Gas Station Structural Analysis.xlsx

15
PROJECT: PROPOSED GAS STATION LOCATION: P3 AMBANGAN, AMBAGO BUTUAN CITY 1.0 Design Criteria This calculation is for the design of the Gas Station. A. Specifications i. Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other V Structures Fifth Edition 2001 ii. Design Aids Microsoft Excel GRASP Program 2.0 Design of Cee Purlins A. Design Loads i. Dead Loads DL = 200.00 (roofing) ii. Live Loads LL = 500.00 iii. Wind Load Zone II = 200 kph WL = 1.99418 kPa (wind speed converted to pressure) NSCP 2001 Wind Load Provisions B. Material Properties i. Section : C-Channel 2 x 3 ii. Properties Weight W = 3.2 kg/m Area A = 410.00 Web thickness = 2.0 mm (Axis-X) Moment of Inertia = 410,000 Section Modulus = 11,000 (Axis-Y) Moment of Inertia = 160,000 Section Modulus = 3,000 C. Design Length (largest girt spacing) L = 9.5 m Purlins Spacing y = 0.6 m Angle of inclination θ = 2 degrees N/m 2 N/m 2 mm 2 tw Ix mm 4 Sx mm 3 Iy mm 4 Sy mm 3

description

Structural

Transcript of Gas Station Structural Analysis.xlsx

PurlinsPROJECT:PROPOSED GAS STATION200kphLOCATION:P3 AMBANGAN, AMBAGO BUTUAN CITY

1.0Design Criteria

This calculation is for the design of the Gas Station.

A.Specificationsi.Design ReferencesNational Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Step 1: Convert kph into miles per hour124.2miles/hrStructures Fifth Edition 2001 Step 2: Square the wind speed15,425.64 Step 3: Multiply by 0.0027 (factor)41.649228lbs/ft2ii.Design Aids Step 4: Convert to Pascal1994.18PaMicrosoft Excel GRASP Program

2.0Design of Cee PurlinsA.Design Loadsi.Dead LoadsDL=200.00N/m2(roofing)

ii.Live LoadsLL=500.00N/m2

iii.Wind LoadZone II=200kphWL=1.99418kPa(wind speed converted to pressure)NSCP 2001 Wind Load ProvisionsB.Material Propertiesi.Section:C-Channel2x3ii.PropertiesWeightW=3.2kg/mAreaA=410.00mm2Depthd=mmWeb thicknesstw=2.0mmFlange widthbf=mmFlange thicknesstf=mm(Axis-X)Moment of InertiaIx=410,000mm4Section ModulusSx=11,000mm3Radius of Gyrationrx=mm(Axis-Y)Moment of InertiaIy=160,000mm4Section ModulusSy=3,000mm3Radius of Gyrationry=mm

C.DesignLength (largest girt spacing)L=9.5mPurlins Spacingy=0.6mAngle of inclination=2degrees

D.Load ComputationsWind Ward DirectionLeeward Direction

xx

yy

c = -0.01c = 0.5

i.Loadsa.Wind Load(Windward)Pn1= P(1.3sin -0.5) Pn1=-0.9066kPaFn1 = Pn1 x spacingFn1=-0.5440kN/m

(Leeward)Pn2= -0.5PPn2=-1.00kPaFn2 = Pn2 x spacingFn2=-0.5983kN/m

WL=-0.5983kN/m

b.Live LoadLL=0.30kN/m0.12c.Dead LoadDL=0.150kN/m

ii.Load Casescase 1:W1 = DL + LLcase 2: W2 = DL + LL + WLa.NormalWx (case 1) =(DL+LL)cos=0.45kN/mWx (case 2) =(DL+LL)cos +WL=-0.15kN/m

b.TangentialWy (case 1) = (DL+LL)sin=0.02kN/mWy (case 2) =(DL+LL)sin +WL=0.02kN/m

c.Final Load ComponentsNormal Loads,Wx=0.45kN/mTangential Loads,Wy=0.02kN/m

Note: Suction is not included in critical wind load.

E.Analysisi.MomentMx = [WnL2/8] Mx=5.08kN-mMy = [WtL2/8] My=0.23kN-ma.Actual Bending Analysisfbx = Mn/Sxfbx=0.46MPa fby = Mt/Syfby=0.08MPa

b.Allowable Bending CapacityFb=0.6 FyFy=250MPa Fb=150.00MPa

ii.Interaction Formulafbx/Fbx + fby/Fby < 1.0

0.0036