gb 2262 STEM UT 6ENGIN BPowell 1 - …Research!Council.!(2011) ......

11
Ablative Shield Engineering Parts 1 and 2 STEM: Science, Technology, Engineering, Mathematics STEM Classroom Series The STEM Classroom Series features lessons that promote understanding of STEM content knowledge, integrate STEM with nonSTEM subjects, and increase students’ exposure to STEMrelated career options. About This Segment Students in Britnie Powell’s 6th grade class are studying heat transfer. In these two segments, students engage in an engineering design challenge: each group will design an ablative shield that can withstand the heat of a blowtorch for three minutes so that a raw egg placed behind the shield isn’t scorched or cooked. C. Infuse STEM principles into your own lessons 1. Apply the six questions in the “Replicate this lesson” activity to one of your own lessons. 2. Determine challenges you might face in applying these STEM concepts to your own lesson. How can you overcome these challenges? B. Replicate this activity 1. What are the learning objectives you want your students to achieve? How would you modify the activity’s objectives, outlined in the activity plan below, for your own students and curriculum? What other objectives, if any, will you set? 2. What content knowledge do you need to acquire or expand? In this activity students learn about heat transfer and thermal protection. To strengthen your background knowledge of related topics, visit the links in the Resources section of the activity plan. 3. How will you create the time and space to engage students in this activity? How much time will this unit take to plan and carry out? How can you integrate its activities into the curriculum map for your students? 4. What materials and other resources do you need for this lesson? What resources are needed for this unit, including collaboration with other teachers and with administrators? See the Resources section. 5. How will you assess student learning? In addition to tallying activity points, the teacher assesses students’ written evaluation of their experiment, including what went well and what they could do better next time. How might a teacher formatively assess students during this task? 6. How can you promote a STEM focus in your instruction? Read through the “Elements of Effective STEM Instruction” text box on the next page. According to the list, what kinds of STEM experiences were students engaged in during this activity? What are some others that you could include? A. Learn more about STEM education 1. In the table on the next page, identify the elements of effective instruction, as well as the elements of effective STEM instruction, that you observed in this activity. 2. How could the teachers enhance or add to the elements of instruction in their activity? 3. How could the teachers enhance or add to the elements of STEM instruction? Application activities (complete all that meet your goals for viewing this segment)

Transcript of gb 2262 STEM UT 6ENGIN BPowell 1 - …Research!Council.!(2011) ......

   

                             

Ablative  Shield  Engineering  -­‐  Parts  1  and  2  STEM:  Science,  Technology,  Engineering,  Mathematics  

STEM  Classroom  Series  The  STEM  Classroom  Series  features  lessons  that  promote  understanding  of  STEM  content  knowledge,  integrate  STEM  with  non-­‐STEM  subjects,  and  increase  students’  exposure  to  STEM-­‐related  career  options.  

 

About  This  Segment    Students  in  Britnie  Powell’s  6th  grade  class  are  studying  heat  transfer.  In  these  two  segments,  students  engage  in  an  engineering  design  challenge:  each  group  will  design  an  ablative  shield  that  can  withstand  the  heat  of  a  blowtorch  for  three  minutes  so  that  a  raw  egg  placed  behind  the  shield  isn’t  scorched  or  cooked.        

C.  Infuse  STEM  principles  into  your  own  lessons  

1.  Apply  the  six  questions  in  the  “Replicate  this  lesson”  activity  to  one  of  your  own  lessons.  

2.  Determine  challenges  you  might  face  in  applying  these  STEM  concepts  to  your  own  lesson.  How  can  you  overcome  these  challenges?  

•  

B.  Replicate  this  activity  

1. What  are  the  learning  objectives  you  want  your  students  to  achieve?    How  would  you  modify  the  activity’s  objectives,  outlined  in  the  activity  plan  below,  for  your  own  students  and  curriculum?  What  other  objectives,  if  any,  will  you  set?    

2. What  content  knowledge  do  you  need  to  acquire  or  expand?  In  this  activity  students  learn  about  heat  transfer  and  thermal  protection.  To  strengthen  your  background  knowledge  of  related  topics,  visit  the  links  in  the  Resources  section  of  the  activity  plan.    

