GAMMA-RAYBURSTS - SLAC

14
GAMMA-RAYBURSTS: CURRENTOBSERVATIONALPICTURE Jay P. Norris Laboratory for High Energy Astrophysics NASA/Goddard Space Flight Center Greenbelt. MD 20706 ABSTRACT We now know that long (duration > 2 s) gamma-ray burst (GRB) sources lie at distances comparable to the ‘Yadius” of the Universe and that they are momentarily the most luminous known objects: several GRBs have now been observed to have associated X-ray, optical, and radio counterparts following power-law decays that fit theoretical expectations for relativistic blastwaves. Three GRBs (and/or their host galaxies) have determined redshifts larger than z = 0.8, and virtually all GRBs with associated optical transients appear to lie in distant galaxies. Spectroscopic analysis of afterglows and modeling of the GRB brightness distribution indicate that GRE3 sources lie in star- forming regions. The population statistics of GRE3s as well as their energetic, spectral, and temporal aspects-also consistent with the cosmological distance scaleare difficult but not impossible to explain via neutron star or neutron star-black hole mergers. The suggested association of smooth, single-pulse GRE3s with supernovae in nearby redshift space can only involve an insignificant fraction of the total GRE3population; moreover the association is contraindicated by the random sky distribution of single-pulse GRBs. Future observations of GRBs with rapid temporal variations at supra-GeV energies by GLAST, the Gamma-ray Large Area Space Telescope, may provide a unique cosmic experiment for constraining the scale of quantum gravity. Detection of a gravitationally lensed GRB would be evidence of a non-zero value for A, the cosmological constant. 0 1998 by Jay P. Norris. -524-

Transcript of GAMMA-RAYBURSTS - SLAC

GAMMA-RAYBURSTS: CURRENTOBSERVATIONALPICTURE

Jay P. Norris

Laboratory for High Energy Astrophysics

NASA/Goddard Space Flight Center

Greenbelt. MD 20706

ABSTRACT

We now know that long (duration > 2 s) gamma-ray burst (GRB) sources lie at distances

comparable to the ‘Yadius” of the Universe and that they are momentarily the most

luminous known objects: several GRBs have now been observed to have associated

X-ray, optical, and radio counterparts following power-law decays that fit theoretical

expectations for relativistic blastwaves. Three GRBs (and/or their host galaxies) have

determined redshifts larger than z = 0.8, and virtually all GRBs with associated optical

transients appear to lie in distant galaxies. Spectroscopic analysis of afterglows and

modeling of the GRB brightness distribution indicate that GRE3 sources lie in star-

forming regions. The population statistics of GRE3s as well as their energetic, spectral,

and temporal aspects-also consistent with the cosmological distance scaleare difficult

but not impossible to explain via neutron star or neutron star-black hole mergers. The

suggested association of smooth, single-pulse GRE3s with supernovae in nearby redshift

space can only involve an insignificant fraction of the total GRE3 population; moreover

the association is contraindicated by the random sky distribution of single-pulse GRBs.

Future observations of GRBs with rapid temporal variations at supra-GeV energies by

GLAST, the Gamma-ray Large Area Space Telescope, may provide a unique cosmic

experiment for constraining the scale of quantum gravity. Detection of a gravitationally

lensed GRB would be evidence of a non-zero value for A, the cosmological constant.

0 1998 by Jay P. Norris.

-524-

1 Introduction: GammaRay Bursts Become Highly Visible

Gamma-Ray Bursts (GRBs) are currently enjoying the best public relations since their

discovery 30 years ago. Even Sky and Telescope (February 1998), which reaches a large

popular scientific audience, featured a fantastic looking cover picture of the suggested

progenitor object moments before the GRB explosion. The object which looks like a

crackling bowling pin, frozen in time, represents the merger of a neutron -star (NS) binary.

Of course the ends of the bowling pin would be rotating at a sizable fraction of the speed of

light during the final moments before coalescence. The feature article,’ appearing one year

after the discovery of the first X-ray and optical counterparts to a GRB, concerned the

gigantic energy output of GRBs and the theoretical burst of cosmic rays which would follow

the electromagnetic (EM) radiation of the GRB in a matter of days. Since the sources of

GRBs (at least those of the ‘¶ong”duration variety) lie at cosmological distances-billions of

light-years from our Galaxy-GRBs must be luminous in the extreme. The rate of detected

GRBs in the Universe (- 10” galaxies) -a few per day-translates into - one GRB per

galaxy per - 10’ years. The total rate would be much higher if the radiation pattern were

strongly beamed into a small solid angle: only a small fraction of GRBs would then be

detected by Earth observers. Thus, every two rotations of the Sun about the Galactic Center

(a half billion years), a GRB would be close enough (- 1 kiloparsec) for the accompanying

cosmic ray burst to annihilate all life on Earth. This is just one of several recent cosmological

theories which might provide a sufficiently large energy release to power a GRB! We shall

also examine the recent putative connection between type Ic supernovae (SNe) and GRBs,

and find that only a very small fraction of GRBs can be connected with SNe.

Observations of NS binaries have already provided interesting tests of physical theory.

Table 1 lists several confirmed and suspected NS systems, along with their distances Erom

Earth, rotational periods, and orbital decay times. Included is the famous Hulse-Taylor

binary pulsar, which provided the first quantitative evidence for gravitational radiation-

energy derived from orbital decay. The distance column is relevant for the GRB/cosmic;ray

burst extinction theory, but the decay, or coalescence, timescale provides an astrophysical

constraint: When the components of the binary each go supernova, a large velocity kick, -

IO3 km s-‘, can be imparted to the system. Assuming coalescence timescales of 0.1 - IO Gyr

(still comparable to the age of the Universe), we would look to find at least some of these

systems - 100 kpc - 10 Mpc outside their parent galaxies. Note however, the systems listed

in Table 1 are those we have detected; systems with much shorter decay timescales are much

less likely to be discovered before coalescence.

The central questions of source progenitor population and their distribution in redshift, as

well as the mechanisms for generation of y-radiation and the presumed beaming into a narrow

solid angle (probably completely distinct from processes governing the counterpart

afterglows), all will be con&mine&some in ways we do not yet apprehend-not only by

evidence from afterglows, but also from the extrinsic characteristics of GRBs and their

spectral/temporal behavior.

Table 1: Pairs of Neutron Stars in Our Galaxy

Name Distance Period

(kiloparsecs) (hours)

Decay Time

(10’ years)

PSRB1534+12 0.5 10.1 2.73

PSR B1913+16 ’ 7.3 7.75 0.30

PSR B2127+11C 2 10.6 8.05 0.22

PSR B2303+46 3 2.3 296 4000

PSR J 15 IS+4904 3 0.7 207 2400

’ Hulse-Taylor pulsar (first direct evidence for gravitational radiation)

’ In Globular Cluster Ml3

’ Suspected binary neutron stars - masses not firmly established

The picture of GRBs at gamma-ray energies as revealed by current instruments on the

Compton Gamma Ray Observatory is reviewed in Section 2. We then proceed to examine

some more definitively derived constraints imposed by the recent detections at longer

wavelengths in Section 3. The apparent association of at least one GRB with an unusual SN

is critiqued in Section 4. Section 5 describes two future measurements: a constraint on the

energy scale of quantum gravity, using GRBs detected by GLAST; and a constraint on A via

detection of gravitationally lensed GRBs.

-525-

-9zs-

“!arg ‘amds-aaq 30 uo!wap!suoD aldFs ayl u~oy uam facmds uvapynx e paI[g K~II.IO~~UU

sm~ wp asoddns -awgp’o ay, uo pano[d s! an@A esspsqe atp uvq~ Jaw& dd ~I!M

smo Jo laqumu aqL ‘uognqgs~ az!s JO ssau@~q ayl se wouy 0s~ ‘saD ~03 uoyz[aJ

(xn& (pa& 801 - (Jaqum)N 207 palapour pue passn3s!p qcmnru ay, s~oqs 1 amEQ

.alaIduro3 bpau s! Bua!3Iga uoyalap zslvg ‘hay 00s - 0s) ,.s Z.~~ uoloqd 1-30 xub

yead e aaoqv ‘Suo~nqyTp snoaua8ouIoy u1.103fun ‘03 pal3adxa aq pIn0.M q9iqf.i ‘SMEI 1aMod

Z/E- am saFI paysea ‘Aay I-JOE arloqe ‘C‘m,) uo!sspa Blaua-qZ!q ou 111~ qsmq pue

‘(s z IV lu!od v@arq uogzmp) wmq lroqs pue %IO~ 103 suognqgsqs!p ssamq@q ago - 1 +$d

;saz~r, 30 slasqns

Kumu Jo3 Kdoqoy w!)!M lua~s!suo~ am swatuotu aIodn.rpmb pue alod!p aqt ‘ayd Krw!qm

Kue 03 loadsal qq~ amsodxa ~03 paloarro3 uaqM .aDuep!oAE 1q2gs 30 auoz e se atqpda~~ad

Klamq s! awld p+ovnba atp ‘amsodxa 103 pal3ano3uu K[&mssaDau s! a.ro3alayl pue suoyalap

