GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J....

28
GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson, J. Dalessio, H. L. Shipman, D. E. Winget, S. O. Kepler, & D. Koester (DARC = Delaware Asteroseismic Research Center)

Transcript of GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J....

Page 1: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

GD 358: The Case for Oblique Pulsation and Temperature Change

Mike Montgomery (UT-Austin, DARC),

J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson, J. Dalessio, H. L. Shipman, D. E.

Winget, S. O. Kepler, & D. Koester

(DARC = Delaware Asteroseismic Research Center)

Page 2: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

A couple of recent developments…

Gabriel Montgomery, born Dec. 23rd, 2009

Mari Kleinman, born Feb. 25th, 2010

Page 3: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

GD358

• First single white dwarf to show evidence of a large change in Teff

(seen in WZ SGe systems)- accretion?

• First white dwarf to show evidence of oblique pulsation

(seen in roAp stars)- magnetic field?

Both questions can be addressed with non-linear light curve fits

Page 4: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

• Need a mechanism for producing non-linearities – convection zone is most likely candidate– can change thickness by » 10 during pulsations

Page 5: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

) Assumes all the nonlinearity is caused by the convection zone

Hybrid Approach Montgomery (2005) based on work of Brickhill (1992),

Wu & Goldreich (1998), and Ising & Koester (2001)

linear region(small amplitude)

nonlinear convection zone (larger amplitude)

Page 6: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

N » 90 for DAVs (Teff » 12000 K)

N » 23 for DBVs ( Teff » 25000 K)

Fph ´ photospheric flux, Fb ´ flux at base of convection zone

Depth of convection zone is very temperature dependent!

Fph =Fb +τ c

dFphdt

τ c ≡ thermal response timescale of CZ

~ τ 0 (Teff /T0 )−N

Page 7: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Observations:Kleinman –1988

Dominant period: 615.15 s

Nonlinear light curvefitting of pulsations of

G29-38

For nearly mono-periodic pulsators, the fits are straightforward (from Montgomery 2005)

Page 8: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

l=1, m=1τ0= 150.1 secN=95.0θi= 65.5 degAmp= 0.259Res = 0.160

We derive convection zone parameters as well as constraints on l and m

Page 9: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Normally, GD358 looks like this…(May 2006)

Page 10: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

However, it looked like this during the “whoopsie” or “sforzando” (Aug 1996)

Page 11: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

However, it looked like this during the “whoopsie” or “sforzando” (Aug 1996)

Page 12: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

So what is GD 358 normally like?

τ 0 à 50sec

θi ~52±5degrees

Page 13: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

GD358 during the May 2006 WET Run

Page 14: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Simultaneous fit 29 high S/N runs:linear fit (12 periodicities – 36 parameters)

Page 15: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Simultaneously fit 29 high S/N runs:nonlinear fit (only 3 additional parameters)

Page 16: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Period (s) ell m422.561 1 1

423.898 1 -1

463.376 1 1

464.209 1 0

465.034 1 -1

571.735 1 1

574.162 1 0

575.933 1 -1

699.684 1 0

810.291 1 0

852.502 1 0

962.385 1 0

¿0 ~ 586 § 20 sec

µi ~ 47.5 § 2.5 degrees

Page 17: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

The difference in τ0 implies that GD 358 was ~ 3000 K hotter during the “sforzando”

Is there any other corroborating evidence?

τ 0 à 50sec

θi ~52±5degrees

τ 0 ~ 590sec

θ i ~ 47.5 ± 2.5degreesNormal state:

“sforzando”:

Page 18: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Yes, there is…There were separate measurements of its relative brightness (which Judi dug out) before and after this event

McDonaldMt. Suhora

Page 19: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Theoretical vs observed τ0 as a function of Teff

Page 20: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Back to the 2006 WET run…oblique pulsation?

Page 21: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Example of precession/oblique pulsations

m=1 m=0

Page 22: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Could this be oblique pulsation?

• Need exactly evenly spaced triplets in the FT

• The phases of the members of the triplet have to “line up”:

• The amplitudes of the modes need to follow a given relation

ΔΦ =0 for m = 0

ΔΦ = π for | m |= 1

Page 23: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Pre-whitening by 2 sets of equally spaced triplets

Page 24: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

For each triplet

Now lets fit the amplitudes…

ΔΦ / 2π ~ 0.5 ⇒ m = 1 modes

ΔΦ ≡2Φ0 − (Φ+ + Φ− )

Page 25: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Amplitudes

Page 26: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Amplitudes

The amplitudes fit very well: “98% significance level”

Page 27: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,

Conclusions• The nonlinearities in GD358’s light curve can be

understood as originating in its convection zone• Compared to 2006, GD358 had a much thinner

convection zone during the “sforzando” (1996) about 3000 K hotter

• The oblique pulsator model provides an excellent match to the 6 peaks around k=12 (~575 sec):– frequencies– phases– amplitudes

• This provides important constraints on

the physics of convection in

white dwarf stars

Thanks!

Page 28: GD 358: The Case for Oblique Pulsation and Temperature Change Mike Montgomery (UT-Austin, DARC), J. L. Provencal, A. Kanaan, A. S. Mukadam, S. E. Thompson,