GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket...

63
GALCIT REPORT NO (, 1- IS REPORT---- PASADENA, CALIFORNIA FORM AL · !I SM 7·H

Transcript of GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket...

Page 1: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

GALCIT REPORT NO (, 1-IS

REPORT----

PASADENA, CALIFORNIA

FORM AL · !I SM 7 · H

Page 2: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FUNDAMENTAL STUDIES RELATING TO THE

MECHANICAL BEHAVIOR OF SOLID PROPELLANTS,

ROCKET GRAINS AND ROCKET MOTORS

Page 3: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

GALCIT SM 61-15

GALCIT 11 8 - PROGRESS REPORT NO. 1

Aerojet Contract S-416394-0P

April 11, 1961 - June 30, 1961

FUNDAMENTAL STUDIES RELATING TO THE

MECHANICAL BEHAVIOR OF SOLID PROPELLANTS,

ROCKET GRAINS AND ROCKET MOTORS

P. J. Blatz

W. L. Ko

A. Zak

June 196 1

This program is being supported by t he Aeroj et-General Corporation, Sacramento Division, under t echnical cognizance of Dr. F. J. Climent

to provide t echnical support to the Polaris Project

Guggenheim Aeronautical Laboratory

California I nstitut e of Technology

Pasadena, California

Page 4: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FOREWORD

During the past thr ee years, the mechanical testing of solid

propellants, solid rocket grains, and solid rocket motors unde r id eal­

ized conditions has bee n receiving increase d attention. Today it is not

uncommon to see a multitude of new techniques and analyses being

investigated. O ne may expect to see dummy propellant prepare d with

glass bead filler to observe its dilata tion to rupture; to ink circles,

rectangular g rids at various critical areas on a g rain surface, and to

observe the distortion of these grids as a result of thermal cycling

and/or slump; to subj e ct rectangular parallel-opipedal-shaped specimens

to both torsion and bia xial tension as well as hydrostatic compression

and parallel-plate t ension; to apply theories of large elastic stra in, and

non-linear viscoelasticity; to search for an isotropic failure crite rion

as well as a crack propagation criterion. I n short the mechanics of

propellant beha vior from small d e formation a ll the way to fr a ctur e

initiation and propagatio n has become quite sophisticated. Gradually

the results of this testing and their thinking a re being integrat e d i n a

logica l scheme of analysis which is being passed along to the engineer

and being used in predicting performance of rocket motors.

This p a rticular program will p e rta in to four areas:

1) The cha r a cterization of polyurethane propellant behavior

out to fracture initiation in terms of lar ge strain theory.

2) The development of a failur e criterion and crack propagation

criteria for said materials.

3) The gener a tion, where possible, of macroscopic mechanical

parameters in terms of molecula r p a r amete rs .

4} The solution of certain stress proble ms, in both linear and

non-linear theory, which are prerequisite to engineering

applica tions.

A s such it is part of a continuing research study of structural inte grity

problems in solid propellant rocket motors being conducted under the

general direction of Dr . M. L. Williams in the Guggenheim Aeronautical

Laboratory.

This preliminary report is i n tended as an i nt e rim working document

to be circulated for the purpose of stimulating discussion.

iv

Page 5: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

TABLE OF CONTENTS ,:,

FOREWORD

I MECHANICAL BEHA VICR OF RUBBERY MATERIALS

(Continuum Rubbers, Foams, Propellants)

A. I ntroduction

B. Large Strain Theory

C. Experimental

D. Conclusion

II FRACTURE BEHAVIOR OF RUBBERY MATERIALS

III MOLECULAR STATISTICS

IV STRESS A NALYSIS

A. Introduction

B. Elastic Field in a Clamped-Free Sector Space

'~ The contents of this quarterly progress report comprise only

Chapters I and IV. Material for the other chapters will be included

in subsequent reports also to be organized as indicated.

v

Page 6: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

I. MECHANICAL BEHAVIOR OF RUBBERY MATERIALS·

A. Introduction

The term rubbery materials include s both foams and filled

rubbers (which may be propellants) as well as continuum rubbers .

Experience dictat e s that the mechanical behavior of foams and filled

rubbers (up to 90 percent by weight solids loading) is controlled mainly

by the mechanical properties of the rubber binde r, and for this reason,

it is prudent to start this investigation with a review of the known

behavior of rubbery materials.

One typical feature of rubbery or hyper-elastic materials is

high extensibility under relatively small load. The deformation s are

so large (ultimate extension ranges from 500 percent to 1000 percent)

that the classical theory of small strain is no longer adequat e to expre ss

the behavior of such materials. The modern approach initiated by

Rivlin, Murnaghan, et al, is to find a strain-energy function from

which the constitutive stress-strain law can be established.

For a homogeneous, isotropic e lastomeric continuum" the work

done in deformation which is stored as strain energy, depends only on

certain invariant characteristics of the state of deformation. These

invariants in turn are functions only of the proper or diagonal value s of

the deformation t e nsor. The purpose of this introduction is to present

experimental data on a number of rubbers and show how, from these

data one can determine the relation of the strain energy function to the

invariants of the d e formation state.

Obvious! y the algebra involved in effecting this data reductio n is

simplified in the case of homogeneous deformations. For this reason,

specimens were tested in uniaxial tension and biaxial tension. Data were

procured on

a)

b) c)

0 SBR - 1500 rubber ( 1. 75 7o S )

Polyurethane foam rubber (47 fJo by volume voids - 40.M dia.)

SBR - 1500 rubber ( 3 fJo S)

Page 7: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-2-

B. Theory of Large Homogeneous Strains

For homogeneous deformations, it is convenient to define three

invariants as follows:

< r. 1)

( I. 2)

( I. 3)

where the invariants t I, , I 2 , I3

} are the set orig inally used by Rivlin.

Setting , the constitutive law reduces to :

~=I, 2, 3 ( I. 4)

where Q'. are the homogeneous components of the engineering stress L.

(load on undeformed cross-section)

Q'. ... are the homogeneous components of the true stress

A.. are the homogeneous components of the deformation gradients L.

(new length I unstretched length)

w is the strain energy I unit volume undeformed material.

For simple tension, the deformation-stress field is defined as:

A.J·- A.~c - A lat '

CJ.~. = O:.ni ) Oj = <J'k = 0

where A is the logitudinal extension ratio

)\lat is the lateral contraction ratio

Substitution into (I. 4) yields :

W 3 may be e liminated by subtraction :

( I . 5)

( I . 6 )

( I . 7 )

( I. 8 )

Page 8: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-3-

( I . 9)

Assuming w 1 and w 2 are constant, a plot of ~~/(A- 2 - A.~at) vs l/A.2 A.~at

may be used to d e termine the se material paramete rs.

For biaxial tension, the defor mation-stress field is d e fine d as:

A.i.= A.' J3 = AAtlt ( I . 10 )

OJ= Olat )

where A.th is the thickness contraction ratio

<J.lat is the lat e ral stress appli e d to maintain constant width.

Substitution into (I. 4) yie lds:

( I . 11)

0 ( I. 12 )

Again W 3

is e liminated by subtractio n:

(1. 13 )

Again (I. 13) m ay be plotte d to fit the assum ption that W 1

and W 2

are

constants . A ctually, constancy of the l e ft hand members of (I. 9) alone is

insufficient to guarantee that W 1 and W 2 are constants, si n c e they could

vary in such a way to maintai n the ri ght-hand member con sta nt . For this

r eason a doubl e che ck is needed and is provided by the type of biaxial

t e st d e scribed in (I. ll)and(I. 12).

We can anticipate two simple types of r e sults:

a) W 2 = 0, W 1 = constant = 'i (by comparison with linear theor y)

b) W 2 = W 1 = constant

Page 9: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-4-

I n the case a), it follows that:

( I. 14 )

W 3

= W 3

(J 3 ) independent of J 1 ( 1.15)

For this case, (1.4) becomes :

( I. 16 )

And from comparison with linear theory, the character of the leading

terms in the expansion of J 3

W 3

is established to be:

(I. 17 )

It will be important to establish the radius of convergenc e of the

entire section which this power serie s represents analytically. For, if it

turns out that

a) the ultimate dilatation J 3 ~" falls within the circle of convergence,

and

b) C(J~' -1 )2 <<-

3 (K- ~ M ) (J'~ -1) , then a very useful

3 3 constitutive equation develops, namely:

(I. 18 )

Consider now the case in which both W 1 and W 2 are constan t:

(!.19)

(I. 20 )

(I. 21 )

i nd e pendent of J 1 and J 2 {I. 22 )

Page 10: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-5-

For this case, (I. 4) b e comes:

cri-1\i.. = cJ.. J3 = .M L-!A~-+ ~~t 1 + J3~ I. 23 ...

Before contin uing, l e t us che ck the theory to this point.

