gas dynamics Unit 3 Clear Notes.208-248

download gas dynamics Unit 3 Clear Notes.208-248

of 41

Transcript of gas dynamics Unit 3 Clear Notes.208-248

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    1/41

    02

    11280.522

    * 2160.91T

    From Rayleighs flow table for =1.4and02*T

    =0.522

    M2=.4

    2

    2*

    1.961P

    P

    02

    02*

    1.961P

    P

    2

    2

    0.615*

    T

    T

    2 2* 1.196

    1.759 1.196

    P P

    = 3.44 x10 5N/m2

    T2=T2* x.615

    =1801.18K

    P02=3.849 x105N/m2

    Stagnation pressure loss

    P0=P01-P02

    =4.11 x10 5-3.84 x105

    =.261 x10 5N/m2

    Heat supplied Q=CP(T02-T01)

    =1005(1128-376)

    =755.7 x10 3J/kg

    Normal Shocks

    When there is a relative motion between a body and fluid, the disturbance is created

    if the disturbance is of an infinitely small amplitude, that disturbance is transmitted

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    2/41

    through the fluid with the speed of sound. If the disturbance is finite shock waves are

    created.

    Shock Waves and Expansion Waves Normal Shocks

    Shocks which occur in a plane normal to the direction of flow are called normal

    shock waves. Flow process through the shock wave is highly irreversible and cannot

    be approximated as being isentropic. Develop relationships for flow properties before

    and after the shock using conservation of mass, momentum, and energy

    In some range of back pressure, the fluid that achieved a sonic velocity at the

    throat of a converging-diverging nozzle and is accelerating to supersonic velocities in

    the diverging section experiences a normal shock. The normal shock causes a

    sudden rise in pressure and temperature and a sudden drop in velocity to subsonic

    levels. Flow through the shock is highly irreversible, and thus it cannot beapproximated as isentropic. The properties of an ideal gas with constant specific

    heats before (subscript 1) and after (subscript 2) a shock are related by

    Assumptions

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    3/41

    1. Steady flow and one dimensional

    2. dA = 0, because shock thickness is small

    3. Negligible friction at duct walls since shock is very thin

    4. Zero body force in the flow direction

    5. Adiabatic flow (since area is small)

    6. No shaft work

    7. Potential energy neglected

    Intersection of Fanno and a Rayleigh Line

    Fanno and Rayleigh line, when plotted on h-s plane, for same mass velocity

    G, intersect at 1 and 2.as shown in fig. All states of Fanno line have same stagnation

    temperature or stagnation enthalpy, and all states of Rayleigh line have same stream

    thrust F / A. Therefore, 1 and 2 have identical values of G, h 0and F / A. from 1 to 2

    possible by a compression shock wave without violating Second Law

    Thermodynamics. A shock is a sudden compression which increases the pressureand entropy of the fluid but the velocity is decrease from supersonic to subsonic.

    A change from states 2 to 1 from subsonic to supersonic flow is not possible in

    view Second Law Thermodynamics. (Entropy can not decrease in a flow process)

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    4/41

    Governing Equations

    (i) Continuity

    x ym m

    x y

    AV AV

    x x y yV V (Shock thickness being small Ax= Ay)

    Gx= Gy(Mass velocity)

    Mass velocity G remains constant across the shock.

    (ii) Energy equation

    SFEE: 2 22 1

    sh 2 1 2 1

    V Vq h h g z z

    2

    2 22 1

    2 1

    V Vh h

    2 2

    Across the shock

    2 2y xy x

    V Vh h

    2 2

    ox oyh h

    ox oyT T

    Toremains constant across the shock.

    (iii) Momentum

    Newtons second law

    xx xx xx xxcv out inF mV mV mVt

    x y xx xxout inP A P A 0 mV mV

    y x y xm V V AV V V 2 2y y x xAV AV

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    5/41

    Momentum gives

    2 2x y y y x xP A P A AV AV

    2 2x x x y y yP A AV P A AV

    x yF F

    Impulse function remains constant across the shock.

    Property relations across the shock.