~enp!A!pu! SMoqs dtrw SW aDu!s ‘paapur ‘KIle~!do.qos!ut? pa]nqgs!p s! sat> 30 lasqns

awes ]eql Bugsa%?ns madde salym ‘K~p~~o!se~~o .smaK srqd uanas 30 aldunzs pa]epwmwe

ayl 103 dEuI Kys aslva aw sMoqs ,,Ao~.eseu.33sur.asleq.M,, a%d qaM au

‘asw D!dol]os! Klaygun aql luynsse u@fe %%a psol x Ma3 - 01 dn a%w

pInow ‘s 0001 - 1~0 30 suotymp (a[qw!paldun) gay] JaAo pa@?ay ‘sa!haua pav!pw

am 140~ ‘,.s sha zt~~ x Ma3 - ‘eAou.tadns 11 a&c1 e 30 ~!sou!um~ yead aql ump ssal

leqMawos ‘Kund K~aA!ltqa~ uaaq aAeq pInoM wimo JaMod I!ayl ‘wp ~gtqeB aql II! aq 01 mo

paw peq smf) 31 @mo laMod s,aslaA!un aq 30 waDlad Ma3 e aq pInoh% ‘say@? ‘7 ho 1

- sag!sou!um[ mios 6,0 1 - ,.s sha ES 0 1 - ‘sag!so~um[ snoawwsu! J!aql uaw ‘KI[e3!doqos!

palefpe-r %+j s! sag snou!um[ aJoru ay) u10.g ahlasqo aM $eql sKw sumr&! u! JaMod ay)3I

TI@!.IO ~e3~8o~ourso3 J!aql %@unsst? ‘alq&?uysa uaw alaM sag ruoy smdlno JaMod aqL

.(p uo!pag aas) uoyauuo9

af)/aNs s!w isu!e% aDup!Aa atuos MOU s! aJaw 31/91 actC1 30 ws wy pavvosse

saf) 30 lasqns [letus 13 ro3 apz?3s aXE?Js~p ayl st? s.Io]e8!lsaAu! au.ros Kq parug MOU s!-Ddm

001 - ‘aww!p Jarsnl:, oh!~ aql sayi Ma3 e 01 lno “awqd ycyebadns,, ayl-vp aql Kq palsa%ns Jaaau SECM $eyl a[eDs awz$s!p au0 ‘laq%q put? K$q - z sgyspaJ it? a!, pinoqs

sa3mos ao $eql pap!pald ‘swdtaiuno3 30 Daaocwp aq alo3aq uaaa pue ‘a3wmadde

s!yl palemqoUo3 suognqgs!p cysu~xa law0 11~ .sawzwp le3!8olotus03 1~ a![ sa3mos WE)

wp paisa88ns K@uons-paqoJd MOU s! uognqys!p @geds ayl30 a8pa aq lq 8u!w!pu! - a3eds ueapg3na snoaua8omoq e “03 uo!iqDadxa aq, 01 pa.mduroD slsmq uup t@noua

iDalap IOU saop ~SLV~ imp 1923 aq) qp~ pau!qmo3 ‘uo!lnqys!p [e!$sa[aD 3!do.uos! s!u

‘0s atp uo suoysod UIO~IIEJ 1~ pamadde qD!qM ‘sag avow pue aJotu pawalap fiowuasqg

K~QJ e-t) uo$dtuo3 ayl uo ~SJ,V~ SB paleu~uu~a aJaM (epawoJpw ‘Km@! Jals!s

mo qw ado[aAua uoum~o~ B u! K[q!ssod- ,.o@q papualxq, aagqnd ~Kxepz~ mo :pauauep

Kp@p--+mo[~ J.IOO aql favlqo qcmnm haIaa - ys!p ~Kxepy~ mo) suognqgs!p le!leds

ale[qo ssai K~aa!ssa6ioJd .uoyqndod a.yua aw aldums 01 qfinoua arlgsuas $0~ aJaM slopalap

afj [pBIIs lslg ayl aDu!s ‘paUySUODIIn K[[I?u$$I~ SSM4%?dS u! uoyIq!.wp af) aql

--~o~du~sap 3!sugxa lutwoduq lsotu au T$$O u! ~yc?@ alaIaM SUE) leql uogdumsse aw

rapun Kpsow pue ‘San13 ahgugap Ma3 30 naylru B u!y)% ‘paleqap KIssa[pua aJaM sao 30

sysual3emq3 3!sugxa ap ‘sq@uaIarleM la%01 1~ s~d.t3~uno:, *~30 K.raaowp aql 01 log

brightness distribution would follow a -3/2 power law. The two dashed lines are -3/2 power

laws. Shown separately are distributions for long (Tgo > 2 s) and short bursts (TN < 2 s); see

section 2.4 for a discussion of GRB durations. T,,, is the interval between the times to

accumulate 5% and 95% of the total counts in a GRB. Clearly the long bursts depart more

markedly on the dim end from the -312 power law, suggesting that we see through more

nearly to the edge of their spatial distribution than we do for the short bursts. Said

differently, short bursts would appear to be dimmer and not sampled as deeply in redshift

space. This is significant, since we have yet to see an X-my, optical, or radio counterpart for

a short burst (the GRB instrument on the BeppoSAX satellite-which has signaled the alert

for almost all GRB counterparts so farAoes not trigger on short bursts). So short bursts

could still be galactic. But, short and long bursts separately have isotropic sky distributions.

The third curve labeled ‘YJHE” ( No High Energy) is the brightness distribution for long

bursts that have no significant emission above - 300 keV. Because of its steeper, nearly -3/2

slope, this subsample has been claimed to be in nearer redshifi space, and less luminous

because they are supposedly not beamed directlytowards Earth.4 This would constitute the

main observational evidence for beaming. However, the apparent NHE classthat is, the

approximate slope and normalization of the NHE curve in Figure 1 -an be synthetically

realized by equalizing the signal-to-noise levels (s/n) of bright bursts (practically all of

which have HE emission) to successively dimmer steps in the log N - log PF, and redshifting

their spectra (dimmer bursts, presumably at larger redshifts, have softer energy spectra). In

this explanation, the steepness of the NHE curve then is due to the combined rapid onset of

dimmer and ‘kedder”bursts at lower PF essentially a brightness bias.’

Careers have been spent modeling the GRB brightness distribution, including such

extrinsic effects as cosmological time dilation and rate-density evolution with cosmic time;

and effects like a GRB luminosity distribution, which may also depend on cosmic time; while

also attempting to account for such instrumental effects as incomplete sampling on the dim

end and dependence on spectral response. Clearly, we do not presently know enough about

GRBs’intrinsic attributes and extrinsic distributions to hope for these efforts to be entirely

successful, but we will know enough soon, after accumulation of a sufficient number of

redshifts (and therefore luminosities) from counterparts that will calibrate the brightness

distribution. The current wisdom in one camp is that the GRB rate -density follows that of

star formation,6.7 which apparently peaked near redshift epoch z - 1.25 - 1.5, and then

declined to the present time. But other modelers’ claim that a constant GRB rate-density is

equally acceptable. Models including luminosity distributions are more realistic (but a broad

luminosity range may not be needed) and are consistent with the peak fluxes and redshifts of

GRBs 970508, 971214, and 980703 (Ref. 9). It may also be judicious to consider the log N-

log PF for long and short bursts separately.”

For the cosmological distance scale, it is easy to understand qualitatively why the dim end

of the GRB brightness distribution should depart from a -312 power law: assume a constant

number of GRBs per year, per Mpc3 everywhere in the Universe. Then two effects diminish

the observed number of dim bursts on Earth. First, time dilation makes the “per year”longer

for the observer, and second, gravitational lensing of distant volumes by the nearby matter

distribution makes the ‘per Mpc ‘“appear larger.

2.2 Cosmological Time Dilation and Spectral Redshift

Before the modem era of counterparts, two additional pieces of evidence supported the

cosmology camps position. (The incredible energetics required of nature was the primary

obstacle for the cosmological distance scale, hut that is manifestly no longer a problem for

nature.) Cosmological time dilation (TD) comes into play not only in log N - log PF as part

of the rate-density consideration, but also for the innards of bursts: pulse widths, intervals

between pulses, and overall durations. Since GRBs are immensely varied in temporal appearance, there is ample opportunity to measure these timescales. However, measurement

difficulties ensue since the dynamic ranges of GRB durations and pulse widths are large.

Also, brightness bias and instrument triggering effects enter the game (GRB monitors usually

are half asleep, waiting in low temporal resolution mode for a GRB to occur; then the

instrument switches to higher time resolution modes to better record the fast time structure).

We have measured the relative, average widths of dimmer bursts (presumably more

distant) compared to those of the brightest bursts (presumably closer) by a variety of

methods. All our TD measures include a preparatory step which approximately equalizes the

s/n levels of all burst time profiles to that of the dimmest bursts in the sample. “J’ One

particularly ‘tommon -sense” method is to group bursts by PF, then within a group, bring the

time profiles into temporal registration with the highest peak in each burst positioned at ta.

Estimating the peak time in an unbiased manner is not necessarily straightforward for the

artificially dimmed bursts, but is facilitated by a wavelet “denoising” approach. One then

measures, e.g., the FWHM of the average profile for each peak-flux grouping and compares

these widths with that of the brightest group. This is the observed time-dilation factor (TDF),

and would be equal to (I + z)/(l + z bright&, where z is the average redshift for a given peak-

flux group, except that some corrections need to be estimated and applied.