C. Experimental Adductions to the The ory as Deve loped

1. Materials t e sted or to be t e ste d

a. Polyur e tha ne Foam Rubber (47 9o void)

Com p'Jsition : PPG:MTDA ~TDI = 70:30:107

The polyur e thane elastomer was fill e d with 47"o by volume of water­

soluble sodium-chloride-salt and then caste d . The foam was obtained

by e xtracting the salt with boiling wate r, then dried. The ave rage diameter

of the holes is 40M.

b. SBR-1500( 1 . 75fJo Sulfur) = cured at 307°F for 45 m i n.

c. SBR-1500(39o Sulfur) = cured at 307°F for 45 m i n.

d. Natural Rubber(2fJo Sulfur)= cur ed at 307°F for 20 m i n.

e. Natural Rubber(4'Jo Sulfur)= cured at 307°F for 20 min.

£. Cis - 4 = cured at 307°F for 20 min.

Paracril cured 0 45 min. g. B = at 307 F for

h. Ne oprene - GNA = cur e d at 307°F for 20 min.

i. Butyl-21 7 = cured at 307°F for 45 min.

The mat e rials from (b) to (i) were cur e d fro m the gum stocks at

307°F i n a hot-press-mold for certain cure-time as shown above, then the

m old which contain s a speci men was r emoved from the pr ess and cooled

in the atmosphe r e.

2 . Specimen Geometries

. a. Uniaxial Tensile Test Specimens:

As shown in the ske tch (cf. Figure I. 1) two types of t est

specimens were used. The working length remains the same ( .Q. = 5 11)

for both types of specimen, and uJ= 1 11 for type I, uJ = 1/2 11 for type

II r es p ective ly. The thickne ss t for e ach t e st is listed on Tabl e I . 1 •

I n order to r educe the end e ff e ct both sides of both ends of a

spec i men we r e glued o n thin aluminum sheets. The met al sheets (or blocks)

Page 11: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-6-

which are thinner than the specimen were put in between the metal

sheets to protect the ends from being squeezed too far when gripped.

It is especially good for a foam rubber specimen.

The markings were made at the rniddl e edges of the specimen

by ink.

b . Biaxial Tensile Test Specimens:

" The working length for this case is ~= 1 for Type I and

~ = 1 I 2" for Type II, (and uJ >> .t >> t) as shown in Figure I. 2. The

thickness t and width .u for each test are listed on Table I. 1 .

A thin sheet of specimen is glued both sides of both ends on thin

steel plates to prevent the lateral contraction.

The markings were made at the middle edges of the working

length.

3. Test Procedures

All the test specimens were prestressed at constant temperature

up to 40'}o so'}o elongation few times to eliminate hysteresis. I n

orde r to read X.lat or X.th corre sponding to the equilibrium state in

uniaxial and biaxial tension, the crosshead was stoppe d and the chart

allowed to continue on until the load-time curve leveled off. For every -4

X., the corresponding X.lat • X.th were then measured to 10 in. accuracy.

In uniaxial tension, for extensions up to 1", the measurements of X.lat

were made for every 0. 25" interval of extension, and beyond that every

0. 5" interval. In biaxial tension, X.th were measured for every 0. l ''

intervaL

From the test data the following curves were plotted (cf Figures

3 ..-._... 26 ):

i) cruni v.s. l\. <rbi v.s. ;..,.

ii) o'uni A O'bi "-A2-A2 v.s.

(\'l)\:tiOit ' v.s. /\2/\2 Az.-A-z. I at th th

iii) "-iat v.s. A. ' Atn v.s. A.

iv} J-a(=l\~ ) vs A ' J3(= A\ ) '<S. A I at th

Page 12: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-7-

4. Results and Discussion

A complete set of derived information obtained from Figures

3 26 is shown in Table I. We note the following:

a) W 1 and W 2 are both non-zero, positive constants for

both continuum rubbe rs and foam.

b) The continuum rubber dilates enorrnously in biaxial tension.

c) The foam's behavior i n biaxial is comparable to its behavior

in uniaxial tension.

Since item b) is an u nusual but not unexpected feature of rubber, hitherto

unr e ported i n the open lit e rature, we plan to procure more biaxial data to

double check this result. Following this an effective value of Poisson's ratio

will be determined, using (I. 18 ). A compl e te discussion of this and the

isotropic failure criterion will be presented in the following quarterly.

Page 13: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

.Q.=s"

\at A. lat.

METAL BLOCKS

TYPE I TYPE JL

DIMEf.JSIO~S t ARE LISTi=D 0"-1 TABLE I.1

FIG. I. 1. Ut-JIA).(\AL T~NSILE TeST SPECIMEI-JS

\

Page 14: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

0 0

TYPE 1

IYPt=: 1I

0 0 0

Q. =: 1" , W AND t

l= Y2' ,

-9 -

~SPt=:ClMI:N

THI~ STEEL PLATES

GLUED ON A SPECIMEt--1

ARE LISTED 0~ TABLE I. 1

FIG. I. 2. BIA~IAL IE:t-JSILE TEST SPECIMEN

Page 15: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

TABLE=. I. 1. LIST OF EXPERIMEI-JTAL RESULTS - 10-

Ut-JIAXIAL. TENSION

SB~- lSOO SBR- l SOO PU FOAM PU FOAM MAIERIALS

(1.75% S) (1.75~.5) (47% VOID) (47% VOID)

SAHPL...E 011"\ENSIONS 3 29'"64 >< Eo~64 X o/64 329-'64 "3;764" 5/64 40/B x~g x 3/S 4o/a ><4/e ><- 3/8

R. " w " t l : w : t 64 : 12.8 : I b4 : 6-4 : 1 13-3 : 2 -7 : 1 13."3 : ).3 : 1

AMBIENT TEMPERATUI<:E 75 75 75 75

OF 75 75 75 75 75 7S

• 107.2 loo.5 2-4.0 25.5 (J'uni ) psi.

96.9 30-5 30.5 107.0 115.0

A.. 2.15 2.40 \.90 2.00

2.23 2..60 2.20 2.34 2 . 40

• 0.&78 0 . &65 0.8(,5 o.854

Alat 0.657 0.598 0.682 0.818 0.816

J: (= t\,\~at) 0.':!90 1.020 1.420 1.460

0.992 0.931 1.020 \.565 1.598

• in-lbs 78.5 85.7 14.2 17.6 w, 1n3

82.2 115.6 73.0 28.8 32.8

~' psi. 17 14 3.0 2 . 9

17 12. 16 3 .2 3.0

psi. 23 2.2 \3 . 3 14.8

w2.' 20 2.7 19 15.8 15.2

psi. 80 72 32.6 35.4

_,(,( ) 74 78 70 37.6 36.8

dJYdA-0 0 0-474 0 . 471

0 0 0 0 .462 0 . 452

BI~IAL. TE~S\Ot-J

SAM_ft...~ DIMENSIOt..IS X \JJJW. t &4/<;.4 X 34%4 ~ %4 3~ x340k ~s/e 64 6+ b4

8/e,.. 5118 x 3/s i6JI6 X I02/I6 X 3 /j 6

1. : lJJ : t 12. 8 : 68 : I '-.4 : 68 : I 2.7 : 17 : 1 5.3 ; 34 : 1

AMBIENT TEMPERATURE 75 75 7S 76

op 75 7? 75 78 76

"' 114-4 101.7 22.6 19.7

crbi )

-ps1. \15. 7 too.s 113.2 18.5 24.1

~ 2 . 2.0 1.90 2.10 2.10

2.00 2.00 2.40 2.10 2.10

• o.e.so 0.741 0.848 0.850

.A:th 0.749 0.700 0.652 o.891 0.813

J: ( = " >--th) 1-43 \ .4- J \.78 \.79

1.50 \.40 \.56 1.87 l. 71

w"' in -lbs 86.0 57.2 19.2 16.0

) in~ 72.7 61.7 lo4-.o \7.2 19.1

\6 13 3 1. 5

w, '

psi. 13 16 II 2 2.5

34 35 14 13.5 w2.

' ps.i.

47 25 36 14 13.0

86 92 34 30 ~ ) ps.i.

118 82. 94 32 31

dJ% 0.421 0.457 0.75 0.7o

d/\, 0.525 0 .400 0.459 0.73 o.~s

' ·

Page 16: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-1 1-

U t-JIA X I A L T E N S ION

S BR- 1500 S BR - 1500 MAT!:RIALS ( 3% S) ( 3% S)

SAMP\....E DIMENSIONS 32~64" 6""64" 5/64 3 2<y64 ,.37G4>< s 16+ .Q. x w- " t Q. : ur : t G4 : 12.8 : 1 64 : 6.4 : 1

AMBIENT TEMPERATURE 77 76 OF 77 77

• 12 9 . 0 120.0

<J'..,ni ' psi . II B . o 129. 8

A.~ 2.00 2. 0 0

2.0 0 2 .00

• o . G9 8 0 . 711

A lat 0-73 0 0 .711

• ( 2 0 . 975 l . o 1

J 3 = .A .\1,.t) l .o s 1. o I

• in- lbs 79 . 1 7 7 . 4 WJ ih 3

74. 1 78. 5

w,, psi. 2 6 19

22. 2.4

-psi. 2 1 31 Wz, 24 2.5

-psi. 9 4 100 M ) 98 92.

dJYc 0 0 d .>-.. 0 0

B IA X IAL TE"--SION

SAMPL-E DIMENSIOI-JS 6~4 x3+o/64 x s/64 3%4.)(3~4" 5/64 1 x ur 'X t .2.. : u.r : t 12. 8 : 68 : 1 6 .4 : 68 : 1

AMBIEI-IT TEMPeRATURE 7~ 7 7

OF 7b 77 .. I 03. 2. I 2. 7 . .3

O'bi '

t>si. 9 6.5 11 0.0

". \.7 1.7

1- 5 1.7

• 0 .7 7 6 0. 8 0 4

A th 0 . 91 4 0 - 8 04

J: (= .\ /\th) 1.3 2. \. 370

I· 22. 1. 370

w• in - lbs 44. 2 5 1.5

) in:! 2.8. 2 48. 1

2.1 15

-w; '

psi . 13 15

3 0 5 1

w2. ' psi. 52. 5 9

102 148 ~ ) -psi. 1.30 I 3 2.

dJ% 0 .45 0.5 8

c.\ 0.51 o.se

Page 17: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

O'u

ni

(~si

.) IZ

O

100 80

60

40

20

0 l.

o

FIG

.I.3

. U

"--I

AX

IAL

S

T!<

ES

S

V

S.