    (1)y

    x

    T

    T

    Energy

    ox oyh h

    ox oyT T (1)

    For the isentropic xox

    2oxx

    x

    T K 11 M

    T 2

    2ox x x

    K 1T T 1 M

    2

    .......... (2)

    Similarly

    2oy y y

    K 1T T 1 M2

    ............ (3)

    Combining (1), (2) and (3)

    2 2x x y y

    K 1 K 1T 1 M T 1 M

    2 2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    6/41

    2x

    y

    2xy

    K 11 MT 2

    K 1T1 M

    2

    (ii)y

    x

    P

    P

    Momentum

    Fx= Fy

    2 2x x x y y yP A AV P A AV

    22y yx x

    x yx y

    VVP 1 P 1

    P P

    2 2x x y yP 1 KM P 1 KM

    2y x

    2x y

    P 1 KM

    P 1 KM

    (iii)y

    x

    Equation of state P = RT

    x x xP RT

    y y yP RT

    x

    x yxx

    y x yy

    y

    PP TRT

    T PP

    RT

    22

    xyx2

    2y xy

    K 11 M1 KM 2

    K 11 KM 1 M2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    7/41

    (iv)y

    x

    V

    V

    Continuity equation

    x x y yV V

    y x

    x y

    V

    V

    Equation of state

    P = RT

    x x xP RT

    y y yP RT

    22

    xy y

    22x xy

    K 11 MV 1 KM 2

    K 1V 1 KM 1 M2

    (v) oy

    ox

    PP

    For the isentropic xox

    K

    K 12oxx

    x

    P K 11 M

    P 2

    For the isentropic (yoy)

    K

    K 1oy 2y

    y

    P K 11 M

    P 2

    K

    K 12oy y y

    K 1P P 1 M

    2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    8/41

    K

    K 12y

    oy y

    2ox xx

    K 11 MP P 2

    K 1P P1 M

    2

    But2

    y x2

    x y

    P 1 KM

    P 1 KM

    K

    K 122 y

    oy x2

    2ox yx

    K 11 MP 1 KM 2

    K 1P 1 KM 1 M2

    (vi) Entropy change (S)

    y xS S S

    y y oy oy oyp p

    x x ox ox ox

    T P T P PC ln R ln C ln R ln R ln

    T P T P P

    K

    K 122

    yxy x 2

    2yx

    K 11 M

    1 KM 2S S R lnK 11 KM 1 M

    2

    oy oxT T

    (vii) Relation between 2xM and2yM

    Prove that

    2x

    2y

    2x

    2M

    K 1M2K

    M 1

    K 1

    We have

    (1)

    2x

    y

    2xy

    K 11 MT 2

    K 1T1 M

    2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    9/41

    (2)2

    y x2

    x y

    P 1 KM

    P 1 KM

    (3)y yx x

    x y

    P MP M

    T T

    Equation (3)

    2 2y y y

    2 2xx x

    P M T.

    TP M

    22 22 xyx

    22xyy

    K 11 MM1 KM 2

    K 1M1 KM

    1 M2

    2 2

    2 2 2 2 2 2x y y y x x

    K 1 K 11 KM M 1 M 1 KM M 1 M

    2 2

    L.H.S. = 2 2 4 2 2x x y yK 1

    1 2KM K M M 1 M2

    22 2 2 4 2 2 2 4 2

    y x x y x y x y

    K K 1K 1M 1 2KM K M M K K 1 M M M M

    2 2

    22 2 2 2 4 2 4 2 4 4 4

    y x y x y y x y x y

    K K 1K 1M 2KM M K M M M K K 1 M M M M

    2 2

    Similarly R.H.S.

    22 2 2 2 2 2 4 2 4 4 4

    x x y y x x y x y x

    K K 1K 1M 2K M K M M M K K 1 M M M M

    2 2

    2 2 2 4 2 4 2 4 4 2 4 2 4y x x y y x y x x y y xK 1

    M M K M M M M M M K K 1 M M M M2

    2 2 2 2 2 2y x y x x yK 1

    M M 1 M M KM M 02

    Since y xM M

    So 2 2y xM M cannot be equal to zero

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    10/41

    Hence 2 2 2 2y x x yK 1

    1 M M KM M2

    2 2 2 2

    y x x y

    K 1

    M M KM M 12

    2 2 2 2y x x y2

    M M KM M 1K 1

    2 2 2 2y x y x

    2K 2M M M M

    K 1 K 1

    2 2 2y x x

    2K 2M 1 M M

    K 1 K 1

    2x

    2y

    2x

    2M

    K 1M2K

    M 1K 1

    Property relations in terms of incident Mach Number Mx.