3. How  will  you  create  the  time  and  space  to  engage  students  in  this  activity?  How  much  time  will  this  unit  take  to  plan  and  carry  out?  How  can  you  integrate  its  activities  into  the  curriculum  map  for  your  students?  

4. What  materials  and  other  resources  do  you  need  for  this  lesson?  What  resources  are  needed  for  this  unit,  including  collaboration  with  other  teachers  and  with  administrators?  See  the  Resources  section.  

5. How  will  you  assess  student  learning?  In  addition  to  tallying  activity  points,  the  teacher  assesses  students’  written  evaluation  of  their  experiment,  including  what  went  well  and  what  they  could  do  better  next  time.  How  might  a  teacher  formatively  assess  students  during  this  task?      

6. How  can  you  promote  a  STEM  focus  in  your  instruction?  Read  through  the  “Elements  of  Effective  STEM  Instruction”  text  box  on  the  next  page.  According  to  the  list,  what  kinds  of  STEM  experiences  were  students  engaged  in  during  this  activity?  What  are  some  others  that  you  could  include?    

A.  Learn  more  about  STEM  education  

• 1.  In  the  table  on  the  next  page,  identify  the  elements  of  effective  instruction,  as  well  as  the  elements  of  effective  STEM  instruction,  that  you  observed  in  this  activity.    

•  

• 2.  How  could  the  teachers  enhance  or  add  to  the  elements  of  instruction  in  their  activity?    

•  

• 3.  How  could  the  teachers  enhance  or  add  to  the  elements  of  STEM  instruction?  

Application  activities  (complete  all  that  meet  your  goals  for  viewing  this  segment)    

Guidebook  –  Ablative  Shield  Engineering  -­‐  Parts  1  and  2  (cont.)    

   

   

Elements  of  Effective  Instruction     Elements  of  Effective  STEM  Instruction  

- High  expectations  for  all  students  - Rigorous  content  - Authentic  performance  tasks  - Real-­‐time  assessment  adapted  to  student  needs  - Student-­‐driven  learning  - Strong  relationships  among  students  and  between  teacher  and  students  

- Equitable,  culturally  relevant  content  and  practices    - Evidence  of  21st  century  skills,  e.g.  critical  thinking,  problem  solving,  collaboration,  creativity,  communication    

- Technology  that  enhances  learning  - Cross-­‐curricular  (interdisciplinary)  integration  

In  addition  to  the  Elements  of  Effective  Instruction  left,  effective  STEM  instruction  can  include:  - Teachers  who  develop  solid  STEM-­‐related  content  knowledge    - Hands-­‐on  problem-­‐solving  activities  that  have  real-­‐world  relevance  - Integration  of  STEM  into  non-­‐STEM  subjects,  especially  art  and  design  - Use  of  industry-­‐standard  software,  tools,  and  procedures  such  as  the  engineering  design  cycle    

- Increased  awareness  of  STEM  fields  and  occupations,  especially  among  underrepresented  populations  

- Enthusiasm  about  further  STEM-­‐related  learning  - Connections  between  in-­‐school  and  out-­‐of-­‐school  learning  opportunities  - Industry  and  higher-­‐ed  partnerships  that  encourage  hands-­‐on  student  exploration  of  STEM-­‐related  careers    

Sources:    California  Dept.  of  Education.  (2015).  Science,  technology,  engineering,  &  mathematics.  Retrieved  February  21st,  2015,  from  http://www.cde.ca.gov/pd/ca/sc/stemintrod.asp  President’s  Council  of  Advisors  on  Science  and  Technology  (PCAST).  (2010).  Prepare  and  inspire:  K-­‐12  education  in  science,  technology,  engineering,  and  math  (STEM)  for  America’s  future.  