LO

"--G

ITU

DIN

AL

E

:X'T

Et-

-.IS

IOt-

..1 R

AT

IO

SB

R-1

50

0 (

1.7

5%

S)

0:

TE

ST

#1

!><

UJ

x t

= 32

%

x "-

y 64

x %

()

: T

ES

T ~ 2 5

4;-4

4

• :

TE

ST

#3

~/

t =

G4

J llf/

t :::

12

.8

8:

TE

ST

#4

}

! X

W'x

t =

32 %

4 X

3%

4>< ~6

4 0

()

X:

IES

Tll

':>

1

/t =

64

1

W/t

=:: 6

-4

11

.

A

I I 1.2

1

-4

1.6

1

-8

2.0

2

.2

2.4

A.

2.f

.

t­ N

2.8

I

Page 18: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FI6

.I.4

. E

VA

LU

AT

I0"-

1

OF

W..~

FR

OH

R

EC

TIF

IED

U

I-JIA

)(IA

L

DA

TA

SB

R-1

50

0( 1

.75

% S

)

l2o~--------------

----

~~--

--~~

===-~~

----

~---

---~

----

~---

---~

----

l ()

Q

.l<

\.tJ

'xt=

32

%

x6

4/

xS

/ :

TE

ST

~t2

6

4

/64

/6

4

Q:

TE

iST

lll r

100

I IIi

),.

-~

si.

)

e:T

ES

T#

3

1/t=

64

,

W'/

t=1

2.8

A:

TE

ST

#4

}

.Q.x

urxt

=: 3

2o

/ 64

x3

'7' 64

x 5

/64

)(:

TIZ

ST

#5

£

./t =

64,

W/t

= 6.

4

CJu

ni A

. J\2

-'>

.2

=

2W

. +

"la

t 1

2W-z

.

"-2

"-'la

t

80 --

----r-

• 0

X

0 U

0

A

0 ...

0 0

~ •

X

I X

~

0

60

..«

40

o ,-

o I

x o

o

=76

psi.

30

S

LO

PE

=2

W.

-2

-4

6 p

si.

zw;=

30

psi

. zoU--l--+---+--+---+--+---i--~-~--

oU

L _

_ L

_ __

L_~L_~~~--~~~--~~~--~

o.o

0.2

0

.4

0.6

Y)

\2~t

at

0.8

1

-0

......

w

I

Page 19: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

l.o (

0.9

1\.la

t

0.8

0.7

0.6

0.5

1.0

FIE

.. I

. 5.

UI-

.IIA

'>c:

'IAL LATE~AL CO~RACTION

RA

TIO

V

. S.

LO

NG

ITU

DII

-JA

L

E::x

'TE

NS

IOI-

J

RA

TIO

SB

R-

15

00

( 1

.75

% S

)

0:

TE

ST

Ill

}

2x 1.

1J x

t::

32

%4

x f,~4 X

S-i

4

(t: T

E!'

iiT

#2

• :

Tli

ST

II3

Q/

t::

64

' W

/t

= 1

2.8

t t-

32

% 3~

sh

til.:

TE

ST

11

4}

X

W'X

-

64

"

64

X

64

X:

TE

ST

~S

£/t

= 64

, W

/t

= 6.

4

• •

<t

<t

A I

()

--

()

A

()

.&!.

I <t

()

~~

J ;

" ()

A

I !

'

~

-____

,

----

--

1.2

1.

4 1

.6

1.8

7\.

<t

--

2.0

2

.2

2.4

2

.6

I

....... ..,.

2.8

I

Page 20: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

1.2

J3

\.0

0.8

0.6

0.4

l.o

Flq

.l.

G.

Ut...JIA~IAL

DIL

AT

AT

IOt-

J

V.S

. L

OI'

JG

ITU

Dit

-JA

L-E~TEt-JTIOt-J

RA

TIO

SB

R-1

50

0 (

1.7

5%

S)

0:

TI!

ST

lli}

~x

LlT x

t =

32%

4x 6

4;6

4 x

5/6

4

():

TE

5T

II2

l!

jt=

64

' •

: T

li5

Tll

3.

UT

ft =

12.8

A:

Tli

5T

II"'

-}

ix u

rxt

= 3

2<y6

4x 3

3--'&

4-x

5/6

4

X: ~STIIS

Q./

t =

64

' W

ft =

6.4

I I

• 11

.&

Q

~

l A

~

11

A

I A

11

:. 11

:. 11

:. 0

* X

I

X

. '-' ~

.....

':"

i u

~ ·~,~

l ()

() ()

c. ()

()

I a

I ()

()

()

I I

I I

I I I

I I

dJ?.

d>

-.. =0

;

1.2

1

.4

1.6

1

.8

2.0

2

. 2.

2.4

A

.

I I I l I I :2

.6

--- 2.8

1-'

(J1

I

Page 21: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

(jb

i

(psi.

)

FIG

. I.

7.

BIA

'XIA

L

ST

RE

SS

V

. S

. L

Ot-

J<

::.I

TU

DIN

AL

E

XT

Et-

-.IS

ION

R

AT

IO

58

R-1

50

0 (

1.7

5%

S)

120 I 0.

:T

ES

T!I

'l ~ !

x w

xt

= G~

x34~

x

s/f.4

-I

I I

I I

I I

..) :

TG

ST

IJ2

6

4

64

: TBST~3

.D_:

W;

t =

12

.8 :

b

8

: 1

• ---

8 : T

SiS

T ~4

t !1..

X t

UX

t =

3%

4 X

34%

4 X

5 /6

4

X:

Tli.

iST

~5 )

.Q.

: U

J : t

=

6.4

: ~8

: 1

100 f--------.--

• • I

X

• 80~-------+---------r-----

60 1

----

--+

--

40

---

20j--j~--i

----

----

+--------~-

-----~------_j_

0

1.0

1.2

1.4

1.

6 1

.8

2.0

2

.2.

2.4

2

.6

A.

......

0'

I

Page 22: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIG

. I.

8.

E:V

AL

UA

TI0

"-1

O

F w

_ •

W2

FI<

OM

i<

E:C

TIF

IE:D

B

IAX

IAL

D

AT

A

SB

R-1

50

0

( 1

.75

% S

)

120~--------------------~~~--r---------il--------~----------~--------r----------,---------.--------~

() "

Tr:

ST

I\:2

. v..

xw

-xt =

/6

4"'

764x

/'4

I

I I

0 : T

esT

1H

~

n 6

4

3~

s I

I I

I I

•; T~

sn~3

i:

w: t

= 1

2.s

:

66

:

1

• •

b:.:

TeS

T#

4l

Qx

wx

t=:

64y6

4x34

,%4x

5

/64

J

)(:

TliS

T#

S ~

..2

_: 1

.V :t

::::

6-4

: 6

8

: 1

(00

I

··-----------,f-----~

I I

'~ ·-X

th

lSi.

) 80

1

I

o'b

;}\

2.W

-z.

?f-

g =

2~-

r N

'K

t~

th

~

/;:,

()

. ,. . .

~"

• •

()

~

• 0

M

~ s~o:

::w,

x 0

! I

1:"

-9Z

psi

.

40c;=

r 2

0 f-~-----f------+--------~----------+----------4--------~---------+------~------~------~

2W

1=

30

l>si.

0 o

.o

0.2

0

-4

0.6

0

.8

J.o

1/~x

-th

.....

-..)

I

Page 23: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

1.0

(')_

_

0.9

1\t

h 0.

8 0.7

0.6

o.s

1.0

Flq

. I.

9.

BIA

XIA

L

TH

ICK

"--E

55

C

O"-

-TI2

AC

TIO

I\J ~ATIO

V.S

. L

O"-

JGIT

UD

II-J

AL

E

XT

EI-

JS

I0"-

1

i<A

TIO

SB

R-

15

00

(

1.7

5%

S)

():

1'E

ST

42

0

: 'T

ES

T#

!} ~"

ur x

t =

6~4" 34~

64 :><

s/

64

e: T

ES

Tll3

~:

W':

t =

1

2.8

: 6

8

: 1

/i,.