    (1) Provey 2

    xx

    P 2K K 1M

    P K 1 K 1

    Momentum Fx= Fy

    2 2x x y yP 1 KM P 1 KM

    2y x

    2x y

    P 1 KM

    P 1 KM

    but

    2

    x2y

    2x

    2M

    K 1M2K

    M 1K 1

    2y x

    2xx

    2x

    P 1 KM

    2PM

    K 11 K2K

    M 1K 1

    2 2x x2 2x x

    2K1 KM M 1

    K 1

    2K 2M 1 K M

    K 1 K 1

    (1)

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    11/41

    Dinominator 2 2r x x2K 2

    D M 1 K MK 1 K 1

    2x

    2K 2K M K 1K 1 K 1

    2x

    K 1 K 1KM K 1 K 1

    2xK 1

    1 KMK 1

    substitute in equation (1).

    y 2x

    x

    P 2K K 1M

    P K 1 K 1

    (2) Prove that

    2 2x x

    y2

    x 2x

    K 1 2K 1 M M 1

    T 2 K 1T K 1

    M2 K 1

    Energy

    ox oyh h

    ox oyT T

    2x

    y

    2xy

    K 11 MT 2

    K 1T1 M

    2

    2x

    2y

    2x

    2M

    K 1M2K

    M 1K 1

    2x

    y

    2xx

    2x

    K 11 MT 2

    2TM

    K 1 K 112K2

    M 1K 1

    2 2x x

    2 2x x

    K 1 2K 1 M M 1

    2 K 1

    2K K 1 2M 1 M

    K 1 2 K 1

    Denominator, 2 2r x x2K K 1

    D M 1 1 MK 1 2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    12/41

    2 2

    2 2 2x x x

    4K K 1 K 12K K 1M M M

    K 1 2 2 K 1 2 K 1

    Hence

    2 2x x

    y

    2x 2

    x

    K 1 2K 1 M M 1T 2 K 1

    T K 1M

    2 K 1

    (3) Prove that

    K

    K 1 12x K 1oy 2

    x2oxx

    K 1MP 2 K 12 KM

    K 1P K 1 K 11 M

    2

    For the isentropic xox,

    K

    K 12oxx

    x

    P K 11 M

    P 2

    K

    K 12ox x x

    K 1P P 1 M

    2

    K

    K 12oy y y

    K 1P P 1 M

    2

    K

    K 12y

    oy y

    2ox xx

    K 11 MP P 2

    K 1P P1 M

    2

    ......... (1)

    Buty

    x

    PP

    is obtained from momentum as

    2y x

    2x y

    P 1 KM

    P 1 KM

    But

    2x

    2y

    2x

    2M

    K 1M2K

    M 1

    K 1

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    13/41

    2y x

    2xx

    2x

    P 1 KM

    2PM

    K 11 K2K

    M 1K 1

    y 2x

    x

    P 2K K 1M

    P K 1 K 1

    2x

    22xy

    2 2x x

    2M

    K 1 K 112KK 1 2

    M 11 MK 12

    K 1 K 11 M 1 M2 2

    2

    2x

    2 2x x

    K 1M

    2 K 1

    K 1 2K 1 M M 12 K 1

    Equation (1) becomes

    K2 K 1

    2x

    oy 2x

    2 2oxx x

    K 1M

    P 2 K 12K K 1M

    K 1 2K P K 1 K 11 M M 1

    2 K 1

    K

    K 12x

    2x

    2 2x x

    K 1M

    2K K 1 2MK 1 2K K 1K 1 K 1

    1 M M2 K 1 K 1

    K

    K 1K 21

    xK 12

    x 2x

    K 1M

    2K K 1 2MK 1K 1 K 1 1 M

    2

    K

    K 11 2xK 1oy 2

    x2oxx

    K 1MP 2K K 1 2M

    K 1P K 1 K 11 M

    2

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    14/41

    (4) Prove that

    2x

    y

    2xx

    K 11 MV 2

    K 1VM

    2

    22 xx 2

    x

    VM

    C

    2 2 2x x xV M C

    2 2 2y y yV M C

    2 2y y y

    2 2xx x

    V M T

    . TV M ......... (1)