-527-

-8ZS-

+ mslnd) qm3 aql wql lapmq uaAa KlauyoJ am eq3ads a~ ‘hay 00~ - aAoqe maddwp

pue ,yay 0~ - 01 - 1~ yead ,,s.talt?adax eunuy) ~0s 30 eqDads aql ‘Aay 001 - Mo[aq

]no salad KIpmsn eq3ads asoqM ‘saymuq a[oq-qyq pue slalsmq Ku-x asuay isour aw

ue’~, lapmq K~p?.uxds pug lalq@q ‘KEME pue m3 ‘am sao asualu! lsorn aq) ]eql aas am ‘JoId

Iel]Dads (A&A s$uoaql I! ‘[ am8!d ruo~ .@lauaZ u! s)ua!suw WJaua-@q3o ewwds ayl

amduo ls-ry am ‘dd 30 uo~~uy E st! eqDads lsmq 30 Kpws snoZo[eue aql ar+atdde 01

‘pauyqo

aq Kern uoyqys!p k@sou!um~ peoJq I! ase3 q3!qM u! ‘&cm lap10 30 Sg!qspaJ 1~ ay pInoM

sa3mos aw uaq$ ‘alEI uoy~u~o3 m$s ayl SMO[IOJ &!suap-aJE?l mu aq 31 ‘13auo3 K[mau alotu s! s!sawodKq &!suap-a$eJ ~0 ~uv]suo~ ayl3! ‘sylual Ma3 e 30 q!qspal le a!1 01 pawpald

am pue ‘la$qi@q 0s - 01 30 s1013e3 am slsmq ]salq@q aqL .KlaAyadsaJ ‘996.0 pw ‘ZIP’s

‘~~8.0 = z s1JFqSpaJ paw!~osse z~]y swnq aaqi aw ~03 97 pm ‘E’Z ‘~1 = am s8d 3s~vB aql ‘uospdmoo JOT ‘8 - s -z se q&q se aq Knu ~SJV~ Kq pal3aiap (,.s L.~~ uoloqd

1.0 - dd) qsmq lsaumup aw 30 Slyqspal ltrw alz3!pu! s]Insax ;saslaa!un [aporn iuaJaJj!p

U~M sa21f) 30 uo!inq~s!p aq, u~e.usuo:, 01 uo!rcqal dd 801 - N 801 aql tpp pawquro:,

aq uw uoyqa1 JaL au .dnoti lsa@$q ay3o asoql ump ‘spy aaq3o 101~3 - am saI’Jo”d a%a*e ,qsmq lsawuup aqJ ,;paAorual spasa gmspal pue [tquatutwsu! tpy Klq!sualso

‘(I@% z + &(z + 1) 30 aleuulsa ue uayl am z am&d u! panold samwatu da1 aq1

.safgold aury aE?elaAe aw 30 uoyod lu!Kwap aq KIUO @sn Kq sdaL ayl palaruya aM z amQ u!

sdnoti xnp-Tad ‘auruup aaq ay) JOT ‘alaldtuo:, 01~86 - s! luqdums 3~1~8 ‘,.s Z.u1~ uo$oqd

‘1 < .Jd JOT Xas!.I MO[S asp? am Kaql ssapm ‘slaKwap uup ‘MOlS lou Jnq--,,s.Iasf.I uup ‘MOIS

ss!m 0% spual aslva ‘aJo3alaw fsu!q Isal ayl103 s[aaaI lua.xa3yp-os-1ou pue IaAa[ punotiywq

e uaawaq s! uoymduroa aq] ‘K~Mo~s asp $eyl slsmq uup ~03 sna ‘(aA!qwJ 4ep PIE

quaum.qsu! 0x9 uolduro3 ayl30 suo!idu3sap ~03 ,,1Unq.~sso3/3sso3o~.~s~~~3sso:,..

a&d qa,tt ayl aas) slo$Dalap leyuap! @!a q! 30 0~1 Km u! ‘uo~~&a~u~ s-~1 ay, Bu!paawns

wq SW-pzo~ JO ‘SW9s~ ‘SW-~ e u! uo!lenl3np (52 s’s -) ~uwy~~s I! s! aJaw 3! sy2 uaw

‘s L 1 - ~03 punotiy3eq aql saldues 1~ :,,pmxq, s ! unp~o8[e la%Tg lsmq pmoq- uo S~S~VB

‘puo3as .uo!ssawns u! a[dwc?s launmp q3ea 01 aIduIt?s Ismq $q@q atp-sd(lL 30 p$

leg e uo-G!u~~~~~p- awl pue ‘%u~!qspa~ ‘8up~~tmba u/s Kq uo!leydwo:, sy ~03 suoy)arro3 . aleuysa aM 9,‘aur2.r3 lu!*omo:, rtayl u! qsmq ayl %+uasqo aJaM aM 3! ueql lamo.ut2u

aq [I!M pueq K%aua,slo]3a$ap ~SJ,V~ ayl OJU! payySpaJ are )eyl sa[‘JoJd,slsmq Jaumup aw

30 suoyrod asow ‘K%aua JaqF?!q 1~ la]loqs K~pqsugu! ale saw3nqs Iwodwa] lsmq asnwaq

‘ls.ud ‘(dd 801 - N 801 ‘%a) saiqetiasqo laq$o tp!~ uospduro3 103 alepdoldde samseazu

azyeaJ 01 ssaJ pauasqo aql 0) pa!ldde aq 01 paau ~~01~3 uoya.uoD ON isval 1~

.qsrnq Imp ‘%!S!.l KIMOIS

30 Kwa!Drga uoyalap ~001 uetp ssal 203 suoyauo3 aleu.ysa 01 idmane u! al’Jo”d a%aAe

30 uoyod %!Kwap ayl 61~0 az!l!ln sdnoti aaql Isaunxup ~03 sammauI dal .dnoB lad

w-q z6 - am =q. s,,r,‘po~aw alrJoJd aLlaAt? pat&Iv-Fad arfl 103 ‘dnoti lsa@uq aw

0% aayqal sdnoti xnb-‘@ad au? .103 (daL) ~101223 uoypp-aunl palDauoD-g!qspax - z ‘8!d

001

+

t-

i’s

9’0

SE

s,Gp,eE,-vaJ rz[pu!s trodal sJo@ysaAu! law0 ‘z - s! swnq aslva isauuu!p pm, Isav@uq aw uaawaq SaL aAy[ax ‘pamasqo ayl :m~!m~s Klalew!xoJdde pw. lue~&!~s sKe~[e are slpsas cyseq

ayl pue--‘D$a ‘slala-d @s!ouap ‘sa%w K%aua ‘sp[oqsaq %+PJA-(suo~rmp ‘.8’a)

slay)0 pue amSeazu a 30 pas sw uo Syr+ea Kumu pal3nwuo3 a*eq aA ‘qnsax sdal u! saDuaJaa!p luwy!uZ!s ou ‘Jatpty pap!A!pqns s! dnofi lsa@pq ay) uam ‘sys!~els 8u!luno:,

m laqlrrr ‘(lsmq 01 1-q ‘aw=?.madde podwal pa!.wA) suo!]e!.m~ aIdrues 01 anp Kcpsour

ale saz!s loua deqslooq aql .haq 00~ - OS) ,.s Z.u13 suoloqd ‘~sJ,v~ 103 sl!un pmpws arl, u! s! dd .dnoB .tad S$%mq 26 - am alaqL .K[uo aIdrues (s z < 06~) wnq Buoy aq? “0~3 sdn0.B

xnp- yead ua] 103 amseaw a ,,pau%@-ye@, pa]3arroD-y!qspaI aqJ SMoqs z am&l

nebula) power-law spectrum, and have been mapped to EGRET energies, - 20 GeV. The

spectral peak in v-f(v) provides a break in the otherwise featureless spectra, with which to

measure relative redshift of the sources. Redshift is time dilation of the EM radiation itself.

Mallozzi and colleagues performed the analysis:’ utilizing a sample of 1 ong and short bursts,

down to a PF - 1 photon cn? s-‘, where BATSE detection is nearly complete. From their

Figure 1 b, a plot of Speak vs. PF, we see that dimmer bursts have progressively lower average

v*f(v) measures, consistent with time-dilation results.

100 lo1 102 10s 104 105 10s Energy (keV)

Fig. 3 - Canonical spectra (v*f[v]) of high-energy transients: Gamma-Ray Bursts, X-Ray

Binaries, Black Hole Binaries, and the Crab.

2.3 Summary, GRB Extrinsic Characteristics

This much was clear for long bursts, before the detection of counterparts: isotropy of the

GRB celestial distribution, the deficit of dim bursts in the log N - log PF, time-dilation and

v*f(v) trends with PF were mutually consistent with the cosmological distance scale

hypothesis. None of these indicators individually, nor all combined, proved anything, given

that subclasses of GRBs with different distributions could be invoked in models. There are

still reasons to entertain possible subclasses.

For example, the distance scale for short bursts has not been established definitively.

Short bursts’ localizations by themselves are isotropically distributed, as are those of long

bursts. But the log N -log PF relation for short bursts does not indicate a definitive deficit at

low peak fluxes, since the leveling off on the dim end is more attributable to BATSE

detection efftciency: some short bursts are so short that they do not till the shortest trigger

accumulation bin (64 ms). To my knowledge, no one has troubled to model their log N - log

PF, probably because of the more severe detection completeness problem. Moreover, short

bursts may not be sampled sufficiently deeply in redshift space to manifest curvature, thus

modeling may not provide robust constraints given measurement uncertainties.