: TE

ST•4}

.Q.x

W'x

t = 3~

4x 3

4%

4 x

s;6

4

)(:

T6

5T

lf5

Q

: w

: t ::

6-4

:

68

:

1 -1

--

• I

• • I

I

6 •

--

I ~

()

• •

()

~ 7'

• I

• I

0 I

• 8

I

' •

0 I

()

~ ~ I ()

X r--

--

-'-

--

1.2

lA

I.G

1.

8 2

.0

2.2

. 2

.4

2.6

A.

......

()

I

Page 24: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

0:

TE

iST

Ill

}

():

TE

ST

i2

.

• :

T&

ST

II:3

1.6

~: T

6ST

114}

X:

TE

ST

.S

I.S

J3

1.4

1.3

1.2

1.1

()

()

t.o 1.

0

FIG

. I.

10.

BIA

XIA

L

DIL

AT

AT

IOI-

.!

v.S

. L

ON

61

TU

DII

--JA

L ~XT!:

t-JS

IOI-

-J

RA

TIO

SB

R-1

50

0 (1

.75

% S

)

~>c w

-xt =

6"'6

4 x

34~

64 x

5

/64

Q:

w-:t

= 1

2.8

: 6

B:

1 v

!,>

c W

xt =

37'64

-x 34~

64-

x 5j

G4

~--d

J, ~ 0

-46

i:

uJ:

t =

6.4

: 6

B

: 1

dA

Vx

X I

/.1

. •

()

~

I I •

()

• ~

I ()

0

I

() v

A

~/

l a. I

()

() 1

• --

-t--

---

--

I 0

j

1.2.

1-

4 1

.6

1.8

2

.0

2.2

2

.4

>-..

I I

2.6

I-'

-..o

I

Page 25: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

O:.ni

(psi

.)

FIE

i.l.

11

. U

t.JI

AX

"IA

L

ST

RE

SS

V

.S.

LO

NG

ITU

DII

'JA

L

E::

"XT

EN

SIO

N

RA

TIO

( P

U-

FO

AH

)

35

O

:T

eS

T#

lJ

_Q_x

wxt

=4<

y 8x

8/e

x 3

/e

():T

ES

T#

2

Q/t=

l3

.3,

W/t

=2

.7

A:

TE

ST

#3

~

X:

TE

ST

•4

30

25

20

15

10

0

5 ~·

o_

1

.0

.l X

(J

J)<t

= 43' 8

X 4

f8 X

~8

~/t

=

13

-3)

w;t

= 1.

3

()

'f I Zl. I

()

0

I 0 \.2

1.4

()

()

)(

()

()

() ~-

-

~

~ ()

X

A

0 ()

0

I A

A

0 1.6

1.8

7\

. 2

.0

:2.2

:2

.4

I I I I 2

.10

2

.8

I {'V

0 I

Page 26: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

60

so

~ni).,

_

-A~t

>

si.)

40

30

20

10

5

Fl6

.1.1

2.

EV

AL

UA

TIO

N

OF

W

,. W

2 F

I20

M ~ECTIFIED

U~IAXIAL

DA

TA

PU

-F

OA

H

0:

TE

ST

. l t

1>< U

Txt =

4~B X ~9X 3

/8

():

IES

T#

Z J

1

/t =

13

.3

) W

"ft =

2

.7

A: l

ES

T #

"3 (

ix

urx

t = 40

/a X

"Ya X

7

'e

x:

TE

ST

#4

5

ljt

-1

3.3

>

l.l!

jt-

1.3

CJ,

n; ">

\ 2W

;z.

----

:--

= 2

W. +

_ _

__;::.

_ N

-1?

I

/\1

A_2

X

lat

t•t

G v~~

~

()~

0--+-------~

~A

a~

o

~1

~

vv--

2w

; =

5 p

si.

psi.

I N ~

I

0 o.

o ~

--

-~...J.

..__ _

_ _.._

__

._

0.2

0

.4

Yl'? ~

I at

0.6

0

.8

1.0

Page 27: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIG

.l.1

3.

Ut-

JIA

XIA

L

LA

TE

RA

L

CO

NT

!<A

CT

IO"-

l R

AT

IO

V.S

. L

ON

GIT

UD

it-J

AL

E

X'T

EN

SIO

N

RA

TIO

PU

-F

OA

M

O:TEST~it

Qxu

.rxt

=4

o/a

xs; 8

x 3

/s

:TE

ST

#2

f J

/t=

=1

3.3

)

l.Uft

=2

.7

6: T

ES

T#

3}

j

X u.