    But

    2x

    y

    2xy

    K 11 MT 2

    K 1T1 M

    2

    But

    2x

    2y

    2x

    2M

    K 1M2K

    M 1K 1

    Substituting and simplifying

    2 2x x

    y

    2x 2

    x

    K 1 2K 1 M M 1

    T 2 K 1

    T K 1M

    2 K 1

    ............ (2)

    Substituting (2) in (1), we have

    2x

    22 2

    2x x2 x

    y

    2 2 2x x 2

    x

    2M

    K 1K 1 2K 2K 1 M M 1M 1V 2 K 1K 1

    V M K 1M

    2 K 1

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    15/41

    2 2x x

    2

    4x

    2 K 1M 1 M

    K 1 2

    K 1M

    2 K 1

    2 22 2x x

    2 2 44 xx

    2 K 1 K 11 M 1 M

    K 1 2 2

    K 1 K 1 MM

    2 K 1 4

    2x

    y

    2x

    x

    K 11 MV 2

    K 1VM

    2

    (5) Prove that

    K 1

    K 1 K 1oy 2 2x x

    x

    P K 1 2K K 1M M

    P 2 K 1 K 1

    (This is known as Rayleigh supersonic Putot tube formula)

    We have,

    K

    K 1oy 2y

    y

    P K 11 M

    P 2

    y 2x

    x

    P 2K K 1M

    P K 1 K 1

    K

    K 1oy 2 2y x

    x

    P K 1 2K K 11 M M

    P 2 K 1 K 1

    K

    K 12

    x 2x

    2x

    2

    MK 1 2K K 1K 11 M2K2 K 1 K 1

    M 1K 1

    K

    K 12 2x x

    2x

    2x

    2K K 1M 1 1 M

    2K K 1K 1 2 M2K K 1 K 1

    M 1K 1

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    16/41

    K

    K 12x

    2x

    2

    x

    2K K 1M

    2K K 1K 1 2M

    2K K 1 K 1M 1

    K 1

    K2 2 K 1

    x

    2x

    2x

    K 1 M

    2 K 1 2K K 1M

    2K K 1 K 1M 1

    K 1

    K2

    K 1x

    2xK

    K 12x

    K 1 M2 2K K 1

    MK 1 K 1

    2K K 1M

    K 1 K 1

    K 1

    2 K 1 K 1oy x 2x

    x

    P K 1 M 2K K 1M

    P 2 K 1 K 1

    (6) Show that shocks are possible only in supersonic flow:

    2 2p

    1 1

    T PS C ln R ln

    T P

    Fro a shock

    y yp

    x x

    T PS C ln R ln

    T P

    But oS S

    oy oy oyp

    ox ox ox

    T P PC ln R ln R ln

    T P P

    1

    oy

    ox

    PSln

    R P

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    17/41

    K

    K 11 2xK 12

    x2x

    K 1M

    2K K 1 2ln MK 1K 1 K 1

    1 M

    2

    A plot of this equation is shown in the Figure.

    Fro Mx < 1 the entropy change is negative as shown. Since e shocks are

    highly irreversible in nature, second law insists that the entropy should be produced

    across a shock. Therefore shocks are possible only in supersonic flow.

    Alternatively,V

    S

    C

    can be obtained by expanding the logarithmic tersm

    interms of 2xM 1 and considering terms up to third powers of 2xM 1 , we get,

    32x2

    v

    2K K 1SM 1

    C 3 K 1

    From the above equation for Mx > 1,V

    S

    C

    becomes positive. Therefore

    shocks are possible only in supersonic flows.

