,318 0,101 0,358 0,114 0,437 0,139 0,425 0,135 0,54 0,172 0,606 0,193

    31 0,32 0,101 0,361 0,115 0,44 0,14 0,429 0,137 0,554 0,176 0,611 0,194

    32 0,322 0,101 0,364 0,116 0,443 0,141 0,433 0,138 0,547 0,174 0,617 0,196

    33 0,324 0,103 0,367 0,117 0,445 0,142 0,436 0,139 0,55 0,175 0,623 0,198

    34 0,326 0,104 0,371 0,118 0,447 0,142 0,44 0,14 0,553 0,176 0,628 0,235 0,327 0,104 0,373 0,119 0,449 0,143 0,443 0,141 0,556 0,177 0,633 0,201

    36 0,329 0,105 0,377 0,12 0,451 0,144 0,446 0,142 0,559 0,178 0,639 0,203

    37 0,33 0,105 0,38 0,121 0,454 0,145 0,449 0,143 0,563 0,179 0,645 0,205

    38 0,333 0,106 0,384 0,122 0,455 0,145 0,452 0,144 0,565 0,18 0,65 0,207

    39 0,335 0,107 0,386 0,123 0,457 0,145 0,454 0,145 0,568 0,181 0,655 0,208

    40 0,336 0,107 0,389 0,124 0,459 0,146 0,457 0,145 0,57 0,181 0,659 0,21

    43 0,339 0,108 0,397 0,126 0,467 0,149 0,464 0,148 0,574 0,183 0,668 0,213

    45 0,34 0,108 0,399 0,127 0,468 0,149 0,468 0,149 0,579 0,184 0,678 0,216

    50 0,346 0,11 0,408 0,13 0,474 0,151 0,477 0,152 0,588 0,187 0,694 0,221

    55 0,352 0,112 0,415 0,132 0,48 0,153 0,484 0,154 0,596 0,19 0,704 0,224

    60 0,355 0,113 0,421 0,134 0,484 0,154 0,491 0,156 0,603 0,192 0,713 0,227

    65 0,358 0,114 0,425 0,135 0,488 0,155 0,496 0,158 0,607 0,193 0,721 0,23

    70 0,36 0,115 0,429 0,137 0,493 0,157 0,501 0,159 0,61 0,194 0,728 0,232

    75 0,361 0,115 0,433 0,138 0,496 0,158 0,506 0,161 0,613 0,195 0,735 0,234

    80 0,363 0,116 0,436 0,139 0,499 0,159 0,509 0,162 0,615 0,196 0,739 0,235

    90 0,366 0,117 0,442 0,141 0,503 0,16 0,516 0,164 0,619 0,197 0,747 0,238

    100 0,368 0,117 0,446 0,142 0,506 0,161 0,521 0,166 0,622 0,198 0,755 0,24150 0,375 0,119 0,458 0,146 0,518 0,165 0,537 0,171 0,635 0,202 0,778 0,248

    200 0,378 0,12 0,463 0,147 0,524 0,167 0,545 0,173 0,64 0,204 0,787 0,251

    300 0,38 0,122 0,471 0,15 0,534 0,17 0,554 0,176 0,65 0,207 0,801 0,255

    Rack 0,39 0,124 0,484 0,154 0,55 0,175 0,566 0,18 0,66 0,21 0,823 0,262

    Links to Gear Design

    1. Excelcalcs;...Siteincludesnumberofexcel

    basedgearcalculationsheets.(annualsubscription)

  • 8/2/2019 Gear Design 1

    14/14

    2. OnDrives-precisiongears...SupplierofGears/Gearboxes,Includingtechnicalinfo(download)

    3. GearDesign...AcomprehensivesourceofGearDesignInformation

    4. Efunda...Efunda->DesignCentre->Gears..

    SomeusefulNotes.5. GearDesignTopics...Asiteproviding

    amazingmotiongraphicsofdifferentgeartypes

    6. SEWEurodrive...AlltheinformationonGearboxesyouwillneed

    7. QualityTransmissionComponents...SupplierwithdownloadableGearDesignHandbook

    8. StockDriveProducts=SterlingInstruments...Supplierwithlargequantityofdownloadabledriveinformation

    9. Mitcalc...Excelbasedsoftwareincludingcodedgeardesign

    10.Lenze...Drivesystemsupplierwithgearedmotorsection11.DavallGears...UKSupplierofstockgearsand

    gearboxes12.Muffettgears...UKSupplierofstockgearsand

    gearboxes13.GearDesignLectureNotes...Plymouth.ac.uk-

    UsefulNotesongearstrengthdesign14.GearStress(PDF)...Averyuseful

    downloadablepaperbasedonAGMAstandardsforgeardesign

    15.DRGears...Onestopresourceforgearmanufacturers

    ThisPageisbeingdevelopedThisPageisbeingdevelopedThisPageisbeingdevelopedThisPageisbeingdeveloped

    HomeDrive_Index

    GearsGearboxes

    SendCommentstoRoyBeardmore

    LastUpdated15/01/2011