Retrieved  from  the  Whitehouse.gov  website:  http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf    

General  STEM  Information  and  Resources  

Utah  STEM  Action  Center  (n.d.).  STEM  Utah.  Retrieved  January  22,  2015,  from  http://stem.utah.gov/    

California  Department  of  Education  (n.d.).  Science,  technology,  engineering,  and  mathematics.  Retrieved  January  22,  2015,  from  http://www.cde.ca.gov/pd/ca/sc/stemintrod.asp    

National  Education  Association.  (n.d.).  The  10  best  STEM  resources:  Science,  technology,  engineering  &  mathematics  resources  for  preK-­‐12.  Retrieved  March  23,  2015,  from  http://www.pbs.org/teachers/stem/    

National  Research  Council.  (2011).  Successful  K-­‐12  STEM  Education:  Identifying  Effective  Approaches  in  Science,  Technology,  Engineering,  and  Mathematics.  Retrieved  March  23,  2015,  from  http://www.stemreports.com/wp-­‐content/uploads/2011/06/NRC_STEM_2.pdf      

PBS  Teachers.  (n.d.).  STEM  education  resource  center.  Retrieved  March  23,  2015,  from  http://www.pbs.org/teachers/stem/        

STEM  Education  Coalition  (n.d.).  Home  page.  Retrieved  January  22,  2015,  from  http://www.stemedcoalition.org/    

 Teacher:  Britnie  Powell   Grade/Content  Area:  6th  Science    School:  Salt  Lake  Center  for  Science  Education,  SLC,  Utah   Activity  Duration:  2  hours       Objective  

Students  will  apply  their  understanding  of  heat  transfer  to  an  engineering  challenge  in  which  they  will  design  an  ablative  shield  that  can  withstand  the  heat  of  blowtorch  for  three  minutes.  

Key  Concepts  and  Vocabulary    (See  below  for  online  resources  that  support  content  knowledge)  

• Ablation,  radiation,  conduction,  convection,  heat  transfer  

Standards  

• Investigate  ablative  thermal  protection  systems  in  action.  • Record,  evaluate,  and  communicate  data.  

Assessment  

• To  begin  with,  each  group  received  100  credits  (points)  with  which  to  purchase  supplies.  (See  scoring  sheet  at  the  end  of  this  document.)  

• If  the  egg  survived  with  no  scorching  and  no  cooking  on  the  inside,  the  group  was  awarded  200  points.  • If  the  egg  had  light  scorching  and  a  minimal  amount  of  cooking  on  the  inside,  the  group  was  awarded  100  points.    • Significant  scorching  and  cooking  resulted  in  zero  survival  points.    • (Unused  credit  points  x  2)  +  survival  points  =  final  score.    

Prior  Knowledge    

Students  should  understand  how  heat  energy  is  transferred  through  conduction,  convection,  and  radiation.  Students  should  also  understand  heat  conductors  and  heat  insulators.  

Materials      

• Ablative  shield  engineering  challenge  sheet  

• Ablative  shield  score  sheet  • Raw  eggs  –  1  per  group  

• 2  propane  tanks  with  igniters  

• 2  pre-­‐fabricated  test  stands  

• Container  for  broken  eggs  

• Timer  

• Safety  goggles  

• Science  journals  and  pencils  

Materials  for  ablative  shields:  • Spackle  • Lasagna  noodles  • Steel  wool  • Cotton  balls  • Cork  • Cardstock  • Graph  paper  • Acrylic  yarn  • Felt  • Fabric  • Aluminum  foil  • Aluminum  mesh  

 *The  Ablative  Shield  Engineering  Challenge  has  been  detailed  and  laid  out,  step  by  step,  at  the  end  of  this  document.    

Ablative  Shield  Engineering  –  Part  1      

Activity  Plan  

Activity  Plan  –  Ablative  Shield  Engineering  –  Part  1  (cont.)    

Procedures  

1. Open  class  with  a  discussion  about  heat  transfer,  thermal  protection  systems,  and  their  use.    

2. Hand  out  Ablative  Shield  Engineer  Challenge  instructions  and  score  sheets.  Review  together  as  a  class.  

3. Give  students  time  to  brainstorm  shield  designs  on  their  own.    

4. Divide  students  into  groups.  Each  student  group  must  create  a  labeled  sketch,  agree  upon  a  list  of  materials,  and  build  their  ablative  shield.  

5. Test  ablative  shields  outside.  Students  record  their  observations  of  each  test  in  their  science  journals.    

6. After  each  shield  has  been  tested,  the  class  returns  to  the  classroom  and  each  group  tallies  the  points  they  have  earned.  See  the  Assessment  section  on  the  previous  page.    