    Prandtl-Meyer relationship

    *2x yV .V C or

    2 2x yM M 1

    Governing relations for a normal shock

    (1) Continuity

    x x y yV V ....... (1)

    (2) Energy

    ox oyh h

    22yx

    x y 0

    VVh h h

    2 2 ............ (2)

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    18/41

    (3) Momentum

    xx xx xx xxCV out inF mV mV mVt

    x y y xP A P A m V V

    x y y xP P G V V

    x y y xP P V V V .............. (3)

    From (2) we have

    2x

    x 0V

    h h2

    2x

    p x p o

    VC T C T

    2

    2x

    x 0

    VKR KR T T

    K 1 2 K 1

    22 2

    0x x CC VK 1 2 K 1

    2 2 2x 0 x

    K 1C C V

    2

    .......... (4)

    Similarly 2 2 2y 0 yK 1

    C C V2

    ............. (5)

    Equation (3) x y y xP P V V V

    x y y xP P

    V VV

    yx y xx x y y

    PPV V

    V V

    yx y xx y

    RTRTV V

    V V

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    19/41

    yx y xx y

    KRTKRTK V V

    V V

    22yx

    y xx y

    CC K V VV V

    ............. (6)

    Using (4) and (5) in (6)

    2 2 2 20 x 0 y y xx y

    1 K 1 1 K 1C V C V K V V

    V 2 V 2

    20 y x y xx y

    1 1 K 1C V V K V V

    V V 2

    20 y x

    y x y xx y

    C V V K 1V V K V V

    V V 2

    20

    x y

    C K 1K

    V V 2

    20 x y

    K 1

    C V V2

    .......... (7)

    *2 * *

    20 00

    C KRT T 2

    KRT T K 1C

    20

    T K 11 M

    T 2

    0*

    T K 1

    2T

    2 *2

    0

    K 1

    C C2

    ............ (8)

    Substitution (8) in (7) we have

    *2x y

    K 1 K 1C V V

    2 2

    *2x yC V V

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    20/41

    x y

    *2

    V V1

    C

    for a shock, * * *

    x yC C C

    yx* *x y

    VV1

    C C

    * *x yM .M 1 By definition

    *

    *

    VM

    C

    THE RANKINEHUGONIOT

    EQUATIOS

    DENSITY RATIO ACROSS THE SHOCK

    We know that density,P

    RT

    x

    x x

    For upstream shock

    P

    x R T

    y

    y

    y y

    For down stream shock

    P

    R T

    y

    y y y

    x

    x x

    P

    R TPx

    R T

    X

    Y

    T

    T

    y y

    x

    p

    x p

    We know that,

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    21/41

    22YX

    X

    PM

    P

    22 YX

    X

    PM

    P

    2 2

    22

    21 1

    2

    X X

    Y

    X X

    we know that

    M MT

    T M

    2

    21 1

    2

    Y Y

    X XY

    XY

    X

    P P

    P PT

    T P

    P

    2

    3 2

    1 1Y Y

    X XY

    XY

    X

    P P

    P PTT P

    P

    3

    Y

    X

    PTaking out

    P

    3 2

    2 2

    3

    Y Y

    X X

    Y

    X

    P P

    P P

    P

    P

    2

    2 2

    Y Y

    X X

    Y

    X

    P P

    P P

    P

    P

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    22/41

    2

    2

    Y Y

    X X

    Y

    X

    P P

    P P

    PP

    2

    2

    Y Y

    X X

    Y

    X

    P P

    P P

    P

    P

    2

    Y Y

    X X

    Y

    X

    P P

    P P

    P

    P

    2

    2

    Y Y

    X X

    Y

    X

    P P

    P P

    P

    P

    1Y Y

    X XY

    Yx

    X

    P P

    P PT

    PT

    P

    1

    Y Y

    x XY

    X Y

    X

    T P

    T PP

    P P

    P

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    23/41

    1

    Y

    xY X

    YX Y

    X

    P

    TP P

    PP T

    P

    y xY

    x X Y

    We have

    TP

    P T

    1

    Y

    y X

    Yx

    X

    P

    P

    P

    P

    1 Y

    y X

    x Y

    X

    P

    P

    P

    P

    1 Y

    y X

    x Y

    X

    P

    P

    P

    P

    1y Y Y

    x X X

    P P

    P P

    1y y Y Y

    x x X X

    P P

    P P

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    24/41

    1y yY Y

    x X x X

    P P

    P P

    1y yY

    x X x

    P

    P

    1y yY

    x X x

    P

    P

    1

    .

    y

    xY

    yX

    x

    P

    P

    theabove eqn s is knows Rankine Hugoniot equations

    Strength of a Shock Wave

    It is defined as the ratio of difference in down stream and upstream shock pressures(py- px) to upstream shock pressures (px). It is denoted by .