r.xt=

40 /s x

4/8

X

3 /8

~:TEST #

4

.2/t

= 13

.3

) tt

yt =

\.3

I.O~~,.~

~~~;;~

;~~i_~

---+

----

t----t

~---;--

\at 0.

9 1

----

---l-------+

--

+-

I o.

s r

I I -

I

Q7

I

Q6

1

I

t.o

1.2

1.4

1.

6 1

.8

2.0

2

.2

2.4

i'\

Z.6

I ['.)

['

.)

I

Page 28: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIE

d.l

4.

UN

IA)(

'IA

L

DIL

AT

AT

ION

V

.S.

LO

NG

ITU

DIN

AL

6

XT

EN

TIO

N

RA

TIO

PU

-F

OA

M

1.3 1

---

----1

------

-----'-

---

1.2.

~-------r-----

1.1

'-'/

·--·-

t -

--~-

-r-

I I

I

1-0

-I

1.0

1.2

1-

4

1.6

1.8

2.0

2

.2

2-4

7\

.

I I r--.

J w

I

2.6

Page 29: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

(J'b

i

(psi.

) 2B

24

20

\6

12

8 4 0

FIG

. I. I

S.

BIA

'XIA

L

ST

RE

SS

V

S.

LO

I-IG

ITU

DIN

AL

E

)(T

EN

SIO

N

RA

TIO

PU

-F

OA

M

0: Te

sT~1

} ~xurxt=

%xS

,Y8

x?'s

():

TI&

ST

•2

.Q_;

uJ:

t =

: 2

.7:

17

: 1

-1

--

---·-

~----

-16

10

2 ,.

.3

0 A

: T

ES

T0

3}

ix

ur,

t= 7

, 0•

/.,;

.{

0 0

X:

TE

ST

•+

f: u

.r·. t=

5.3

:34

: 1

~

A

tj

~L--l)

!)

I ()

~

()

%2

8

.

--

/f

v A

-

I 1.0

1.2

1

.4

1.6

1

.8

1\.

0 A. ' ()

2.0

0 A I ()

I I I '

2.2

I N

,p.

I

Page 30: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIG

. 1.1

6.

EV

AL

UA

TIO

N

OF

Y

Vi

$ "W

z.

FI<

Otv

l R

EC

TIF

IED

B

IAX

IAL

D

AT

A

PU

-F

OA

M

~

I A

so

Q: T

E!i

.T * 1

l .2_

x.

tU ~

t =:.

Bj8

~ sy

8. >

< 3/

B

().TEST~2~

i_.l

.IJ".t

-2

.7.

17

. 1

~J,

--"-

l\2

-A

th

16

/ 10

2;

3;

.e.)( u

rxt

=

/16

x /l

6x

/16

.Q. :

w-:

"t =

5.3

:3

4

: 1

-2

W.

+ 2~

I --

NA

2 th

X

40

Jbi"

;-

_g

-------+

---

--+

-----+

-----

_.;_

_ __

_ --

1

th

:>si

.)

301

---

20

to o

.o

I

SL

OP

E=

~'W

i I

= 2

8 p

st.\

.

----

0.2

0

.4

0 l

I/A_2

A\h

0

.6

0

I

--A

---1

I I 0.8

()

l

32

.

.M

=3

2p

si.

\.0

I N

Ul

I

Page 31: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

I.Z

I. I 1.0

~

)\th

0.9

0.8

0.7

I I

0.6

I I I 0

.5 1

.0

}

FIG

. I.

17.

B

IAX

IAL

T

HIC

KI-

JE

SS

CONTRACTIO~

QA

TIO

V

.S.

LO

I-.J

GIT

UD

if.J

AL

E

XT

Et-

..!5

10

"-l

12

AT

10

PU

-F

OA

H

I Q

: TE&T~l} lx.r~t=% ~

~~8

X%

I () :

T

EiS

T #

-2

~ .

uJ

. t-

2.7

.

. 1

I i

t-

I~

102

7! A

: T

ES

T • 'l

X "'

X

-16

X

!16

X

16

"'4

i:

w :

t =

5

.3 ;

3

4-

: 1

X:

TE

'5T

X

()

I -9

()

X

I X

.~ ()

()

X

~

()

()

X

~

;...

I

I I

X

I ~

0 ..(

)_

X

I I

X

>< I ><

I

I. 2

. 1

-4

1.6

1

.8

2.0

>--

-2

.2

I N

0'

I

Page 32: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

0

~ IY

2 0 tn ifi ~ l1l

J <1 2 a J 1-& 2 0 .J

tJi > 2 0

~ ~ ...J 0 J <1

~ iii

ro H 19 u:

r-e \

~ ....... (Y)

X .. co

.::::...-.. t--lfl X

.. ~ r:-

C\1 d)

II II f-l f-.1 X .. 3 ~ X ..

C>l C>{

,......J--o.

.... N ~ # f-- f--1/l 1ft lll w t- r-.. .. 0 e

-27-

(\j

l\' I

I I q e ~-x --- -- ---c---- (\1

\ ; I

!-\++ e - ():J - X

e ~-X < (f) !'-d II

e - - X h'J-< -o\1

e·x

-eJ X

\{)

~ rn ........ X ..

(\1~ ~ e· X 0 ('I") - .. X

~ \{) ('()

\{)"" u) -II II

t-> f-l X .. 3 3 X ..

=< =< ~

ell <fl "" # ~

@ f--til w

f-- r-.. .. ~ X 0

0

Page 33: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIG

. I.

l9.

U~IA'XIAL

ST

RE

SS

V

.S.

LO

I-JG

ITU

Dit

-JA

L E~TE~SIOt-J

RA

TIO

[S

BR

-15

00

(3

% S

))

O:T

ES

T#

l} Qxurxt=32 ~

x3

%

:xS

/e

64

6

4

64

()

: T

ES

T #

2

Q :

W"

: t

:::: 6

4

: G

-4

: 1

140

8,:

TE

ST

#3~

~ ~

I.J.

Jxt =

3Z%

4x

6y 6

4x %

4

X: TE

ST~

4 Q

· W

: t-

= 6

4

: 12

.8

: 1

120

100

C)u

ni

=>si.

) 80

60

40

20

----

---

--

0 1.0

I.

I ---

·--

--

1.2.

---

--

---·

1.3

-

-----

I I I I --

I .

----

I I I I --

---

--·-

-----+

---

I I

-.

- --

--

-.

---·

---

--

--

~

--

--.

-1.

4 1.

5 A

I.G

1.

7 1

.8

1.9

l I I I I I I i I I I I I I I

2.0

I N

('·'

I

Page 34: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

120

100

<Yun

iA

\2-A

~a· t

FIG

. 1.2

0.

f:V

AL

UA

TIO

ioJ

OF

"W

j 4

IN2

F

RO

M

RE

cri

FIE

D

Ut-

JIA

XIA

L D

AT

A

SB

R-1

50

0 (

3%

S)

0; TIO

ST~1

1.Q.

x l.

Uxt=

32~

64-x

3~4

x 5/

64

()

:T

ES

T #

2

1:

W"

: t

= 6

4

: 6

.4

: 1

8: TES

T~ 3

} 1 ~

W" ~ t:

32 <y~

x ~4-~

%4

X:

T6

ST

#4

.Q.

• W

" • t-

64

.

12. S

.

1

ifuni ,

\ 2W

z.

0

0 ~

~

i{-)

\2.

=

2w; +

!<

' }\2

. la

t la

t

~

. X

_()

psi.

) 80

I

SL

OP

E.:

:::2

Wz

f>O

=Sops;~

v--

~

--------

-40

zw;=

46

psi

20

I

0 o

.o

0.2

.

~ 0

X

X

0

~

0.4-

1 /K

A\a

t 0

.6

0 ~

X

-----

0.8

..M

=96p

r.i.

\.0

I N

...0 I

Page 35: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FlE

d.

21.

Ut-

JIA

'XIA

L L

AT

ER

AL

CO~TRACTION

RA

TIO

v.s

. L

ON

GIT

UD

INA

L E

")(T

EN

S\O

N

RA

TIO

SB

R-1

50

0 (

3

% S

)

... I

I I

0.9

1\ I a

t

o.a-----

0.7----

0.6------

0.5

I.J

t.o

---i---

--

-~

I

-I

1.2

1.

3

r-~ ---

1.4

1.5

J\

. 1.

6

j

Q: TE5T~1} h

UT.

><t =

32%

4x

3?f,

4x

%_4

():

TE

ST

~2.

i : U

T: t

=

64

:

6·4

:

1

8: TE

'5T~

3 (

.. b

urx t=

32~x6y 64

>< ~64

x

:TesT

*4

J

i: u

r:t=

64

:

12

.8:

1 '

---

--.,

I

I

--~-

I --

-I

J 1-

7 1

.8

1.9

2.0

I \J.J

0 I

Page 36: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

J3

Fl6

. I.

22

. U

lo.J

IAX

IAL

DIL

AT

AT

tOt-

J

V.S

. L

ON

GIT

UD

II-.

..JA

L

E::

KT

EN

TI0

"-1

Q

AT

IO

SB

R-\

SO

O (

3%

S)

1.6

r------

0 : T

ES

T ~ 1

l .Q.

X W

' X t

= 32

%4

>< 3

364

X

S /6

4

() :

T6

ST

# 2

)

.Q. :

W"

: t

= 6

4

: 6

-4

: 1

A:

TE

ST

#3

(

-.Q_

'X u

.rx

t =

3z_

% 4:x6

)64~

~64

X

: T

ES

T#

4 5

1 :

!if

: t =

64

;

12

.8

. 1

1.4

··~ --

---

---

-·-

-----

1.2

r-----

' -

L I I

t I

I 0

'09

Q

~ o

~· ~ T

' .

e.

SJ

I I

y---

~2--

--I

~ 2

I '

A

0 .b

X

X

0.8

+-----

I I

0.6

-~----

I

I I I

I I 'I

I

I

I

·-.---~-----r---

I I j--·-----

--+

----

-

0-4L

__

__j_ _

__

_ ~--

'·~

l.o

1.

1 1

.2

~-J

I

--

.

1.3

1-

4 1.

5 1

.9

2.0

1.

8 1

.7

\.G

)\

I w

......

I

Page 37: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

o'bi

FIG

. I.

23

. B

IA'X

IAL

S

TR

!=S

S

v.s.

L

Ot-

JG

ITU

DII

.JA

L E~

'TE)

..JS

\Ot-

J l<

AT

IO

( S

BR

-IS

OO

( 3

i{. $

)}

14

0,_

--------------------------------.-

-----

-o

: TEST~ it

Q '><

W'x

t =~

4x~

4>< ~6

4-

\20

\00

() :

TE

ST

# 2

J

1 :

UT

: t

= 12

.8

: 6

8

: 1

8: TEST~ 3

} l

X W

'xt =

3%

4 ,.

34%4'~64-

X: TEST~ 4

!

: W':

t

=

6.4

:

68

:

1

.8

()

I 0

A

(psi.

) ()

A

I 0

80 I

I

60

' I

I I I 0

I

I A ~ ()

I 0

I 0

4or----------+----~-----r----------+---------~-----------r----------,_--------~r----------r--------~

'0

20~-----.~--~----------~---------4-----------4-----------+-----------+-----------+----------~--------~

od

'

1.0

1.1

1.2.

1

.3

1-4

l.5

A

I.G

1.

7 1

.8

1.9

I VJ

N

I

Page 38: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

FIG

.l.2

4.

EV

AL

UA

TIO

I-J

OF

W

. $

Wz.

F

RO

M

RE

CT

IFIE

D

BIA

XIA

L D

AT

A

SB

R-1

50

0 (

3%

S)

24

0

0 6

4

34

0

5 :

TE

ST

t 1}

_Q

x U

Jxt =

--6

4><

/6

4 X

~4

200

():TEST~2

t:u

.r:1

:=1

2.8

: 6

8:1

A:

TE

ST

# 3

t .t

)( u.r X

t =

32/6

4-~

4<f64-

X 1'

-64

X:

TE

ST

114

~ Q.

: u.

r: t

= b1

t-:

6 8

: 1

()b

i A..

2W

z.

1\2.

-)\2

. =

2W

. +

)'(" )

'("

th

th

IGor---------,----------,--------~----------+----------

bi)

\

I

I I

I I

I I --i

I A

I

I I

I I

120~--t---t-t-+~~l_

I A

A

2 ).

2

-"'t

h

si.

)

()

~

)( 0

0 M

A

~

SLOP~Z

W 0

0 I=

lO

G r•

•·,

o--

-o

'

40

t--

__

_ __

_J_

---I-

T

.M

=130

psi I VJ