Detailed  notes  for  classroom  discussion  and  instructions  for  the  ablative  shield  activity,  along  with  a  score  sheet,  can  be  found  at  the  end  of  this  document.  

 

Resources  to  Support  Content  Knowledge    

Wisc-­‐online.  (n.d.).  Heat  transfer:  Conduction,  convection,  radiation.  [Video  file].  Retrieved  March  22,  2016,  from  https://www.wisc-­‐online.com/learn/natural-­‐science/earth-­‐science/sce304/heat-­‐transfer-­‐conduction-­‐convection-­‐radiation    

Outen,  E.  (2009,  February  3).  To  the  extreme:  NASA  tests  heat  shield  materials.  Retrieved  March  22,  2016,  from  http://www.nasa.gov/mission_pages/constellation/orion/orion-­‐tps.html    

Related  Video  Lessons  and  Resources    

9th–12th  grade  STEM:  Investigating  the  efficiency  of  insulation.  Edivate.  https://www.pd360.com/#resources/videos/10772    

11th–12th  grade  chemistry:  Investigating  thermodynamics  1:  Melting  ice.  Edivate.  https://www.pd360.com/#resources/videos/7669      

11th–12th  grade  chemistry:  Investigating  thermodynamics  2:  Burning  marshmallows.  Edivate.  https://www.pd360.com/#resources/videos/7670      

 

 

 

   

©2016  School  Improvement  Network  

 

 

Objective  

• Students  will  evaluate  the  effectiveness  of  their  shield  and  identify  changes  for  the  re-­‐design.  

• Students  will  work  collaboratively  to  design  and  build  a  new  shield.    • Students  will  present  their  findings  and  conclusions  to  the  class.  

Key  Concepts  and  Vocabulary    (See  below  for  online  resources  that  support  content  knowledge)  

Ablation,  radiation,  conduction,  convection,  heat  transfer  

Standards  

• Investigate  ablative  thermal  protection  systems  in  action.    • Record,  evaluate,  and  communicate  data.  

Assessment  

Student  groups  create  and  give  a  presentation  that  summarizes  their  designs,  the  results,  and  their  reflections.  They  also  share  their  feelings  about  the  engineering  process,  including  what  went  well  and  what  they’d  like  to  do  better  next  time.      

Prior  Knowledge    

Students  should  understand  how  heat  energy  is  transferred  through  conduction,  convection,  and  radiation.  Students  should  understand  how  ablative  shield  technology  works.  In  the  previous  lesson,  student  groups  have  built  and  tested  their  own  ablative  shields.  They  will  use  their  observations  and  experience  to  re-­‐design  the  shield  and  test  it  again.    

Materials    

 

• Ablative  shield  engineering  challenge  sheet  

• Ablative  shield  score  sheet  • Raw  eggs  –  1  per  group  

• 2  propane  tanks  with  igniters  

• 2  pre-­‐fabricated  test  stands  

• Container  for  broken  eggs  

• Timer  

• Safety  goggles  

• Science  journals  and  pencils  

• Post-­‐it  notes  and  folders  

Materials  for  ablative  shields:  • Spackle  • Lasagna  noodles  • Steel  wool  • Cotton  balls  • Cork  • Cardstock  • Graph  paper  • Acrylic  yarn  • Felt  • Fabric  • Aluminum  foil  

• Aluminum  mesh  

*The  Ablative  Shield  Engineering  Challenge  has  been  detailed  and  laid  out,  step  by  step,  at  the  end  of  this  document.  

Teacher:  Britnie  Powell   Grade/Content  Area:  6th  Science  School:  Salt  Lake  Center  for  Science  Education,  SLC,  Utah   Activity  Duration:  1.5  hours  

Ablative  Shield  Engineering  –  Part  2      

Activity  Plan  

Activity  Plan  –  Ablative  Shield  Engineering  –  Part  2  (cont.)    

Procedures  

1. Student  groups  discuss  the  results  of  their  first  test  and  evaluate  the  changes  they’ll  need  to  make  for  their  second  design.    