Some work on time dilation of short burst profiles has been reported. ” Our work on short

bursts does not reveal acceptably stable results as the sample enlarges, or as adjustable

parameters are varied. The whole treatment is more difficult: the profiles are so short,

containing little information; the definition of peak flux on short timescales is more arbitrary

than for long bursts; and unbiased time-dilation measures are difficult to construct and

calibrate. The optimum BATSE data type for short bursts, time-tagged two us photon data, is

of limited use due to its 32K maximum event buffer size, which effectively windows the

burst record, such that the start and stop times depend on burst brightness. The v*f(v) vs. PF

relation for short bursts shows a barely significant trend (R. Mallozzi, private comm.). Worst

for short bursts, BeppoSAX has not detected any, and so mere are no X-ray or optical

counterparts to go chase, so far.

2.4 GRB Duration Distribution

The brightness distributions for short and long bursts might suggest that they are truly

different groups. In fact, their spectral distributions are similar and overlapping, with short

bursts tending to be slightly harder. Of course the defining difference is temporal: the

logarithmic duration distribution is clearly bimodal, with maxima near 25 s and 300 - 500 ms

-52S-

-OES-

~~JV$J bq papalap Se ‘sa@aua lamo[ &? papa3 lsmq ayl Jage s 000s paa!.wz y3!q~ uoloqd

AaD 0~ e Jo3 snow3 s! ‘~mgx Lq pwalap os[e ‘lsmq asuay s!qL .uognqgs!p uo!Pmp

aq$30 pua 8uo[ ay] u10.g lsmq xalduro:, e ‘~~zopcj gt10 sa]e.Qsn[p LZ ‘3aa3o z am8!d wmq

81101 103 se paugap-IlaM se aq plno~ suoy?n)~I~ as[nd ayl uaq$-slo]Da~ap Ja8.@1 yXNu q$w

pahlasqo alaM slsmq poqs3! wmq 8~01 01 “e~!tu!s ~.IOUI uaha madde pInoM dnoti e se wmq

poqs SdeqJad ‘sys!&?$s Lq pal!urg s! s’$smq ]loqs u! saspd3o uog!uyap au wmq %ol aqJ

01 ml!w!s-3[as Jeadde asayl pue %armDtws aslnd put! saslnd Kueu~ q+w saldmxa pun03 aq ue3

slsmq poqs ~s%ou~~ JanaMoH .aslnd Lreulos e 30 sls!suo:, a~ uoqs e uayo ,;samv.w

aslncj, JO ‘saposida uo!ss!rua ~23 e $sn[ JO auo aAEq 01 leadde s]Smq ]roqs ‘&ms!~

‘(s uo!pas aas) Wlaua3o uo!yury e se pasladsip aq Au saw!] [EA!.LIE uoloqd acys

aleas BIaua LJ!A& ummtmb ayl %~qo~d ~03 luatupadxa [‘zm$eu e p~oge v$!!tu sm~ MOLIEU

‘~se3 q3ns .aslnd ayg- ayds SUI 00~ - asvav.q ayl ‘Qmp pamseatu IOU s! Clan 0~ <) sa@aua

~311’33 1~ uognloha pm~~e aq ‘uoloqd .rad SUI 001 - SF wgpeap raqunzq3 ymds ayl astwaa

‘Aay sz < sa@aua lt! ‘aNn3 @I 3s~vg aq~ s! w&ols!q aq flaqumq3 ymds J~M~)Z

arl, Kq palaalap suoloqd @np!a!pu! IuasardaJ sa[%ey aqL ‘I- IMoqIadng @mp

q.1~2 ayl Lq %!ssed luoyaheM 9 “03 snoum3 ‘I gl(j~fj a~ ‘]smq ]roqs hah a SaPwtI~l!

5 amQ .aDIgns 11~ salgold atug oM~30 uo!ssnwp ‘aJaH ,;sa%d qaM .ro)eF?!]saAu! Isan

0x9 aw q%onp s! EJEP a~.~va ay, o$ alno snoypadxa porn aq ‘suo@?!lsahu! puodmal

snopas ayetrapun pInoM 0qM IapeaJ aw 103 wadse sy~ uo %nilaMp p!o~e [[FM 1 ‘sm~

30 Io!.4eqaq leIodwa$ papA Llapv aq 30 uoyz~avemq:, uo sawwa3uo3 lsalalu! Lw a3u!s

s;ape3ap lad $uaAa auo sdeqmd ‘MO\ aq plnoM awl waha aql $nq ‘(DdM30 sual) aXws!p lagnl3 oh!~ arl, saug Ma3 B 01 Ino 0911 6q alqq3a)ap aq hu a3ua3sap203 hreu!q SN

+&s3smq ]loqs Isamau DaA atg 103 a[qe$Da$ap drams aq hu mslnd 01 asdyo:, J.IEMP avqM

u1o~3 UO~X~KI pmoy?]!~~~Z aqL ‘K[aA!yadsar ‘(wmq 8uol) uoge!pe~ alod!p yau%uowala

10 (slsmq poqs) uo!wpe~ p~1og~pw8 laqta Icq paMoIIo3 asdello:, ay, qly~ ‘l!tug

alqe]sun d[~euoy+wti B Molaq JO ahoqe %!uu!ds paurro3 sleslnd puo3asy[!tu 01 S3mMp

al!qM 30 asdvi[o3 pampu!uogam% 01 puodsauo:, sasStq3 ONU atp wp pasodoJd ,,ueury~e~f~

pue !A ‘Ll)uaoax .pasodold uaaq a*cq &lepouuq uoymp aql~o3 suoymeIdxa leD!sdqd Ma3

v wa XsLvg-ad ayl a3uys ~ue~yu$s uaaq seq s E - z lpau LaipzA aqL ‘I(l![apg laqZ!q 30

pue lawootus s! uognqgs!p aw30 pua poqs ayl30 uoyzz~aw2mq9 J!aw ‘aJo3alayl fuognlosa~

wrno3 1~0~ aqi30 ~~$6 pm ohs ar2pum33e 01 samg ayl uaawaq

lehlaluy aq s! 06~ .aldun?s la&l e ~11~ Inq ‘~1 3% 30 poqatu uoyezgmba as!ou ayl

~~01103 um.C?owq p!10S au 90@1e3 gp ~SJ,V~ aw u! el13p tuoy paauap s! unz.@ols!q paqsep

aqL ‘(lxai aas) spotflaw luaJa33!p 0~ Lq pamwaru suognqgs!p uo!vmp WD - p ‘&l

srl0.w q+kt elep lua&a pa%wautg a*30 aSn sayeur urea% zsL-+a ayl SeaDqM ‘uo!in~osa~ SW

-p9 le suoyzmp amSeazu aA faraq aldums Ja%eI e flu!sn ‘~1 3aa u! se s!sL~sue) s[aaa[ u/s

30 uoyzynba uodn 1~01 am sly Bu@t?e3ap asoya ‘s)smq lq@q awl03 suoyemp Javoqs pla!b

01 spuat q3yM ‘amsI3acu Iuapuadapu!- ssaw@q mo s! uP2Bols!q pgos au zz .801W’?3 ,,f&,

a q~ 103 salrJo”d atug [email protected] ayl30 Swauramseaur sureal xs~vf~ a% s! mtiolsg paqw

au ‘p amQ u! uMoqs am samseam uogemp luuag!p 0N Jo3 suognqyis!a ‘( Iz 3aX)

300 GRB 930131 - Superbowl Burst

1 I I I I I I

- BATSE profile

A EGRET photons

-iii -4

0 1 2 3 4 5 6 7 6 Time (seconds)

Fig. 5 - GRB 930131 (whose wavefront passed by the Earth during Superbowl XXXII) as

detected by BATSE and EGRET. Vertical axis is truncated: maximum BATSE count rate

was z 7 x 10’ s-t , and limited by deadtime effects. EGRET spark chamber deadtime per

event is - 100 ms. Thus neither instrument recorded actual fluxes during the initial intense

spike.

Short and long bursts are similar in two other respects. Both tend to exhibit hard -to-soft

spectral evolution, within a pulse and across the entire duration of an event: Pulses. tend to be

longer and their onsets later at lower energies, and bursts tend to be longer at lower energies.

However, both groups exhibit the ‘Cdsymmetry pulse paradigm’! the more asymmetric a

pulse, the wider it is, with lower energies peaking at later times. Conversely, in nearly

symmetric pulses, the peaks are aligned across energy bands.“829

Since the radiation mechanisms of GRBs may be completely separate from processes

governing their counterpart afterglows, the temporal/spectral development at gamma-ray

energies will remain central to eventual understanding. Recent temporal analysis work

employing objective algorithms for the determination of the number of pulses in a burst, as

well as pulse rise and decay times, has been done by Scargle”, using a newly formulated

“Bayesian Block”approach to estimate positions of change-points -where the mean changes

significantly. Constraints that GRB time profiles impose on internal vs external shock

models, via considerations of kinematics of the expanding emission front, have been

expounded by Fenimore and co-workers.3’

3. GRB Counterparts at Longer Wavelengths

3.1 Discoveries of GRB Counterparts and High Redshifts

On February 28, 1997, the gamma-ray burst community was surprised by the breakthrough

discovery of an X-ray counterpart to GRB 970228, detected by the BeFpoSAX GRB monitor

and the narrower field X-ray instruments. The evidence from two observations, separated by

three days, revealed the appearance and decay of a previously unknown X-ray source

consistent with the position of the GRB.3Z Subsequent X-ray detections of GRBs,

outnumbering optical detections by about two to one, have established a clear pattern of

power-law temporal decays, predicted by Meszaros and Rees as the signature of cosmological

tireballs/blastwaves in the aftermath of a GRB.33

The X-ray localization accuracy (- 3 arc minutes) from BeppoSAXs wide field camera

was sufficiently refined to allow deep pointed observations with large optical telescopes. The

path to The Holy Grail of GRBs was then established by van Paradijs, Sahu, and (3a,ma,34.35.36 upon observing the X-ray error circle on Mar 1 and Mar 8 with the William

Herschel (4.2 m) and Isaac Newton (2.5 m) telescopes, and finding a decaying optical source

at visual magnitude - 214xtremely faint compared to previous claims of possible archival

optical associations with GRBs. Two weeks later the field was observed by HST. The

closeup revealed the still-bright GRB counterpart, compared to an extended nebulosity-the

host galaxy. Comparison with a second HST observation made on Apr 2 led Caraveo and

colleague? to declare that the object had manifested a proper motion of 18 milliarcseconds,

and was probably a compact star moving at - 250 km se’ at a distance of - 100 pc; - 0.1 pixel

centroiding was claimed, and possible to achieve.