    Substituting forpy/px

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    25/41

    From the above equation;

    The strength of shock wave may be expressed in another form using Rankine-

    Hugoniot equation.

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    26/41

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    27/41

    From this equation we came to know strength of shock wave is

    directly proportional to;

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    28/41

    PROBLEMS

    Que.1

    The state of a gas (=1.3,R =0.469 KJ/KgK.) upstream of normal shock wave is

    given by the following date:

    Mx =2.5 , Px =2 bar. Tx =275 K calculate the Mach number

    ,pressure,temperatureand velocity of a gas down stream of shock: check the

    calculated values with those given in the gas tables.

    Take K =

    22x

    2y

    2 2x

    222.5M

    12.921.3 1K 1M 0.2432K 2 1.3 53.19

    M 1 2.5 1K 1 1.3 1

    0.4928YM

    22YX

    X

    PM

    P

    22 1.3 1.5

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    29/41

    7.065 0.130 6.935Y

    X

    P

    P

    6.935YP bar

    2 2x x

    y

    2x 2

    x

    K 1 2K 1 M M 1

    T 2 K 1

    T K 1M

    2 K 1

    2 2

    22

    1.3 1 2 1.31 2.5 2.5 1

    2 1.3 1

    1.3 12.5

    2 1.3 1

    2

    031 6.25

    1.9372

    55.1042.36.25

    2 0.3

    y

    x

    T1.869

    T

    YT 1.869

    3 1 0.30.269

    1.3 1 6.25 2.3

    Y

    x

    C

    C

    0.269 .0269Y x x xC C M a

    0.269Y x xC M KRT

    0.2692.5 1.3 469 275Y xC

    ,

    0.4928 1.3 469 513.975

    275.16 / .

    y y y

    y

    Alternately C M KRT

    C m s

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    30/41

    A gas( =1.3,R =0.287KJ/KgK) at a Mach number of 1.8 P =0.8 bar and

    T=373K pass through a normal shock .Compare this value in an isentropic

    compression through the same pressure ratio.

    530.8 10 0.747 /

    287

    x

    x

    PKg m

    RT

    1.4 1.8xFrom normal shock table for at M

    3.613 , 1.532yY

    x x

    TP

    P T

    X

    Y

    T

    T

    y y

    x

    p

    x p

    3.6132.358

    1.532

    y

    x

    32.358 /y Kg m

    1

    y y

    x

    For isentropic flow

    p

    x p

    1

    3.613 2.5y

    x

    32.5 /y Kg m

    It is noted that the final density of the isentropic process is grater than in the shock

    process.

    Q.A jet of air at 270 K and 0.2 bar has an intial Mach number of 1.9.If the process

    through a normal shock wave. Determine the following for the down stream of the

    shock.

    1.Mach number.= My

    2. Pressure. = Py

    3. Temperature = Ty.

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    31/41

    4.Speed of sound .= ay

    5. Jet velocity = Cy

    6. Density .= y

    Given.

    Tx=270 K

    Px =0.7 bar =0.7105 N/m2

    From normal shock table for Mx=1.9 and =1.4

    0.596

    4.045

    1.608

    Y

    Y

    x

    y

    x

    M

    PP

    T

    T

    4.045

    4.045

    y xP P

    2.831

    1.608

    1.608

    y

    y x

    P

    T T

    Speed of at down of the shock

    ya YRT

    1.4

    ya 417.66 /m s

    yay Y

    Jet velocity at downstream of the shock

    C M

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    32/41

    0.596

    248.93 /yC m s

    32.83 2.27 /287

    y

    y

    y

    PDensity kg m

    RT

    Q.An Aircraft flies at a Mach number of 1.1 at an altitude of 15,000 metres.The

    compression in its engine is partially achieved by a normal shock wave standing at the

    entry of the diffuser. Determine the following for downstream of the shock.