2. Student  groups  collaborate  to  design  and  build  their  second  shield.    

3. Teacher  and  students  test  the  shields  outside  as  before.  (See  previous  pages.)    

4. The  class  returns  to  the  classroom  and  student  groups  debrief,  discussing  what  worked,  what  did  not,  the  challenges  they  encountered,  and  what  they  would  do  differently  in  future  engineering  challenges.  Students  again  tally  their  points.    

5. Each  group  presents  the  conclusions  of  their  debrief  to  the  class.    

Detailed  notes  for  classroom  discussion  and  instructions  for  the  ablative  shield  activity,  along  with  a  score  sheet,  can  be  found  at  the  end  of  this  document.  

 

Resources  to  Support  Content  Knowledge    

The  Physics  Classroom.  (n.d.).  Methods  of  heat  transfer.  Retrieved  March  22,  2016,  from  http://www.physicsclassroom.com/class/thermalP/Lesson-­‐1/Methods-­‐of-­‐Heat-­‐Transfer    

Siemens  Science  Day.  (n.d.).  Hands-­‐on  science  activities.  Retrieved  March  22,  2016,  from  http://www.siemensscienceday.com/activities/hands-­‐on-­‐science-­‐activities.cfm    

Related  Video  Lessons  and  Resources    

6th  grade  STEM:  Collecting  data  about  food  waste  at  school.  Edivate.  https://www.pd360.com/#resources/videos/10420    

6th  grade  STEM:  Composting  food  waste  in  soda  bottles.  Edivate.  https://www.pd360.com/#resources/videos/10417    

 

©2016  School  Improvement  Network  

 Ablative  Shielding  Challenge  adapted  by  Britnie  Powell  

 Overview  As  a  culmination  to  the  heat  energy  unit,  students  will  use  what  they  have  learned  in  the  Ablative  Shielding  Engineering  Challenge.  Students  will  work  in  teams  to  construct  an  ablation  shield  in  order  to  prevent  the  cooking  or  scorching  of  an  egg.  Teams  will  spend  points  based  on  the  materials  they  use  in  the  construction  of  their  shield  and  can  earn  points  based  on  the  effectiveness  of  their  shield.  Students  will  then  debrief  and  discuss  their  designs,  what  they  have  learned,  and  what  they  would  do  in  a  re-­‐design.        Research-­‐Based  Model:  John  Dewey’s  Experiential  Learning  Cycle  (ELC)  “We  don’t  learn  from  experience  alone,  we  learning  from  thinking  about  our  experiences.”  

• Briefing  (Introduction)  • Experience  (Activity)  • Reflection  (What  happened)  • Debriefing  (What  does  it  mean?  Why  is  it  important?)  • Application  (How  can  we  use  it?  What  else  do  we  need  to  understand?)  

 Science  Content  Standards  that  apply  

• Utah  Standard  6  Objective  1  o Students  will  investigate  the  movement  of  heat  between  objects  by  conduction,  convection,  and  radiation.      o Students  will  compare  materials  that  conduct  heat  to  materials  that  insulate  the  transfer  of  heat  energy.  o Students  will  design  and  conduct  an  investigation  on  the  movement  of  heat  energy.      

• Utah  Intended  Learning  Outcomes  for  Sixth  Grade  Science  o Use  Science  Process  and  Thinking  Skills  o Understand  Science  Concepts  and  Principles  o Communicate  Effectively  Using  Science  Language  and  Reasoning  

• Engineering  Standards  -­‐  Specific  engineering  standards  haven’t  been  released  for  6th  grade  yet,  but  are  due  to  roll  out  in  the  next  few  years.  Students  will  be  expected  to  engage  in  the  engineering  process  (Identifying  the  problem/challenge,  designing  a  prototype,  testing  a  prototype,  evaluating,  re-­‐design,  re-­‐test,  etc.)  