-531-

-ZES-

a!dollos! ayl OS ‘s OZ lnoqe palsel a~ aqL .sha Es~l x E - aq p[noM ~sdnq aw u! aauanfi

Kel-eurum8 lelo] aql uayl ‘a!donos! alaM uo!ss!wa lsmq aw 31 ‘uo!lnqlqs!p K~!sou!uml

a!su+Qu! ao e 30 aauapya leuoywasqo IsltJ ayl -805oL6 ~0 ueql snou~uml aJoul x

SZ - aq PlnoM PIZIL6 gtIE) os ‘&z + 1) SI? saoe h!sou!UV ‘SOSOL 8X930 IEqt X Z - SeM

PIZIL6 ElX93o xnlJ Tad Kt?J- t?uumB artI. ‘SW0 = z lv 80SOL6 ERIM’~ 103 l=qI q Jaq%l Klqcuap!suo:, ‘8uea 8!a aql 01 73Eq aauw!p aql30 x06 - ‘8~1.E = z s! g!qspaJ pamseatu

au .sa!xl?leF! Buyoj-nw ‘gyspal q%q u! pun03 Klatulnol sa!aads ‘sauy uoy&osqe

ue!xa@l lrrrahas 30 Imp 01 leyuap! g!qspaJ B ]e ‘(uo@osqe ua8oTKq lu!uahlalu! 01

anp ‘umnw]uoa pmwanlq aq II! doq yy lualsyuoo) aml uo!sspua r) ueu~b~ e paleaAaJ @I

~Kxep?l au ‘(pauyqo aq IOU pIno 3lasy way&w a* 30 um.uaads alqesn e) pape3 a~

aw iage Kxv@8 Isoy ]ua.tc?dde ayl30 g!qspaJ atp pau!uualap ,,san%alloa pue ym?lnx

.Joiya8oxd ao aw ~03 waumo+ua ~U~IILIO~-~~S asuap e %n~sa2Bns ‘0.~ snoyaid av UEI~ JappaJ PIE Ja)uy3 SEM ]ualsut?.u leydo fij,[Z1~6 af) ,;Klaa!padsal

‘z'* Pm 1.1 --r) ww‘sosoL6 pm 8zzoL6 mm ~03 asow WY] =kw 4~11~‘z~0 T VI

- 23 SEM kmap Mq-isMOd Molhage aIp ~03 xapu! aql ‘spuoaas 3.~ $E’O - SF sn!per luamdde ~hle8 atp put? ‘sapn@eur $‘sZ ueq~ ~a@?i~q ‘,aafiap .xad sa!xele’d $0 1 x p - :$I -

z. 01 - pawuysa s! uoy!sodradns aaueqa 30 &q!qeqold au .uo!l!sod Slua!- aw JE pun03 SEM ‘S’SZ ss apm@=w x ‘Ky=s wq rn!E3 e mq uaw Kq papv3 pmj wa!suw aw .(gp Jax)

8661 ‘L LVI uo ISH kq pazvm! =,w ‘WbaWo3 Ieydo m qly pJ!ql ac[l ‘pIZIL6 EM9 ‘(LV pue gt ya@ &a ,sol x Z - SEM Biaua IleqaJy pa!ldru!

aq$ ‘uo!suedxa @auaqdsuou alqeqold a y, wnoaa~ oy Buq~ y?apaqds alotu pur! paumaq

ssal E?u!woaaq ‘Klasraa- spuedxa IleqarrJ ay se ‘Z - J ‘a!ls!a!lvla~qns 01 a!lsylelal KlqFhq

uxo.13 uoytloaa sawa!pu! Kclap qaaM-IeraAas e le Io!,wqaq pa,uasqo aqL .lq%?!l30 paads arfl

leau .Q!aolaA uoisuedxa q+tt ‘(nv ,ol x g -) tua L, 01-30 az!s iuaredde ue 01 uo!suedxa uaql

pm (aJaqdsouw ag qfhoq sassed @I I!atp se Ekup~u~ s.rw 01 sno5’oleue) az!s lelnfh [~elus @yu! ay 01 anp uoy?~~!~u!as aA!ytu33!p 30 suoy?a!pu! am. ‘lu!qauanb luanbasqns +ayl

pue ‘qw0I.u Bwpaaaans aql laao suoy+eA ‘~0 5.8 pw2 6.p 1~ ‘Kelap yaaM au0 1~ palaalap

ISlIJ SEM ,Eut?!S op?.l aw L,,‘Ileq~g %upuedxa Klpm!leqetpz (K~~eyu!) ue 30 anqeu+s

aw paleanaJ pw2 ,san%alloa put2 l!e~d Kq o!pw aql ul payaalap osle SAM 8050~6 a~

.aunlaatds3o $IEJS aql 01 yaeq aaut?$s~ ayl3ley Klq%o~‘5~8’0 = z Byspa’

WlM WJq ,,‘uo!ss!ura ua2Kxo pue ura& awl uo@osqE uv paMoqs 3Iay lua!sueq aq

30 l*rr artI. :i!=w 4w aw WM sosoL am'asmo~30 PW W md E'SZ = apw*Ew

x ql!~ 13atqO ycyld!lla ‘pCpIalXa lnq (puO3aS 3~ ~0.0) lletus e %!IeaAaJ ‘1s~ Kq pa&u!

SI?M KXE*E~ aqi ‘8661 isn%jf ul ,;~alauu?!p ady E - I#M ‘8ayt Ismqm$s aq’l30 Kxt@ $soq

m!e3 ‘llerus e pa!lduq s.101oa ayaruoloqd atp pun IIJ laoduta] au ‘&E?JSUO~ sqd ME[-1aMOd

e Kq panrJ-IlaM s! pue ‘00~ - ,Cep 01 anuyoa 01 pahlasqo STEM am]ledap s!q~ .panaddt?

Kmap ME?plaMOd tuog awdap ~30 vuq ‘sKvp 001 maN ,.Kwap Mq-DMOd aql %I!UU!8aq

aJo3aq (oz - apn@hu @ @I umruyu~ 01 %!sp uatp pue ‘Kzp JSIIJ ayl 8u~p VIEWUO~

K[leyxxd luF!emai ssau@~q atp pawoqs 80~0~6 mf) 30 ama #?!I leydo au

.spunoB p2ayaJoayl uo paro~~3 am3Iay ~9 ayl~o3 syaoqs @waluI .u+mqaaw aay2!pc2

%~npp atp aq IOU plnoa syaoqs lewalxa 1~ s!seq yernauyl e uo an% 01 ‘sMolhaye Km-x

aw pun sluaaa Kmmrun8 ayl 8u~p qloq ‘samwa3 puodwal30 spuy asaq pasn ,Esan%a~loa

pue aIocu!uad .dumq Km-x ayl q~% Klsnoawlnur!s Kl”eau parmaao 8tq.1~~ leydg

‘,ol - Kq %q.tag!p sapasauul uo lsn[ ‘ssaaoJd KmuIpd awes ayl LIIOLJ asp SDJ mmu& pue

Molhaye JEW paJSa%hS ,$an%alIoa pue oJ!d ‘~9 ay Kq pasea[al K&aua IQO] aw3o yOs -

pus ‘.mo@a~‘, Km-x a* 30 aauanv aql30 %sZ - pau!quoa (uo~emp ao av 01 pamduroa)

dumq %ugse[ 8uol KlaagelaJ s!u xKep f - I - 30 Kkqap e $2 ‘Kwap MepMOd as!huaylo

ue II! dumq ~ueay~uE+ E paleaaal Keaap lwodural Km-x aqL wuaued IuaJa33!p ]eqMamos

paMollo3 lo!AL?qaq a! pue ‘msoddaa Kq pa)aa)ap SEM $30~0‘6 ao ‘al!qMuea~ %~~ss~ur WM 1~v.1~ KIOH aql .pauyqo

sw g!qspai ou snql pue ‘pahlasqo =aM sauy uo!ss!ura luoqs ou lip fhle2 pue luay2w.q

30 umwads aw aqnbaz 01 II yaax ayl t@~ uoy&?a$u! s-008 I ue pauuo3lad ,d;an%alloa ptm