    1. Mach number

    2. Temperature of the air

    3. Pressure of the air

    4. Stagnation pressure loss across the shock.

    1.1, 15,000

    x

    Given

    MAltitude Z m

    1.

    2.

    3.

    y

    y

    y

    To find

    M

    T

    P

    04. P Ox OyP P

    Re , 15,000fer gastables for Altitude Z m

    216.6xT K

    0.120xP bar

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    33/41

    5 20.120 10 /xP N m

    Re 1.1 1.4xfer Normal shocks gastables for M and

    0.911yM

    1.245y

    x

    P

    P

    1.065y

    x

    T

    T

    0

    0

    0.998y

    x

    P

    P

    02.133

    y

    x

    P

    P

    5 2

    1.24 5

    1.24 10 /

    y xP P

    N m

    5 20.149 10 /yP N m

    1.067

    1.065 216.6

    y xT T

    230.67yT K

    05

    2.133

    2.133 10y x

    P P

    5 2

    0 0.259 10 /yP N m

    0

    00.998

    y

    x

    PP

    5

    0

    0.259 10

    0.998xP

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    34/41

    5 2

    0 0.2564 10 /xP N m

    0

    Pr

    POx Oy

    essure loss

    P P

    5 50.2564 10 0.259 10

    2

    0P 50 /N m

    1) When a pitot tube is immersed in a supersonic stream a normal shock is

    formed ahead of the Pitot tube mouth. After the shock the fluid stream

    decelerates isentropically to the total pressure of the entrance to the pitot

    tube. A pitot tube travelling in a supersonic wind tunnel gives values of

    15Kpa and 70Kpa for the static pressure upstream of the shock and the

    pressure at the inlet of the tube respectfully. Find the Mach no. of the

    tunnel if the stagnation temperature is 575K. Calculate the static

    temperature and the total (stagnation) pressure upstream and the

    downstream of the tube.

    Px= 15 103

    pa = 15 103N/m

    2

    Poy = 70 10

    3

    N/m

    2

    T0= T0x= T0y = 575 K

    Refer Normal shock tables for0

    4.67y

    x

    P

    P ,and = 1.4

    30

    3

    70 104.375

    15 10

    y

    x

    P

    P

    Bow shock

    Mx My

    Pitot tube

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    35/41

    1.8

    0.1616

    x

    y

    M

    M

    3.613y

    x

    PP

    1.532y

    x

    T

    T

    0

    0

    0.813y

    x

    P

    P

    3

    0 78 100.1813

    xP

    Pox = 0.86 105N/m

    2

    we know that,

    20 112

    TM

    T

    20 112

    xx

    x

    T MT

    2575 11 1.82xT

    348.9xT K

    From table,

    1.532y

    x

    TT

    1.532 348.9 534.51yT K

    Result:

    Mx = 1.8

    My = 0.616

    Tx = 348.9K

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    36/41

    Ty = 534.51K

    P0x = 0.86 105

    N/m2

    P0y = 70 10

    3

    Supersonic nozzle is provided with a constant diameter circular duct at its exit. The

    duct diameter is same as the nozzle diameter. Nozzle exit cross ection is three times

    that of its throat. The entry conditions of the gas (=1.4, R= 287J/KgK) are P 0 =10

    bar, T0 =600K. Calculate the static pressure, Mach number and velocity of the gas in

    duct.

    (a) When the nozzle operates at its design condition.

    (b)

    When a normal shock occurs at its exit.(c) When a normal shock occurs at a section in the diverging part where

    the area ratio, A/A* =2.