 Required  Prior  Knowledge  Conduction:  Heat  travels  through  solids  by  conduction.  Some  objects  are  better  conductors  of  heat  than  others.  During  the  design  challenge,  more  contact  between  objects  means  more  heat  transfer  through  conduction.  One  example  of  conduction  is  leaving  a  metal  spoon  in  a  pot  of  boiling  soup;  while  initially  cool  to  the  touch,  the  handle  can  burn  you  if  the  heat  is  allowed  to  travel  up  the  length  of  the  spoon.    Convection:  Heat  moves  through  fluids  through  convection.  “Fluids”  are  matter  that  conforms  to  the  shape  of  its  container  (e.g.,  liquids  and  gases,  like  water  or  air).  As  the  fluid  warms,  it  expands;  the  same  mass  now  takes  up  a  greater  volume,  meaning  it  becomes  less  dense.  The  warmer,  less  dense  material  rises  or  floats  to  the  top  of  the  fluid  and  the  denser,  cooler  fluid  moves  down  to  take  its  place.  During  the  challenge,  convection  can  help  to  carry  heat  away.    Convection  currents  are  responsible  for  weather  patterns  and  how  hot  air  balloons  function.  As  a  side  note,  convection  cannot  happen  in  microgravity.  Without  gravity  nothing  rises  or  sinks,  regardless  of  relative  density.  Special  fans  are  required  to  cool  computer  equipment  and  to  warm  food,  as  air  of  different  temperatures  will  not  circulate  on  its  own.  

 Radiation:  Heat  also  travels  in  waves,  or  through  radiation.  Radiant  energy  (like  from  a   )  is  how  energy  from  the  sun  radiatorwarms  the  Earth,  despite  the  93  million  miles  of  the  vacuum  of  space  that  lie  in  between.      • If  you  are  near  a  hot  object  and  you  touch  it  and  get  burned,  that  is    Conduction.• If  you  feel  the  warm  air  currents  rising  from  it,  that  is    Convection.• If  you  are  near  enough  to  the  heat  source  to  feel  the  warmth  on  your  skin,  even  though  the  air  is  still,  that  is    Radiation.

 Conductors:  Materials  that  allow  the  transfer  of  heat  to  happen.      Insulators:  Materials  that  slow  the  transfer  of  heat.      Materials  for  the  Engineering  Challenge  2  prefabricated  test  stands  Eggs  –  1  per  group  Felt  Aluminum  foil  Paper-­‐  poster  board  and  thin  Cork  Timer  Small  bowls  or  plates  Ruler  Yarn  

2  propane  tanks  with  igniters  Aluminum  mesh  –  large  hole  steel  and  aluminum  screen    Cotton  fabric  and  balls  Joint  compound  (spackle)  Lasagna  Steel  wool  Safety  goggles  Scissors  Pencils  Science  lab  journals

     Resources  • Reader  on  thermal  protection  systems  –  1  copy  per  student.  The  reader  covers  the  following:    

o Spacecraft  travel  at  17,500  mph.      o When  spacecraft  reenters,  it  uses  the  air  to  help  it  slow  down,  which  heats  the  air  immediately  around  the  orbiter  

to  temperatures  of  in  excel  of  3,000  degrees  F  (hot  enough  to  melt  steel).      o So  what  prevents  the  spacecraft  from  melting?  Tiles!  About  24,000  and  NOMEX  blankets  –  white  blankets  made  of  

coated  NOMEX  felt  that  can  protect  up  to  temperatures  of  700  degrees  F.      o The  tiles  come  in  three  colors  –  each  one  withstanding  differing  amounts  of  heat.  White  tiles  withstand  heat  up  to  

about  1,200  degrees  F,  black  tiles  up  to  2,300  F,  and  gray  tiles  up  to  about  3,600  F.    Tiles  are  located  on  the  spacecraft  based  on  the  amount  of  heat  the  area  receives  upon  re-­‐entry.    

o The  shuttle  thermal  protection  system  is  reusable.  The  tiles  are  like  marshmallows  made  of  glass,  sand,  and  air  (a  marshmallow  is  basically  a  ball  of  sugar  puffed  up  with  air).  The  thermal  protection  system  tiles  are  similar;  microscopic  air  pockets  make  the  glass  tile  lighter  than  Styrofoam  but  highly  resistant  to  heat.                

o In  the  Apollo  era,  capsules  did  not  fly  in  the  same  way  during  return.  This  difference  caused  them  to  have  to  protect  the  interior  of  the  command  module  from  the  extreme  temperatures  that  would  be  encountered  during  a  mission.  The  purpose  of  this  heat  shield  was  to  protect  the  crew  from  the  fiery  heat  of  re-­‐entry—heat  so  intense  that  it  melts  most  metals.  The  ablative  material  making  up  the  shield  is  a  phenolic  epoxy  resin,  a  type  of  reinforced  plastic.  This  material  turns  white-­‐hot,  chars,  and  then  flakes  away,  taking  the  heat  with  it.  The  shield  varied  in  thickness  from  ½  to  2  ¾  inches  thick  and  weighed  about  3,000  pounds.      

o Both  of  these  thermal  protection  systems  were  effective,  and  their  ideas  can  help  you  in  today’s  challenge.      