~YIVI ‘6310 ayl m3= syluo~ ss ‘E I W4 Wpe3 ww~@s wv sE’~uno3 WM wwaJ ou pue ‘parJyxap! aJaM sauy uo!ss!tua sno!hqo ou :adoxa[al m-01 11 y3ax aw tpp iuaynw

aql30 umwads s-o&-s e pauyqo Sadisa~~03 ptm K.ruo~. ‘~661 ‘Z ldv- 1 f EN @ma

cam 30 sselaqns atuos ~03 aq [I!Js Kmu pue ‘auo 30 aldtuvs s!g my luauwad

SEM uoy+aoss~ Kxc?le8/)ua!sue~ 30 uoysanb ayl OS ‘Kys ag uo uo!pa[old u! Iseal JE ‘KxvpB

latpoue mau 3lasy puy uoos plnom XreuFq ag ‘llnd ~euoyq~~.B layearn tpw KXE@ ial[ems

s$! TIIOJJ adeasa 01 Kn?u!q SN paya!y-eAoouradns e “03 acup ssal aI!nbal pInoM I! seaiaqm

0s .paz!ueho ssai pm2 ‘iatpa%ol lasoI3 ‘Jallmus aq 01 Papua% IaqB!q pw2 I - z sy!qspal

Iv sayele8 ‘aloN) w% pw2 lsnp ue!xe@ ‘.a.! ‘uogai @.masqo ue u! pappaqtua s! aamos

8tl~) aw wp Buyqpu+%pIappar lwaads JO/PIIR ‘urawd Kwap lwodtua$ ‘aauap!au!oa

leyds--pakXxauIa seq lsoq e 30 aauap!aa ‘a9 e 01 w&avmoa leaRdo luanbasqns

qaea ~J!M mq ‘uo!$!sodradns aaueqo 30 Kvl!qeqoJd ~[erus aq$ SEM aiaqJ, ‘puoaas am 1 - az!s

mln%m 30 qaea ‘KJ~ - 30 syqspal ie say+@ vw~s!p laylo pue ‘pasodradns iua!suw m!e3

aql q$y KxyeB punofialo3 e 30 slpr$ap pa1eaaa.I sa%uq J,SH (.mo aq~ 30 uoyaJ!p ayl u!

iua!@ e peq qa!qM ‘@!I s&r@! %!Kl~apun atp3o uoywqqns aleyap paaloAu! ‘a]~!wq

.LSH atp 30 ouaqaaem ‘a Kq pauydxa se ‘uIalqoJd s!sK[eue leuoysod aqJ) ‘sq)uoru x!s II!

pamaao peq UO!JOLII ladold alqemseaur ON .KIqwap.rap!suoa papv3 peq Mo@age aw laquraldac;

43 sc.mg aq$ Jaye xaK auo pue mqtualdas u! u!ele pa!sut%$ ayl pahlasqo ISH

average flux would be - 16* ergs 5.‘. The energy in the optical afterglow is estimated as - 2

x 10” ergs, largely independent of beaming considerations, since the fireball expansion is

presumed to be subrelativistic and nearly symmetric. And since the afterglow is best

understood as an adiabatic phenomenon, a very small fraction of the energy available in the

fireball is radiated. This is one energetics basis for the claim” that NS-NS or NS-BH

mergers come up short, given the likely conversion efficiency to yS (< few percent) and the

available rest mass of the binary, - 5 x 10” gm.

3.2 Summary: GRB Counterparts

Table 2 summarizes the nine optical counterparts to GRBs identified through July 1998.

Some assumptions about conversions between energy bands and crossinstrument calibrations

were necessary. Host galaxy magnitudes for the more recent GRBs are in the process of

revision as the optical transients continue to decay. So not all entries are definitive.

Variations in the r/X peak flux ratio and X-ray spectra are taken as evidence of varying

amounts of obscuration near the GRB source, indicative of star-forming regions.51 In each case we have imaging, spectroscopic, and/or light-curve evidence of a host galaxy. The

images are very faint extended/elongated smudges, but coincident in position with the optical

counterpart. Given precise optical positions, radio counterparts are now routinely detected

for a good fraction of GRBs. A third redshift (z = 0.966) for the optical transient associated

with GRB 980703 has been obtained. The absorption lines in its spectra also indicate the

presence of a star-forming galaxy.52 Note that GRBs 970508 and 980703 have comparable

redshifts, and their gamma-ray peak fluxes differ by a factor of only - 2, an indication that

the GRB luminosity distribution may not be too broad. However, Fruchter” argues that the

IR-optical colors for the GRB 980329 transient are best interpreted as absorption due to the

Lyman a forest extending to a redshift z - 5, implying a luminosity distribution in peak flux

greater than 100.

The combined astrometric and spectroscopic evidences indicate that those GRS sources

with associated optical counterparts are inside star-forming galaxies. Bloom and colleague?

derive a median merger timescale of - 10’ years, and thus the sites of NS-NS mergers should

be in close association with star formation regions, rather than outside host galaxies. Van den Heuvel maintains that many NS-NS binaries may merge on even shorter timescales. His

calculation extrapolates from the observed properties of B-emission X-ray binaries, which

comprise one neutron star and a massive companion, to arrive at the expected distribution

of orbital periods after the second supernova. The result is that - 50% of NS -NS

Table 2: Gamma-Ray Bursts with Optical Counterparts.

GRB Peak Fluxes ’ Host Galaxy

y-ray ’ x-my * y/X Ratio Optical 3 Radio 4 Brightness ’ z 6

970228 3.5 2.3 80 20.5 - 24.6 970508 1.2 3.0 25 19.8 1.2 25.8 971214 2.3 2.5 56 21.7 - 25.5 980326 1.3 4.7 17 21.0 - 25.3 980329 13.3 70.0 12 23.6 0.25 -29? 980425 1.1 2.6 26 13.7 49 14.3 980519 4.7 2.9 100 20.4 0.1 24.7 980613 0.63 0.7 57 22.9 24.4 980703 2.6 4.0 40 20.1 1.0 23.0

r photon cm-’ se’ (50-300 keV); conversion factor, photons to ergs, = 6.15 x lo-‘.

’ x IO-* ergs cm-’ s-r (2-l 0 keV).

3 R band magnitude.

4 milli Jansky, at 8.4 GHz (10 GHz for GRB 980425).

’ R band magnitude, corrected for galactic extinction.

6 Redshift.

’ See these two web pages for many current references on GRB afterglows:

GRB Coordinates Network notices, used to distribute GRB news rapidly,

gcn.gsfc.nasa.gov/gcn/ ; and www.obs.aip.de/-jc&rbgen.html.

- 0.835

3.412 -

-5??

0.0085 -

-

0.966

binaries may form with sufficiently short orbital periods such that they merge within 10’

years, leaving GRB sources well inside star-forming regions in host galaxies.” However,

optical counterparts have been detected only for the twothirds of GRBs in which rapid,

longer wavelength observation strategies were possible; the other third may be those where

the progenitor long ago escaped the host. We would hypothesize that optical emission

requires a dense environment and so is not generated in those cases.

-533-

-PES-

‘smo 103 auroy a[q!ssod e se paleasuoruap Klsno!Aald IaAau aleas aawslp

au0 atp,--aueld a!iae@adns aq-=alsnla et1103 01 oh!~ 01 sn&ad aw wag awEa “eauy

E Buyo1103 ‘u1.1o3~uou K@!y s! adN 001 - 01 uognqy!p lawu snouyun~ Kqz2au aqL

‘(65 3ax) DdyY 001 - aq 01 pa&?tu!)sa s! NS 31 ad& “03 ~!unl uo gaa$ap py&~va .Kdoqoqos!

uaA!l ‘yOo 1 - aq lsnw aNs Kq.mau q$!~ pa)yaosse lu!aq sm~f) 30 las Kuue ‘03 J!UU~ laddn

ayL .Mo@aye KEJ-x ou pw fuO!SSga K%aUa-@q ou Klq!ssod fasp ump Kwap la8uol ~J!M

uoyqoAa lvqaads gas-o$-p~~q %g!qyxa aspd peo,q ‘al8u!s e ale sa?nqgE ~9 par!nba

au ‘31 adO NS aq PIno ~9 BS.LVB 30 %I - sdeyad leq~ uoylauoa aw 01 awoa

Pm ‘SZW86 EM9 Pm Mq8661NS 30 salnq!JW ayl az!m-s ,,sativaHoa pm ruoo[g

5 ‘w!q [email protected] 01 aIqwqf4le LIayg s! ,po!ss!ma K%aua- r&q ou,, aau!s ‘a[qeymtual IOU s! hay 00s aAoqe uo!ss!rua3o aauasqe a= .aspd e u!

uoyn[oAa [maads uos-o1-pleq3o aldmexa ue ‘hay OOE-OO~ ‘001-0~ ‘OS-~2 :~-l s[auuya)

K%aua @seamu! le lagrea KlaAtssaBord smaao vad pang aqL ‘1sr.q aslnd-alZu!s ‘q)oou~s

‘yeam K[aAyqaJ e-57po86 a~ 103 QIJ ~euuou80~ pue salgo’d arug 3s~va - 9 %A

09 09 (spuo3as) aunI,

OP OZ 0

‘aauap!au!oa pzelodtual as013 aq, pm2 ‘saga%aua [t?nsnun ayl uaA!8 ‘~~XIIS K.Iah MOU SF a[a.IFa

loua 3a msoddaa aql ap!su! NS 30 pug ST, 8u!pug 30 aaueqa aqL ‘la$snla 0%~ aq$

01 aNIE]S!p aql aa!MJ ]nOqE ‘adm 8630 XWEJSTp E 01 Bwpuodsa.uoa ‘5800’0 = Z S! Mq8661NS

30 y!qspar aqL 8;uo!ss!ma K)!sua]u! la&o1 ‘ydonos! sl! 30 aw!a Kq ]le&avmoa [vydo 30

pug maJa3yp e aas aM puv ‘aIq!s!A aJo3aJarfl pw2 lasola qanur inq ‘aum~oa a%[ s!tp u! sauo

wanbay alow ayl3o auo aq plnoM szpo86 ~ME) ‘aumloa laF?m[ qanru e ruog Inq ‘lelo~ aw3o

uoym3 1p2ws e aas aM alo3alatp pw2 ‘82103 MO-U e u! sn le paureaq am Iaa,ap aM leg sao

snou~urrq hraA ‘JIIEJS!~ au :uoyzlndod WE) IQOJ ayl30 -01 - Bu!aas Klalaw am am leyl

pus ‘aNs Iansnun ~J!M payaosse aq KEUI sm~ [[e $eq~ I.rasse 01 se m3 OS 811~08 ‘Kep plag t!