    Given:

    A2=3A*

    Or A2/A*=3

    = 1.4

    R= 287 J/KgK

    P0= 10 bar = 106Pa

    T0= 600K

    For nozzle

    Throat (*)

    Entry (1) Exit (2)

    M1

    Solution:

    Case (i)

    Refer isentropic flow table for A2/A*=3 and = 1.4

    M2= 2.64

    T2/T02= 0.417

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    37/41

    p2/ p02= 0.0417

    {Note: For A2/A* =3, we can refer gas tables page no.30 and 36. But we

    have to take M > 1 corresponding values since the exit is divergent

    nozzle}

    i.e. T2= 0.417 xT02

    = 0.417 x 600 {sinceT0=T01=T02}

    T2= 250.2 K

    P2= 0.0471 x p02

    = 0.0471 x 10 x 105 {since p0=p01= p02}

    p2= 0.471 x 105N/m2

    We know

    C2= M2 a2

    = 2 2M RT

    = 2.64 (1.4 287 250.2).5

    C2=837.05 m/s

    Case (ii)

    Normal shock occurs at exit. Shock

    wave

    Entry Exit

    My

    M1 Mx

    A2/A* = Ax/Ax* =3 [since in this case A2=Ax]

    Refer isentropic table for Ax/Ax* =3 and =1.4.

    Mx=2.64

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    38/41

    Tx/Tx* =0.417

    Px /P0x=0.0417 [From gas tables page no. 36]

    i.e. Tx=0.417 T0x

    = 0.417 600

    i.e.Tx= 250.2 K [Since T0=T0x]

    So px= 0.0417 P0x

    = 0.0417 10 105 [Since p0=p0x]

    i.e. px= 0.417 105N/m2

    Refer Normal shock table for Mx= 2.64 and = 1.4

    My= 0.5

    Py /Px=7.965

    Ty/Tx=2.279

    i.e. Py= 7.695 px

    =7.695 0.471 105

    So py= 3.75 105N/m2

    Also Ty=2.279 Tx

    = 2.279 250.2

    i.e. Ty= 570.2 K

    Also Cy=Myay

    = Y YM RT

    = 0.5 (1.4 287 570.2)

    Cy= 239.32 m/s

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    39/41

    Case (iii)

    Area ratio A/A* =2

    i.e . Ax/Ax* =2

    Refer isentropic flow table for Ax/Ax* =2 and = 1.4

    Mx=2.2 [from gas tables page no. 35]

    Refer Normal shocks table for Mx= 2.2 and = 1.4

    My =0.547

    P0y/P0x = 0.628

    P0y= 0.628 P0x

    = 0.628 10 105

    P0y= 6.28 105N/m2

    Throat (*)

    [A*=Ax*] [ Mx, Ax, M>1] [ My, Ay, M

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    40/41

    Refer isentropic table for A2/Ay* = 1.8825= 1.871 and = 1.4

    M2= 0.33 [From gas tables page no. 29]

    T2/T0y =0.978

    P2/p0y=0.927

    i.e. T2= 0.978 T0y

    = 0.978 600

    or T2= 586.8 K

    So P2= 0.927 p0y

    =0.927 6.28 105

    or P2= 5.82 105N/m2

    C2= M2 a2

    = 2 2M RT

    = 0.33 (1.4 287 586.8).0.5

    C2= 160.23 m/s

    RESULT

    Case (i): p2=0.471 105

    N/m2

    , M2= 2.64, c2= 837.05 m/s

    Case (ii): py= 3.75 105N/m2, My=0.5, cy= 239.32 m/s

    Case (iii): p2= 5.82 105N/m2, M2= 0.33, c2= 160.23 m/s

    The following refers to a supersonic wind tunnel Nozzle throat area- 200 cm2

    Test section cross section -337.5 cm2 Working fluid is air. Determine the test section

    mach no. and diffuser throat area if normal shock is located at test section?

  • 7/25/2019 gas dynamics Unit 3 Clear Notes.208-248

    41/41

    Given:

    Nozzle throat area = Ax*

    = 200cm

    2

    = 20010-4 m2

    Test section area = Ax = 337.5 cm2 = 337 10-4m2

    To find:

    1. Test section Mach no. Mx

    2. Diffuser throat area, Ay*

    Solution:

    -4x

    -4

    x

    A 337.5101.6875

    A* 20010

    Refer isentropic table =1.4

    Then M = Mx = 2

    Refer normal shock table for Mx= 2 and =1.4

    0

    0

    0.721y

    x

    P

    P

    We know that 0 0* *x x Y yA P A P

    0

    0

    * * xY xy

    PA A

    P

    -4 1200100.721

    2* 0.0277YA m

    Result:

    Test secton Mach number = 1.97

    Diffuser throat area = .0272 m2