• Ablation  Shield  Score  Sheet  –  1  per  team  

 Engineering  Challenge  Design  Challenge    Students  will  design  a  Thermal  Protection  System  using  the  materials  available  on  the  table.  Present  each  material  to  the  students.  All  materials  should  be  cut  to  size,  except  the  yarn.    In  order  to  be  successful,  students  will  need  to  apply  what  they  have  learned  about  conduction,  convection,  radiation,  conductors,  and  insulators.        Thermal  Protection  System  Size  Requirements  Shields  can  be  no  thicker  than  a  standard  pencil  (1/4”).    Students  can  check  the  size  of  their  shield  by  seeing  if  it  will  fit  under  a  ruler  placed  across  two  parallel  pencils  lying  flat  on  a  table.      

Each  shield  will  be  secured  to  the  test  stand  and  a  raw  egg  will  be  placed  behind  it  on  the  stand.  The  shields  will  be  subjected  to  3  minutes  of  heat  from  the  blowtorch.  Eggs  will  then  be  removed  from  the  stand  and  cracked  to  see  how  much  cooking,  if  any,  occurred.      Scoring    Build  Credits:  

• The  team  that  can  build  a  working  shield  for  the  least  expense  (the  “lowest  bidder”)  is  at  an  advantage.    • Teams  will  receive  bonus  points  for  any  unused  credits  times  2  (If  they  used  75  points  of  their  100  build  credits,  

they  have  25  points  left  over.  25  unspent  points  x  2  =  50  unused  credit  bonus  points.)  Survival:  

• Award  200  points  for  survival  if  the  inside  is  uncooked  and  the  shell  is  unscorched.  • Award  100  points  if  the  shell  is  lightly  scorched  and/or  the  inside  has  a  cooked  mass  smaller  than  your  pinky  

fingernail.  • Award  0  points  if  the  shell  is  cracked  or  blackened  or  the  egg  has  a  cooked  mass  inside  that  is  larger  than  your  pinky  

fingernail.    Objectives:  Review  and  post  objectives  on  board  

• You  need  to  design,  build,  and  test  a  Thermal  Protection  System.      • You  need  to  be  able  to  justify  your  design  using  your  understanding  of  the  concepts  learned  throughout  the  heat  

transfer  unit.      • You  need  to  observe  and  evaluate  the  effectiveness  of  your  shield  and  identify  changes  you  would  make  when  re-­‐

designing.        Design  Time  (5-­‐10  min)  Give  students  score  sheet  and  a  budget  of  100  credits  to  purchase  materials.  They  will  be  responsible  for  keeping  track  of  what  was  spent  on  the  score  sheet.  Leftover  credits  will  apply  to  their  score,  but  they  should  build  with  the  intent  of  protecting  the  egg.      Students  need  to  work  with  their  team  to  design  their  shield,  talking  about  what  materials  they  think  they  want  to  use  and  why.  Teacher  should  circulate,  answer  questions,  make  sure  students  are  on  task,  and  ask  students  to  justify  why  they  are  using  certain  materials  in  order  to  assess  student  understanding  of  heat  transfer  concepts,  etc.    Gathering  Materials  (5  min.)  A  representative  from  each  group  goes  to  the  supplies  table  to  gather  the  supplies  for  the  design  the  group  has  already  decided  upon.  In  order  to  get  supplies,  the  representative  must  have  a  labeled  sketch  and  a  price  sheet  (filled  out)  in  his/her  hand.      Build  Time  (20  min.)    Students  need  to  work  as  a  team  to  build  their  shield  and  be  sure  it  meets  the  size  requirements.  Teacher  should  circulate,  answer  questions,  make  sure  students  are  on  task,  and  ask  students  to  justify  why  they  are  using  certain  materials  in  order  to  assess  student  understanding  of  heat  transfer  concepts,  etc.    Once  their  shield  is  done,  students  need  to  record  their  work  in  their  lab  book.  They  need  to  draw  a  labeled  diagram  of  their  design  and  explain  why  they  selected  the  materials  they  did.  They  also  need  to  use  vocabulary  words  from  the  word  bank  on  the  board  in  their  justifications  (conduction,  radiation,  convection,  ablation,  reflection,  conductor,  insulator,  heat  transfer).        Test  (approx.  3  min  of  test  time  per  group  plus  2  min  for  discussion  of  material  choices  and  checking  of  egg  status  per  team)        