VJ I

~2~=

24ps

i.l

1 ~

-__j_____-~--

'-o.

o 0

.2

0.4

lf

gA~h

0

.6

o.S

I

-'-

­.o

Page 39: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

I. I

0.7

0.6

FIG

. I.

25

B

IAX

IAL

T

HIC

IOJE

GS

CO~~ACTIOt.J

RA

TIO

V

.S. LQ~GITUPitJAL

E)(

Tf:

t-.J

SIO

tJ

RA

TIO

SB

R-1

50

0 (

3%

9)

O:T

ES

T#

ll h

urx

t=

6Y 6

4x3

4%

4x

5; 6

4

();I

ES

T#

ZJ

.Q.:

ur:

t=I2

.B: 6

B:

1 ---

-A

: \e

.ST

:lt

3 ~

.Q. x

urx

t =

32

f64

x ~

4x o/

64-

x: lE

iST

~4~

.Q.:

LO":

t=

6.4

:

68

:

1

I I

__

_

1

0.5

4

I.S

1.

7 J.o

1.

2.

1.3

1.

1 (.

(;

1.8

1.9

"

I w ~

I

Page 40: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

J3

1.61 Q

' TES

T#!l

() ·

TE

ST

~Z.

~--

FIG

. I. 2

6.

BIA

'I<:I

AL

-D

ILA

TA

TIO

t-..

.1

V.S

. L

ON

G IT

UD

it-.

..IA

L

E')

<:T

EN

SIO

N

RA

TIO

SB

R-1

50

0 (

3%

~)

I Q

)( l.(

J' X

t : 6~ 64 x

34

cy 6

4 X

s 1

64

.Q.:

uJ: t=

12

.8

; 6

.8

: 1

fl:,

.: T

EsT

#3

(

.P_x

urx

t =

32j 6

4x

34

%4

x s;

64

X: T

ES

T"4

14

)

.Q_:

W:

t =

6.4

:

68

:

1 t.s

1.4

~-

--

. -

1-3----

r -

l I I

\.2

----------t-~~=--+--+-----~~~

1.1

-l- i I

I I

I I

I I I I

l.o

if-

I

1.0

I. I

1.2

1-

3 1

.4

1-5

A

1.6

1.

7 1

.8

J,9

I w

U1 I

Page 41: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-36-

IV. STRESS ANALYSIS

A. I ntroduction

As a result of elaborate studies of the restrictions imposed

upon interior ballistic design by exterior ballistic considerations, most

large case-bonded solid propellant rocket motors possess a srnall

aspect ratio, of the order of three to one. This means that the assumptions

made in a plane strain analysis generate a solution which is valid only

over a very small fraction of the length of the grain. Thus the problem

of obtaining useful solutions near the ends of a grain becomes important.

In effect this is being done experimentally by photoelastic technique and

analytically by the r e laxation technique. Unfortunately in both these

cases, no estimate of the error i nvolved at the corner is generated.

The corner problem entails its own unique analytic features which are

incompatible with the behavior of real materials and i n compatible with

the assumptions of relaxation.

Thus two problems demand attention. In ord e r for the enginee r

to predict yield or some form of failure due to high stresses at a corner

he must first have the elastic stress field for a perfe ctly elastic material.

But in order to obtain this rapidly with the aid of a relaxation t e chnique,

he must first solve the particular analytic problem close to the corne r .

The complexity of this corner problem depends intimately on the geometry

of the body. We propose to study this problem in four steps . /t-i'-

First we shall consider the plane strain anqlplane stress

deformation of an e lastic sector-space, subjected to the condition of

clamped-free boundaries . Se~ondly, in a subsequent report we shall ,.1 ....

consider the plane strain an9 plane stress deformation of an elastic slab.

Subsequent treatments will deal with the e lastic column subjected to

radial tension or compression, free axial face; and lastly subjecte d to

axial tension or compression, free radial face. The last problem refers

to the so called parallel-plate test used for det e rmination of the dilatatio nal

component of the strain energy.

Page 42: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-37-

B. Elastic Fie ld in a Clampe d-Fre e S e ctor-Space

1. G e ometry

For the purpos e of this discussion, the e lastic sector-spac e

will be bounde d by two edges - one free locate d at e = 0 • and one

clamped located at e = ()( I n the case cJ.. > rr , the sector d e ficie n c y

of the total space will be termed a crack of flank angle ( 2rr - o/.. ). And

as ol.... - 2rr , the crack degenerate s to a radial line. In the generalized.

sense, the term space encompasses the two limiti ng structur e s of infinite

a nd zero thicknesses. I n the form e r case, the bounderies are planes;

in the latte r , edges. The language of the associated analysis will be

couched in terms of the paramete r C) which, for plane strain, is

identical with -tJ , and which, for plane stress, is replaced by V / ( 1 + v ).

It is convenient to refe r the corner of the spac e to the origin of a system

of polar coordinates; the two edges are then geometrized as rays .

2. The Biharmonic Function

Under the influence of arbitarily imposed surface tractions a nd

displacements (no body forc e s) equilibrium in the plane e lastic fi eld is

represented by the solution of the followi ng e quation s :

Cl?::. re --~ +.

d l

I d 'L:ye -+--y:- "de = o

-+ _ 1_ aO'e r "de-

C1 O"e ----= 0

Lrz =- Lez = 0

-0

(IV. 1)

(IV. 2)

(IV. 3)

(IV. 4)

Application of the method of characte ristics to (IV. 1 ), (IV. 2) i n troduces

the stress fun c tion p from .which the stresses are g enerat ed by:

Page 43: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-3 8 -

() ~ ... + q, E:'J9 -r r !2 (IV. 5)

0::= e t,.. ... (IV. 6)

LYe= ~- ~re r-2. -y-

(IV. 7)

The subscripts affixed to <f' denot e the appropriate partial differ entiation.

From Hooke' s Law, we have:

2)-<Er= (1-0'J CJ-r- (}()s (IV. 8 )

(IV. 9)

2;..< E~ = ~ - cr ( CJy + CJe-) - 0 i n plane strai n (IV. lOa)

2)-A. E-z = - o- l ().,_ -T (j~) in plane stress (IV. lOb)

(IV. 11)

E:.,...~ = E e~ = o (IV. 12)

The strains are generated from three displacement components

u. for radial

for tangential

for axial, as follows:

Page 44: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-39-

(IV. 13)

U I "d ..r--Ee=---:y:-+ Y'~

(IV. 14)

I ( I "dU "d\r _ ~ \ Ere= 2 y de -;- -en- I )

(IV.l5)

"dVJ E-e= "dz =o, l.V=O ,for plane strain (IV. l6a)

- harmonic function • for plane str e ss (IV. l6b)

Since Er, E9

, and Ere are generated from only two of the three

displacement components, their compatibility with simply-connected

Eucledean space must be guaranteed. Elimination of U a nd IJ from (IV. 13),

(IV. 14), (IV. 15) yields

(IV.l7)

Returning to (IV. 5), (IV. 6), (IV. 7), via (IV. 8 ), (IV. 9), we find that the

compatibility of the strain components specifies the characte r of <f' :

or (IV. l 3b)

Equation (IV. 18b) is termed polar biharrr1onic because it expresses

the ite rate d application of the polar Laplacian o n the stress function .

Because of th e de gene racy of the roots of the characteristic e quation,

representing (IV. l 8b). care must be exercised in expressing the complete

Page 45: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-40-

set of solutions which span the biharmonic fie ld. Noti ng first that

(IV. l8a) is differentially homogeneous i n r 4 , we set r = e s, and write:

,+, -4.-t. --t-4..+.. -t-2~ -4..+-. + 4,f, +,f., -0 'Tssss '::tsss 'I'ss 'I's:seQ 't'see 'I'ee 1e~ee-

Separation of variables is accomplished by writing <f> = S(s)

so that:

(IV.l9)

Equation (IV. 20) is the characteristic representation of (IV. 1 8a) a nd is

meaningful only for the substitutions:

® o, k

'2.

+ ) 2. -\ e~n~

Let us consid e r each of five substitutions in turn:

a) II

ij ::: 0, @ = A +B e

s /11/ - 4- sIll + 4- s " = 0

+ 3 2. ,._ ( \'2.. D- 4 D + 4- D ==. D D-2) =o

2S 2.5 C-+- D s + t= -e. --t- Fse

® = A -s inh ke --t- B Cosh 'r<.e

(IV. 21)

(IV. 22)

(IV. 23)

(IV. 24)

(IV. 25)

Page 46: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-41-

'= (D-+i.k)( D- ik') ( D-2+ tK-)(D-2-tk)= o (IV. 26)

(IV. 27)

(IV. 29)

D 4 - 403 -t- 2 (2.- k2 )"D 2 +4- k,_D-+ k 4 - 4- k:z. (IV. 30)

-= (D+k)(D-k)(D-Z+k)(D-2-k) = o

(IV. 31)

)( \<:~r - k~Y" 2 k~r 2 - k..k r cp =(A-sin ke -t BCoS K6 Ce +D-e. -+ E=. T" -e. -t r y -€... ) (IV. 32a)

1<. -k 2+k '2.-k) <f' = (A sin \<6 -+ B Co-s \<e) ( C y + D "'r -+ E T -+ F Y (IV. 32b)

d) II ( 2. - \) 0 =- ® \ et;ane ., ® = e sine