%!A&?q am sopeuo~age NS atuos .LS aNs paanpu!-asdtlI[oa-aJo:, u! paanpoJd K[Iensn leql x 01

lnoqe ‘!&,,30 om ~‘030 uogaa[a %+unss~ ‘ahma @?q 1eagdo aq 8uyapour u~og paisa%?ns s!

sha &I x Ma330 K%aua agau!y a(qepeAe ue ‘puv ‘~9 atp3o sicep aldnoa e snug JO snld

s! NS ayl.103 01 @apdo palyodenxa arl] ‘8uqeadde amour uaha uopaauuoa ayl ayw OJ

ss’aauya Kq IOU sl uo~~e~aosse aw lerl, aqaafuoa 01 sIor+isaAu! Btupea[ ‘(suoyalap

o~per aA’c?q p-gpueq e KIUO mnq) NS 31 ad& .ratpo Ku12 103 letp IIE~J la%o.f)s x 01 - ‘pa$aa]ap

OS[i? SEM Mq8661 NS “OJJ uo!ss!ura o!pea .uo!8aJ Joua Km-x Jayl!au yl!M malsfsuoa Inq

01 ]Uaa’2[pe pull03 mM-Mq$#j(j-EAOUladnS ~l?lVSnUtl u1! ‘OSIV &E?dJalUllOa atl.I] aT# I! SeM

- 1~ 30 MOM aM ~stq a% gleql pun ‘uoy&uasqo I.JN puoaas aw Kq KRME papq saamos asaq)

30 au0 ..ralarne!p u! salnu!w am z - sa[aJ!a Joua q]!M saamos KRI-x 0~1 aJaM ‘~UaUIIUJsUI

p[a!d MOJIEN ayl Kq pa&y puv ‘a1a.y aql u~yly paulquo3 .lalaurelp u! sa$nup

cm? 51 - ala+ Jona us ugpv lsmq s!w pazyzao[ araw pla!d ap!M wsoddaa au

‘sno!Aqo s! K%aua MO, peal 01 K%aua q%q 103 Kauapua~ au ;se!q ssau@vq 0~ a[qqnqwe

aq 01 uwoqs uaaq sq ,,uo!ss!uIa K%aua-@q ou,, aau!s ‘hay 00~ aaoqe papalap IOU SF lsmq

ayl wg alqe?nruaJ IOU KIqeqoId s! $1 ‘lapotu aspd ~uuot180~ a@u!s E lu!sn spuvq K%aua

aaq mw arl, 01 slflw~ ‘uowosa~ s-s.0 w ha9 ooc < ‘ooc-001 ‘001-0s ‘os-sz -1 spwq K%aua mo3 u! ]smq a~y~gouou~ ‘y?ahi KlaAgI?[a.I s!y) 30 algoJd aug ~SJV$J aql salz.usn~p

9 aln%d wadsns SF- 31 ad&Jo NS pz?nsnun ue-&n?dra$unoa @agdo paru!ela atp qa!qM 103

‘(i ipI apnl!a~m - xnu yead la3gdo) gZpo86 ~21f) s! Z aIqe.L, u! ismq Bu!puwmo LImaI aw

iSZPO86 fRI3 = 48667 NS ‘P (i M4866lNS =) 5X3086 EMI3

+90

We visually searched our collection of background-subtracted, noiseequalized (to the

peak intensity of GRB 980425) time profiles of long bursts, liberally including in a first-cut

sample anything remotely resembling a single-pulse event. In automated passes, we fitted a

lognormal pulse model, excluding from further consideration those bursts with poor x2 or

correlated residuals in channels 1, 2, or 3-considering such to be evidence of more than one

pulse. The automated pass largely confirmed our expectations from the visual inspection.

We also restricted consideration to those bursts with FWHM within a factor of three of GRB

980425’s (4 - 35 s). Thirty-two bursts passed these cuts, and about five of these have “no

high-energy emission.” Most are dim bursts, and they have a clear resemblance to GRB

980425. Most but not all exhibited hard-tosoft spectral evolution.

For the two sets, with and without high-energy emission, we searched an exhaustive list

of 900 SN (most are the more luminous SN type II or type Ia) from the BATSE era. The list

is more complete by - factor of two during the last two to three years due to heightened

interest in high z objects. We found one or two possible SN associations for the NHE + HE

set, given the time constraint that the GRB must precede the first SN observation in any case.

Correcting for SN detection incompleteness in previous years, we estimated that - 5 GRBs

could be associated with SN type Ib/Ic. We were able to find redshifts for two-thirds of the type IbiIc SNe, and they are indeed

nearby: the redshifts are z <- 0.0175, i.e., up to roughly twice the distance of SN 1998bw (z

= 0.0085). Both the nearby SNe and the singlepulse GRBs might be expected to show a

preference for the Supergalactic Plane. In Figure 7 the SNe are plotted in the supergalactic

coordinate system. The continuous line is the Galactic Plane. Note that 16 of these 21 SNe

fall within 30” of the Supergalactic Plane and that they tend to avoid the region near the

Galactic Plane (due to obscuration). As expected, the quadrupole moment, <sin* b- l/3>, for

the SN distribution with respect to the Supergalactic Plane (b = supergalactic latitude) is

significantly oblate at the 2-o level, - 0.138’?,~~, where errors are estimated via a bootstrap

approach. Figure 8 shows the 32 single-pulse GRBs in the same coordinate system. There

appears to be no tendency for any subset of single-pulse GRBs to fall near the Supergalactic

Plane. The quadrupole moment for the entire GRB single-pulse set is - 0.003~0,~~ - not

significantly different from zero.

For economy of hypotheses, we suggest that some source population other than nearby

SNe generally accounts for the smooth, single-pulse GRBs. We conclude that either the

SNl998bw - GRB980425 association is coincidental, or events of this type comprise a very

rare and distinct phenomenon6’

+180

+180

. . . .

. .._..... :’ 1::1 ~.~:.:~~~~~~~~~ ““.: ~:..

..*: . . . . . . . . . . . .: ::‘& . . . .

.:. “,

.‘.‘“... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..j............j........ ‘m I: m

:: i :

. . . . ,........

:

:‘.y”‘

x : t.9 .a..

.a..; . . . . . . . . . . . . :S%

i . . . . . . . . . . . . . . i...#.. i rn!

1 !

-,

. . . . . . . . . . . . . . . . . . . . z . . . . . i . . . . . . . . . . . . . . . *..i - j..g . . . . . . . . . . . . . . 180

-90

Fig. 7 - The 21 SNe of type Ib or Ic found in the IAUC supernovae catalog, plotted in the

supergalactic coordinate system. The continuous line is the Galactic Plane. Sixteen SNelie

within 30” of the Supergalactic Plane. The symbol inside the square indicates SN1998bw.

The quadrupole moment for the SN distribution with respect to the Supergalactic Plane is

significantly oblate at the 2-o level, - 0.138’~~~.

I80

Fig. 8 - The 32 single-pulse GRBs in the supergalactic coordinate system. Circles indicate

GRBs with peak > 720 counts se’; triangles indicate bursts below this threshold-too dim to

determine reliably the number of pulses present. Filled (open) symbols are NHE (HE). No

subset of single-pulse GRBs shows a tendency to cluster near the Supergalactic Plane.

-535-

-9ES-

‘(866

‘(S661) Sz .d ‘ESP ‘I ‘sKqdwsv ‘moo18 ‘S ‘f Pm =FWI Tl ‘3 [81

‘(9661) El7 .d ‘P6Z SW “@la sJa!!M ‘f ‘J4 ‘V ‘2t [Ll

‘(9661) 88EI .d ‘ZSZ SVXNPV ““Ti4 ‘d [91

‘(Pau!Yns) (8661) ‘r =Wowv ‘SLUON ‘d I pm IIauuoa ‘1 ‘r kl ‘(966 I) 909 .d ‘t79P ‘r ‘s~@wv “Iv P uola~uad ‘N ‘0 bl

‘(9661) OP .d ‘6SP ‘I .shWv “I= 13 s@Ja ‘d ‘m [d

‘(5661) LSZ .d ‘LLZ Sm ‘WI ‘V Pm A!AWS ‘1 ‘N Izl I hqa&) 8~ .d ‘adoasaIaL pm! Xys ‘Ilauuoa ‘J, ‘1 pus pmuoaq ‘1.1 ‘d [I]

urn... Jawq 01 paz!@ao1 aq ppoqs mad lad sa$) 001 KIalEw!xorddv .sporgaw uoyrwsuoaa~