Teacher  should  set  up  a  perimeter  of  orange  cones  a  few  feet  from  the  torch  stand.  Only  the  teacher  should  be  allowed  inside  the  perimeter.  The  teacher  will  conduct  the  test.  Students  will  stand  around  the  outside  of  the  cones  with  their  goggles  on  and  take  notes  as  each  shield  is  tested,  observing  which  materials  worked  well  and  which  didn’t.      Each  shield  is  submitted  to  3  minutes  of  heat  from  the  blowtorch.    

 When  the  egg  cools,  crack  it  open  and  check  the  interior.    See  above  for  scoring.      Debrief  (10  min.)    Teacher  assesses  learning  based  on  what  students  share.      

• Reflect:  Have  groups  present  how  they  built  their  shield.  • Debrief:  Discuss  what  worked  and  what  did  not  and  why.      • Application:  Discuss  with  group  what  you  would  do  differently  next  time.        

 Students  need  to  record  their  conclusions  in  their  lab  book-­‐  what  worked  and  what  didn’t  and  why.  They  also  need  to  include  a  labeled  diagram  of  a  re-­‐designed  Thermal  Protection  System.        Assessment:  This  entire  challenge  is  an  assessment.  (Students  are  completing  this  challenge  at  the  end  of  the  unit.)  Their  designs  and  justifications  for  materials  used  will  help  the  teacher  assess  what  students  understood  from  the  unit.    • Lab  books  and  data  sheets  will  be  collected  at  the  end  of  class  for  teacher  to  assess.      • Debrief  discussion  will  allow  for  the  teacher  to  assess  student  learning.  • During  the  design  and  build,  the  teacher  will  be  asking  students  questions,  and  through  those  questions  will  be  able  to  

assess  student  understanding  of  content  and  objectives.        Safety    • Be  sure  to  set  up  the  orange  cones  to  keep  trainees  back.  • NEVER  burn  TPS  indoors.    References:  USSRC  Proprietary-­‐  http://spaceacademy4educators.wikispaces.com/Space+Academy+for+Educators+Content    Boeing  employees:  Carista  Brake  and  Jason  Powell  Melissa  Snider  Mary  Mast  

From  Julie  Clift,  Earth  to  Orbit  http://edc.nasa.gov/  Jason  Jirsa.    Education  Specialist,  USSRC.    2005.    [email protected]    

Ablative  Shield  Scoring  Sheet    

 Team  Name  __________________________________________________________    Budget:  100  credits    

Supply   Cost     How  many  =   Total  

Large  aluminum  mesh   30   x      

Spackle   30   x      

Lasagna  noodles   30   x      

Cotton  balls   30   x      

Steel  wool   15   x      

Cork   15   x      

Cardstock  paper   5   x      

Graph  paper   5   x      

Acrylic  yarn   5   x      

Felt   5   x      

Fabric   5   x      

Aluminum  foil   5   x      

Total  Credits  Used:      

 Survival  points:   200   No  scorching  on  shell;  no  cooking  on  the  inside  

  100   Light  scorching  on  shell;  inside  has  cooked  but  cooked  mass  is  less  than  the  size  of  pinky  fingernail  

  0   Shell  is  cracked  or  blackened;  inside  has  cooked  and  the  cooked  portion  is  larger  than  a  pinky  fingernail  

     Unused  credits  x  2:      

Challenge  total  credits  (points):