s""- 4 s ''' + s" ( 2 + 4 '\- 4 s' (-2 -- 1) + s (----=!__ -3\ = o

El "taneJ et;ane et;ane ') (IV. 33)

Page 47: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-42-

s'"'- 4 s"'+ 2 S" + 4 S '- 3 :3 :::: ( D- \ 'l4

( D 4 \) ( D- 3) = 0 (IV. 34a)

4 s"- s s' + 4 s - ( D- \)2

= o (IV. 34b)

s s s- A€.-+- BS€.. (IV. 35)

q_, = e -sin t7 (A r + BY k r) (IV. 36)

e} 11 11'11 ( 2 i:ane\ ®=-\1}1 I+ e), @ = 6 CoS~

(IV. 37)

~11 ''- 4 s'"-+2S"--+4-S 1 - 3 ~ =. (D-1)2

(D+t")(D- ~) = 0 (IV.38a)

-4S"-+ e $'- 4- S - - ( D- \)2 - o (IV. 38b)

S - A e. s + B s-e.. s (IV. 39)

(IV. 40)

Equations (IV. 21)- (IV. 40) repr esent the complete set of known

analytic solutions to the polar biharmonic. I n addition to the s e, there are

presumably a large class of non-analytic functions which represent the

application of a biharmonic fi e ld to a si ngular geometry. A complete analysis

of these singular fields has not been carried out.

Page 48: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-43-

Roughly speaking, solutions of the form (IV. 28) are used when

it is desired to expand arbitrary boundary conditions along the boundary

rays . In doing this, care must be exercised in approaching the limit

r = 0 ; which rneans in the problem at hand that a small sector of

radius E must be cut out of the corne r and then be allowed to shrink to

zero. By the same token, solutions of the form (IV. 32b) are used when

expanding boundary conditions along tangential trajectories, such as

when the sector- space is replaced by a finit e sector of radius R. In

this case care must be exercised in approaching the limits e:: 0 and

e = o1. For the most gene ral type of problem - a segment of sector-

space bounded by rays 9 = 0 and 8 = ot.. and by arcs r = E and r = R, it

is nece ssary to compound linearly solution s of the form (IV. 28) and

(IV. 32b) i n order to expand arbitrary boundary conditions on all four edges.

This becomes quite complicated and tedious . Very often the Fourier

sums conve r ge extremely slowly. A great d eal of funda1nental analysis

remains to be done in this problem area.

3. The eigenvalue approach

It is co nveni ent to regroup the t e rms of (IV. 32b ) i n orde r to

factor out a single term i n r, as follows:

4 =!»+'[A-sin (n+l) 6 + B Cos (YI-+1) e-+ C <s;n (n-C) 6-+ ""[)COS (."n-l)e 1 (IV. 4la)

Since it will b e shown late r on that \n\< i , for the problem at hand, we

shall rewrite (IV. 4la) as:

(IV.4lb)

Note that n may be positive or negative . I n the latter case, t he pre­

exponential factor becomes r l- n while the post-trigonometric factor

retains its character. The importance of t his statement will become

apparent.

Page 49: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-44-

Since i n the problem of sector- space bounded by two rays, only

four homogeneous boundary conditions are involved. only four constants

A, Br C,. D, are needed, and it will be assumed that the space can be

spanned by a single eigenvalue. The legitimacy of this assumption remains

to be established. I n a finite bound ed spac e, at least six or eight boundary

conditions are involve d, whether homogeneous or not, and in this case n

is construed to represent a set of eigenvalues. Furthermore, it is usually

necessary to determine two sets of e igenvalues for both radial and tangential

expansions. Thus we can attempt to get by with a single eigenvalue only

because a sector-space is involved.

4. Eigenvalue solution for a clamped-free quarter space

Sketch 1 reveals the analytic nature of the boundary conditions

at the free and clamped edges of a quarter-space .

e= lT 2

U=O

'j

t.T=-~

O'e = ?:'re = 0 ' e=o

-00

Sketch 1 Clamped-Fr~e Quarter Space

Formally speaking, ate= 0, the free condition d err1ands that au.x

(J'J = ?:..,'/ = 0, and ate = ~ ' the clamped condition demands that u)' = d 'j = o. The listed boundary condition follow from:

a:= ()'r sir{e + ere c.os"'e + Lra Sin 29 - ()e I ..; e=o

<Yr- <Je 2. 'Cre\

e== o

(IV. 42)

(IV.43~

Page 50: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

Uj = U Sin 9 + V" Cos E1 = ul , \ 9=2.

<:lUx- (sine_:.,..+ c.os~ ~\(u.cos& -v-SinG\ =- d'V \ ~- "'' -y- "d9) J ~r e=~

2.

-45 -

(IV. 4 4 )

(IV. 45)

5. The str e ss e s and displacements i n clampe d-fr e e quarte r space,

We r e writ e (IV. 4lb) as :

1> = -r'-+'n F(e) , whe r e

F (9) = A c;>in ( 1-+ Yl ') & -t- B cos ( 1+ n) 9 -+ C. Sin ( 1-"Yl') 9-+ P CoS (l-"Yl) 9

From (IV. 5) (IV. 6 ) and (IV. 7) evolve the str e sse s:

CJr -

o'e =

(I+Y1}F-.F 11

l \ -YI

(1-t-YI)Ylf= r ,_.,..

(IV. 4 6)

(IV. 47)

(IV. 4 8 )

(IV. 4 9 )

(IV. 50)

N ote that if inde e d IY\\ < 1 , then all the stress com ponents are singular a t t he

corne r, a nd a fortiori , if n is negative . Combining ((IV. 8 ), (IV . 9 ), a nd (IV . 11))

with ((IV.l3~ (IV.l 4 ), a nd (IV. 15)), we obtain:

(IV. 51 ) y 1-Y\

Page 51: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

- ( u. 1 'dV") (1-+n)[(H·Y\) o--n1 F-t- <J F'' 2 ;U \y + y ¢G = - --'--- ---'---"-.._:___.:_ __ ~---­r ,_...,

v- _ (1-+n)(I-Y\2

)(1-o-) ~ d 1- (1-l'\) cr- =' I fde ~ 2}-<--- Fe- .- -~-+--

~'"' 11. y 1-YI • Y\ y' n ""'r y

(_rde-+- c & + I - 0"' r Ill+ ( Q 1 _ _L \ -+ J ) J Y1Y' - "" \ d y) y

- 46-

(IV~ 52)

(IV. 53 )

(IV. 54)

(IV. 55)

(IV. 56)

(IV. 57)

(IV. 58)

(IV. 60)

(IV.6 1)

(IV. 62)

Page 52: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

In (IV, 62) the t e rms i nvolving F satisfy identically as can be

observed by usi ng (IV. 47 ). It follows that :

~( 7 <1}) - ~"" .J):.,"

~

g=Kr

f ::: I si n 8 + J cos8, whe r e I, J, K, are constants. (IV. 64)

From c ondition s (IV. 42) and (IV. 43) w it h (IV , 49),(IV. 50} it follows

that :

F (0) = F 1 (0);; 0, frorr. which

D = - B

C = - A ( I+Y\'\ \ l- Y\ -)

, from which

F(e) =A [sin (l+n)e- \~~sin (1-n)e]+ e>[ c.os(1-+-ni e- cos ( 1-n) e]

(IV. 65)

(IV. 66)

(IV. 67)

(IV. 68)

F(El) = A (I+ n) L Cos ( I+Y\) e- c.os (1-'r\) e] - B [(I+ n) 5 in (I+ Yl) e- (1-Y\)Sin (1-n)e} (IV. 69)

FC9) =: -A (1-+Yl)l(I-+Yl)Sin (I+Y\) e- (1-YI)Sin (1-n) e 1 - (IV. 70)

- B[ (1+)1)2.CoS ll+YI) 6- (l -Y1)4

CoS (1-YIJ 6 J

\Fd = -A[cos(l+n)6 _ (l+Yl.) CoS(I-n)e]-tsfsin(1+-n)6 _-sin (l-n)e] (lV. 71) j e 1-+n (1-Yl.)2. L 1-tn 1-n J

Fr o m condi t ions (IV . 4 4) and (IV. 45) with (IV. 52), (IV. 57~, (IV. 63),

(IV. 64), it follows t hat

-tee) = I - J - o (IV. 72)

Page 53: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-48-

d-'=k=O (IV.73)

t=\-!-) = _ 2A (l+n) -sin n ~- 2 B Yl Cos Y1 ~ (IV. 7 5 )

I.

Fde= A 'S1n n-- 2 B cos "n--;::;-~ 2 2 ( 1 + n:1) . '1T 2. n "lr

(i+n)(l-n)l.. 2 1-n ~ (IV. 77}

0 =A ( l+n)(2.-n-2.cr) cosni -+B(1-n)(t-Y1-2CT)sinn1 (IV. 7 8 )

o= A(I+Y1)(1-tn-2<r)'Sinni- B ( l-n)(2..+Yl-20")C.oSh1_ (IV.79)

E quations (IV. 7 8 ) and (IV. 79) possess a n o n -trivial solution only i f

the d etermi nant of the coe fficie n ts of A and B is z e ro. This leads to :

r 2. 1..} 2. 1T" r z < )2. ] . 2. or L4(1-o-)-YI c.osn-z=tn- 1-20" s1nn2 , or (IV. 80'

1- 2cr =- cos2n-; -+V Y\

1- CoS

2Y1 ~-:;in"-"'~ (IV. t'. l}

Figure 1 shows the b ehavior of the magnitu d e of the e i genvalue n as a function

of P oisson's ratio 0" • Note that as cY- o , n must a rproach and is bounded

by unity, whereas when cr- 1 /2, n ~cos n i , so that the magnitude of the

minimum e i genvalue is 0 . 595. Si n c e ( 1-2 lJ) is an even functio n of n, it

Page 54: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

- 49 -

follows that b oth positive a nd negative value s of the e i g e nvalue are

e qually acc e ptable. w e will decide from physical co nsideration s wh ich

values are extrane ous. Finally obs e rve t h at, for 0' = 1 I 4, n ........_ 3/4 ,

which might b e c h ose n a s a typically repres e ntative e igenvalue for

materials of inte rrnediate dilatan c y ( 1) .

From (IV . 7 8 ) w e have :

A 1-n B l+Y'l

n-1+2U' ta ""rr > 0 n••-'2.-20"-n 2

_Q_- - 1 B -

c ~=-

n- (1-z.o-") 1T --------'--""t -q n -n 2 2-2.()-n <.O