JaqaEn 1s~~ sazggn pue ‘apom 8ugu!od-vgaz alglaw saumssv ‘suognqysrp adys

pz.wads pue ‘ssau@+rq ‘uo!yzmp PDF) pamseaur vrnoaar? OJF saye, uupf-ro@ uopEInuqs

am ‘Aam 001 aAoqE suoloqd palaalap 30 laqumu SA a+2 luauru~uoa 01~89 lEuo!suauup

-OMJ :layo’en dy uoaq!s s,~Sv~f) 103 Kzrnwa UO~ZZ!@~O~ af) pa~~puufs - 6 ‘%d

.sluawamsearu xnu I.le&alunoa az~r> Bugqtuasss u! dIaq qanur 103 pue

suo!lEslaAuoa Qua1qZgua Kuwu ~03 pgq vlapqEt) put2 llauuoa K.ual 01 Irya@ K.tan, um I

s~oaul%pa[Molq3y

‘anaA!un ay u! uo!~euuo3 14s30 icy, sMoIlo3

&!suap-alEJ ao aw 3~ PUE yo - v ]~suo:, ~E~$OIOUISO~ atp 3~ (‘mm03 aJEn!.Id ‘!u~.n?~

‘9) papadxa aq pIno& gsmq YJS~V~ pa~a%i~un ‘Isauruup aw IS%IO~R (sreab 01 syluour

Kq K[[EJodwa] pa$Emdas ,,slEuq,) sasua[ ~aa~8o~otusoa 0~1 JO auo 30 uoya$ap ‘KILNS

la%oI 11e ]e sdnMollo3 alqeua 01 al?unaaE Kpua!at~ns-6 am%d u! uMoqs se ‘samu!ru am

0 I - wq~ lagaq 01 mad lad sao 00 1 - azgeao~ 01 q%oua poo% aq 11~ uoyqosa~ n@k

qlayaq aw ‘asIan!ufl Kpa aqj II! uo!pw~703 dxe[~8 pue re)s Bu!qo.rd ~03 JUEJ.&UI! SE Jsq

.,.a% ,.Aao SW 01 -30 suo!s=-ds!p WY ‘AaD 001 - sa@aua $t? a[qmaalap aq p[noqs lead lad sarrf, g - lsa@pq au :LSVTQ Bu!sn Iaa33a papuadap-K%aua PUE luapuadap-aaws!p

s!t.p ~03 qamas 01 a1qe aq KELII aM ‘saas%?dE+ s[aAeq ~EI~J UO!JE!PKI af> K?haua-q8y

aql30 a&uEApc 8uyyal PUE ‘qsmq auras u! samlEa asp Mo.uEu ‘g223 haa aql Bu!sn ,;aps

TarnrId aql I\? m[n& aq 01 paz!saylodKq ‘auulaaeds 30 umnaeA ay II! uoyads!p 30 aw!h Kq

‘luapuadap K%aua aq Ktxu sauy [EAT uoloqd :*x ‘aps KJ!AE&! umwmb a* lu!qoJd 30

&!q!ssod ayl s.taJJo I! ‘J~ME)~ UE~J aaysuas aIou1 qanru aq IIF pus aurgpeap ~uear~!uZ!su!

aneq 11% LSV~D asneaaa ‘$ amQ u! panold isma IMoqIadng ayl [leaax .sa@iaua

I\a+EJdns o] sao $aalap I[!M LSVTD ]eyl s! MatA 30 ]u!od Ie!qaomd Ktu “0-9 luwmd~!

ISOW ~sayqE2l30 uo!lnIoAa pue uo!lEam aw put ‘lanwu yEp 30 sa!sKqd aq] ‘aslaa!un ayl

u! uof~~Lu103 1EJs30 Bla aw aloldxa [&w ~sv?E) ‘SapZaS @3!80[OmSOa II0 T&Smq KEJ-EtUtUE8

pue ‘smw uoqnau ‘saloq yelq ayswuuadns30 sluaumoJ!Aua aruaqxa aw II! sa!sKqd unuwmb

pue UOIJQ!AX?.I~ UaaMJaq F![ ayl alo[dxa 11y J,SvTD ‘Sa!JOlemqEl a!rUSOa SE asJaA!un

atp u! sJo$aalaaae alay.md [IyaMOd ]som aw %qsn ‘plays aauap!au!oa-Rue paluatias

E pun lalauyo@:, a!doasopoq E ~J!R!M Jayaeq uoganpold-+Ed e saspduro-doasalal KKI

-EUUUE~ K%aua-q%q uoyzauaS lxau aq ‘adoasalaL aaEdg EaJtr a%?7 KE.I-E~~u~+-~sv~~)

[9] M. R. Krumholz et al., Astrophys. J. (1998) (astro-ph/9807117) (submitted).

[lo] J. M. Kommers et al., Astrophys. J. (1998) (astro-ph/9809300) (submitted).

[1 I] J. P. Norris et al., Astrophys. J. 424, p. 540 (1994).

[12] J. T. Bonnell et al., Astrophys. J. 490, p. 79 (1997).

[13] H. Che et al., Astrophys. J. 483, p. L25 (1997).

[14] M. Deng and B. E. Schaefer, Astrophys. J. (1998) (a&o-ph/9806010) (submitted).

[ 151 M. L. Litvak et al., in G-a -Ray Bursts, AIP 428, p. 176 (1998).

[16] J. P. Norris, AIP 384, p. 13 (1996).

[17] J. M. Kommers et al., Astrophys. J. 491, p. 704 (1997).

[ 181 J. P. Norris et al., Astrophys. J. (1999) (to be submitted).

[19] C. Kouveliotou et al., Nature 393, p. 235 (1998).

[20] R. S. Mallozzi et al., Astrophys. J. 454, p. 597 (1995).

[21] C. Kouveliotou et al., Astrophys. J. 413, LlOl (1993).

[22] C. A. Meegan et al., Current BATSE GRB Catalog: www.batse.msfc.nasa.gov/

data&rb/catalog/.

[23] I. Yi and E. G. Blackman, Astrophys. J. 494, p. L163 (1998).

[24] D. Lai and S. L. Shapiro, Astrophys. J. 442,259 (1995).

[25] C. S. Kochanek and T. Piran, Astrophys. J. 417, L17 (1993).

[26] Compton GRO Guest Investigator Resources (GRB temporal profiles):

http://cossc.gsfc.nasa.gov/cossc/batse/4Bcatalog/4b-b~ic.h~1.

[27] K. Hurley et al., Nature 372, p. 652 (1994).

[28] J. P. Norris et al., Astrophys. J. 459, p. 393 (1996).

[29] J. P. Norris, Astrophys. Space Sci. 23 1, p. 95 (1995).

[30] J. D. Scargle, Astrophys. J. (1998) (astro-PM9711233 ) (submitted).

[3 l] E. E. Fenimore et al., Astrophys. J. (1998) (astro -ph/9802200) (submitted).

[32] E. Costa et al., Nature 387, p. 783 (1997).

[33] P. Meszaros and M. J. Rees, Astrophys. J. 476, p. 232 (1997).

[34] J. van Paradijs et al., Nature 386, p. 686 (1997).

[35] K. C. Sahu et al., Nature 387, p. 476 (1997).

[36] T. Galama et al., Nature 387, p. 479 (1997).

[37] P. Caraveo et al., IAU Circ. 6629 (1997).

[38] A. S. Fruchter et al., Astrophys. J. (1998) (a&o-ph/9807295) (submitted).

[39] J. L. Tonry et al., IAU Circ. 6620 (1997).

[40] S. R. Kulkarni et al., IAU Circ. 6732 ( 1997).

[41] L. Piro et al., A&A 331, L41 (1998).

[42] H. Pedersen et al., Astrophys. J. 496, p. 3 11 (1998).

[43] S. V. Zharikov, V. V. Sokolov, and Yu. V. Baryshev, A&A 337, p. 356 (1998).

[44] J. S. Bloom et al., Astrophys. J. (1998) (a&o-ph/9807315) (submitted).

[45] M. R. Metzger et al., Nature 387, p. 878 (1997).

[46] D. A. Frail et al., Nature 389, p. 261 (1997).

[47] E. Waxman, S. R. Kulkami, and D. A. Frail, Astrophys. J. 497, p. 288 (1997).

[48] S. R Kulkarni et al., Nature 393, p. 35 (1998).

[49] J. P. Halpem et al., Nature 397, p. 41 (1998).

[50] A. N. Ramaprakesh et al., Nature 393, p. 35 (1998).

[51] A. Owens et al., Astronomy and Astrophys. (1998) (astro-ph/9809356) (submitted).

[52] S. G. Djorgovski et al., Astrophys. J. (1998) (a&o-ph/9808188 ) (submitted).

[53] A. S. Fruchter, Astrophys. J. (1998) (astro-ph/9810224 ) (submitted).

[54] J. S. Bloom et al., Astrophys. J. (1998) (astro-ph/9805222) (submitted).

[55] E. P. J. van den Heuvel, in X-Ray Binaries and Recycled Pulsars (Kluwer Acad.

Publishers, 1992), p. 233.

[56] S. R. Kulkarni et al., Nature (1998) (astro -ph/9807001) (in press).

[57] K. Iwamoto et al., Nature (1998) (a&o-ph/9806382) (in press).

[58] L. Wang and J. G. Wheeler, Astrophys. J. (1998) (a&o-ph/9806212) (submitted).

[59] J. S. Bloom et al., Astrophys. J. (1998) (astro-ph/9807050) (submitted).

[60] J. P. Norris, J. T. Bonnell, and K. Watanabe 1998, Astrophys. J. (1998)

(astro-ph/9807322) (submitted).

[61] G. Arnelino-Camelia et al., Nature 393, p. 763 (1998).

-537-