T he str e ss function can n ow be writt e n in the followi ng way

<f> - Bn rn..,., Fn (e)

(IV. 8 2 )

(IV. 83 )

(IV. 84)

(IV. 85 ~

w he r e for each e i ge nvalue n the re e x ists a con stant B a n d a fun ction n

F n ( e ). The above expr e ssio n for <p is a complimentary solution,

potentially comp l e x d e pen ding upon the potentiall y comp l ex n atur e of

the e i ge nvalue s. In orde r to pr e scribe a d e fi n ite ta ngential di splac eme n t

( 1) Max Kne i n . Z u r Theorie d e s Dr u ckve rsu chs. Abhandlunge n aus d en> Ae rodynam i s c hen I nstitut a n d e r T echnischen H o chs chule Aac he n, H e ft 7, 43 (1 9 27)

Page 55: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-50-

on the ray e = rr/2 a particular solution has to be found which

generates this displacement. The unknown coefficients Bn in (IV. 85)

have to be evaluated by c o n sideratio n of appropriate boundary conditions

along a circumferential arc far fron1 the corner.

Similar arguments apply immediately to the free-free and

clamped-clampe d spaces. These cases were all discussed by M . L.

Williams(2

) who, recognized and pointed out that n must be regarded

as complex if one is to fit non-trivial boundary conditions. In addition,

Williams writes down the general for mulae for the eigenvalues in

spaces with non-normal corners. Knein restricts his discussio n to

normal corners.

5. Complex Variable Approach

One of the difficulties i nhe r ent in the e i genvalue method restricted

to the real domai n is that it operates o nly with one set of a pair of

degenerate set of functions which satisfy the biharrnonic equation.

For the general contour one must use both s e ts -the circular and the

hype rbolic functions. These sets may be combined by the introduction

of an appropriate variable.

The apparent difficulty connected with the use of (IV. 2 8 ) arises

from the presence of the logari thmic argument. This however can be

disposed of very neatly by mapping the sector of flank angle ex: (we

now generalize to the non-normal corner) onto a strip of width o< •

This is accomplished by the mapping (cf Sketch 2)

or (IV. 8 6)

(2} M. L. Williams: Stress Singularities Resulting from Various Boundary Conditions in Ang ular Corners of P lates in Extension, Jour n al of Applied Me c ha nics , 52 6, ( 1 9 52 )

Page 56: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-51-

8=o<.

;:nr u=o ~=o,

e=o ()a=o

Sketch 2

Note that this mappi ng allows parallel lines, which r e place the rays, to meet

at infinity. I n order to specify the boundary condition s on the paralle l lines,

the expressions for the stresses and displacements i n terms of complex

pote ntials must be i ntroduced.

The basis for this technique l ies i n the identification of the g eome try

of the elastic body with that of the complex plane. This i mmediate ly bestows

a large number of useful and simplifying features upon the field e quation .

mappin g :

The polar plane is related to the complex plane by the a nalytic

i.e z=re

'

-i.e z = ye (IV . 8 7 ~

(IV. 88 )

Treati n g z and z as two new i nd ependent variables a nd followi ng the usual

rules of calculus of transformation of var iables , we can co nvert the e quilibrium

equations, and the compatibility equatio n to the new variables as follows :

. - d t z "dz

(IV. 89)

(IV. 90 )

Page 57: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-52-

(IV. 9 1)

Note the e l ega nt form of the Laplacian. Now i ntroduce ne w stress components

and r e write the equilib rium equatio n s :

s - <Yy + 06 (IV. 92)

"t= O"r-O'a +

2 1 ""L re (IV. 93)

t= O"r- O"'e - i Lre 2 (IV. 94)

(IV. 95)

r:. sz + 2 t + 2 ~ ~ z = o (IV.96)

Now i ntroduc e the stress fun ction:

4 <p -Zl

(IV. 97)

(IV.98)

(IV. 99)

Page 58: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

New strains are i ntroduced a .1d then Hooke 1 s Law ·

'0= E..,..- E:a + 1, E: re 2

Ey- Ee i, Er-a 0 - z

2M1.9- = (1- 2.CJJ S

2)-{ y-= t

2M o = t

New displacements are i ntroduced and related to the strain s :

U+U. --2 + z Uz-+ z u~

19-=---=---------vz z'

¥- ZVIz - U/2.

v ~z.' ~ u .... - Vl/2. T = --=__::_:._"'-!:.__-=--"--='--

1/~~

Elimination of u and u from (IV . 108 ), (IV. 109), (IV. 110) establishes

compatibility:

-53-

(IV . 100)

(IV.10l)

(IV. 102)

(IV. 10 3)

(IV.l04)

(IV. 10 5)

(IV. 106)

(IV. 107)

(IV. 10 3 )

(IV.l09)

(IV.110)

(IV. 111)

Page 59: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

- 5·:1:-

I ntroduction of the str e sses from (IV. 103), (IV.104), (IV. 105) and then the

stress function from (IV. 97), (IV. 98), (IVo 99) e stablishes the biharmonic

character of ~ :

(IV. 112)

I n a purely formal fashion, if <f> is assumed to be analytic, (IV. 112) can be

i n teg rated to expr ess 1' i n tern1s of two arbitrary holomorphic fu nc tions

~ and 'X, bot h of which must be harmonic:

(IV. ll 3)

The derivatives are us eful

(IV. 114)

(IV. 115)

(IV. 11 G)

Note that cy - 9 (z) depe nds only on z and so has no derivative w ith respect

to z. This is significance of harmonic behavior. Note also that

(IV.ll7)

since~ may be a complex fu n ction.

The stress and displacements may be expressed in terms of t and

(IV" 118)

(IV. 11 9)

(IV. 120)

Page 60: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-55 -

(IV . 121)

(IV . 122)

R e .. memberin g that z2 =r, it is r e adily observe d that C g e n e r ates a pure

totation and B a li near displace m e r.t along the x-axis. Thus Band C m ay be

s e t e qual to zero with no loss of gene rality.

6. Boundary co nditio n s i n the Complex Plane

From (IV . 92), (IV. 93), a nd (IV. 94), w e have ;

0 9=0

"t- t - 2 1- ?:.,..6 - 0 e-=o

T herefor e t must b e real.

Along the other ray, w e have from (IV. 10 6 ), a nd (IV. 107)

U+ U = 2 U. =- 0 r -at e = o~.

The r e fore 'U. rnust be i maginary. Al so from (IV. 89\ w e have:

"dU.\_ (fT _2__ +"'~ ~ \ ( u- V.) - o <n· - ~ ~~ f~ "dZ )

9=~

which b e comes.

(IV. 123'1

(IV. 124)

(IV. 125)

(IV . l2 6)

(IV.l27 )

The problem n ow is to choose 9 or ~ and X so as to most co nv enientl y fit

the s e boundary conditio n s. I n additio n to the set (IV . 123), -(IV . 127) w e s h ail

exp e ct to impos e some restriction , at r ~ m, t hat e ithe r the stresses or

displacements g o to zero.

Page 61: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

- 56 -

As already i ndicated, the problerr1 of choosing is tremendously

simplified by mappi ng the sector onto an i nfinite strip. This transformation

introduces new variables:

_2_ - ~ ~

d~--e. ~

d -~ d

"d'i = -e ~ :s so that the Laplacian becomes:

The biharmonic loses its sirnple one-term character:

A n d the complex stresses, displacements and potentials become

On the boundaries of the strip, we now have

_2_=t=t 2

(IV.l28 )

(IV. 129)

(IV. 130)

(IV. 131)

(IV. 132)

(IV. 133)

(IV. 134)

(IV. 135 }

(IV. 136\

(IV. 137)

(IV. 138 )

Page 62: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

-57-

at )- $ = Zi.ol. J (IV. 139)

Equations {IV . 138 ) and (IV. 139) may be solve d by first taking

Fourier transforms a nd then solvi ng a pair of simultane ous algebraic e quations

and then inverting the Fourier i nt egrals . The exact d e tails of this procedure

are b eing worked out and will be r e ported i n the next m o n thl y report. I n

addition, the sector-space will also be mapped o nto a half-plane by the mapping

(IV. 140}

This reduces the i n tegral equations to a Hilbert problem, which will be

discussed i n d e tail in the subseque nt r e port.

Page 63: GALCIT REPORT NO 1-IS Studies Relating To the...propellants, solid rocket grains, and solid rocket motors unde r ideal ... the results of this testing and their thinking a re being

0

~ Ci

,l!l 2 0 CfJ CfJ 0 (l_

7_ 0

ill :J J

~ 7. w ~ ill

lL 0

ill u 7_ ill 0 z w 0. ill D

0

\

\

\..0 ~ · ,....,

I

I

I

i\..

-Sa-0

co

,.,.

\[") o ·