galactic cosmic rays and the turbulent heliospheric...

26
1 galactic cosmic rays and the turbulent heliospheric tail Paolo Desiati 1,2 & Alexander Lazarian 2 1 WIPAC - Wisconsin IceCube Astrophysics Center 2 Department of Astronomy University of Wisconsin - Madison Midwest Magnetic Fields Workshop, Madison, WI April 4 th , 2012 Friday, April 6, 2012

Transcript of galactic cosmic rays and the turbulent heliospheric...

Page 1: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

1

galactic cosmic rays andthe turbulent heliospheric tail

Paolo Desiati1,2 & Alexander Lazarian2

1 WIPAC - Wisconsin IceCube Astrophysics Center2 Department of Astronomy

University of Wisconsin - Madison

Midwest Magnetic Fields Workshop, Madison, WIApril 4th, 2012

Friday, April 6, 2012

Page 2: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic rays spectrum

≈E-2.7

≈E-3.1

≈E-2.7

• spectral structure & mass composition hold information on

‣ origin of cosmic rays

‣ propagation from sources to Earth

‣ anisotropy in arrival distribution

‣ energy dependence

‣ angular scale

2

1 GeV - 1 TeV 1 TeV - 1 PeV > 1 PeV extra-galactic

Friday, April 6, 2012

Page 3: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic ray acceleration in supernova remnants

SN1006

W. Baade & F. Zwicky, Physical Review 46, 76, 1934

3

• diffusive shock acceleration in galactic SNR (Baade & Zwicky, 1934 & Fermi, 1949)

φCR =cnCR(E)

nCR(E) ≈ E−γ

RSN

2πR2d

· H

D(E) density of cosmic rays

cosmic ray flux

energy emitted by one SN

cosmic ray acceleration efficiency

radius of galactic disk

rate of supernovae in the Galaxy

propagation term

D(E) ∝ Eδ diffusion coefficient

φCR ≈ 2.4 ·�

ESN

1051erg

·�CR

·�

15kpc

Rd

�2

·�

RSN

30yr

·(γ − 2) · 3−δ

·�

E

1TeV

�−γ−δ

[TeV −1m−2s−1sr−1]

X-ray (Chandra)opticalradio

Friday, April 6, 2012

Page 4: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic rays observationsall-particle spectrum

4

p ≈ E-2.66

He ≈ E-2.58

PamelaAdriani et al. (2011)

CREAMAhn et al. (2010)

p ≈ E-2.80

He (×0.1) ≈ E-2.71

p ≈ E-2.67

He ≈ E-2.48

Friday, April 6, 2012

Page 5: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic rays observationsall-particle spectrum

5

residual all-particle spectrum

≈E-3.0

≈E-3.1

PamelaAdriani et al. (2011)

p ≈ E-2.80

He (×0.1) ≈ E-2.71

p ≈ E-2.67

He ≈ E-2.48

KASCADE-GrandeArtega-Velàzquez et al. (2010)

Gaisser & StanevPDG

Friday, April 6, 2012

Page 6: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic rays observationsanisotropy

6

05101520

α (hr)

24

0〫

60〫δ (deg)

05101520

α (hr)

24

0〫

50〫

δ (deg)

05101520

α (hr)

24

0〫

50〫

-50〫

δ (deg)

05101520

α (hr)

24

0〫

60〫

δ (deg)

equatorial coordinates

Nagashima et al. (1998)Hall et al. (1999)

ARGO-YBJZhang et al. (2009)

Tibet ASγAmenomori et al. (2006)

Super KamiokandeGuillian et al. (2007)

MilagroAbdo et al. (2009)

< 100 GeV 4 TeV

10 TeV

4 TeV

5 TeV

-90˚

α (hr)0510152024

IceCubeAbbasi et al. (2010)

20 TeV

Friday, April 6, 2012

Page 7: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

cosmic rays observationsanisotropy

7

equatorial coordinates relative intensity

Amenomori et al. (2011)

Abbasi et al. (2012)

Tibet-ASγ 5 TeV

IceCube-59 20 TeV

Friday, April 6, 2012

Page 8: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

anisotropy vs. energy

• CR anisotropy changes phase ~100 TeV

• global amplitude is modulated

Tibet ASγ Amenomori et al., ApJ. 626, L29, 2005

IceCube-22 Abbasi et al., ApJ, 718, L194, 2010

EAS-TOP Aglietta et al., ApJ, 692, L130, 2009

IceCube-59 Abbasi et al., ApJ, 746, 33, 2012

ARGO-YBJ Zhang 31st ICRC Łódź-Poland,2009

360˚

-90˚

-90˚

360˚ 0˚

20 TeV

400 TeV

IceCubeAbbasi et al. (2012)

δfluctuations =3

23/2

1π1/2

D(E)Hc

D(E) ∝ Eδ

8

Friday, April 6, 2012

Page 9: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

anisotropy vs. angular scale

detector acceptance

direct exp measurement+ detector acceptance

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x 10-2

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

large vs small scale anisotropy

averaged modulation over a given angular rangelow angular gradient

fine structurehigh angular gradientacceptance-corrected

4 hr = 60˚

9

Friday, April 6, 2012

Page 10: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

2 hr = 30˚

4 hr = 60˚

IceCube

Milagro

20 TeV

1 TeV

10

Abbasi et al. (2011)

statistical significanceequatorial coordinates

cosmic rays observationsanisotropy

Abdo et al. (2008)

Friday, April 6, 2012

Page 11: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

origin of small scale anisotropy ?astrophysics

Salvati & Sacco, arXiv:0802.2181Drury & Aharonian, Astropart. Phys. 29, 420 (2008)• CR from Geminga: ~90-200 pc, 340,000 yr ago

• magnetic connection & propagation in turbulent LIMF

• anisotropic MHD turbulence in the ISM

‣ particles streaming along magnetic field lines over ~100 pc (from a source) interact with O(1pc) ISM turbulence

‣ pitch angle scattering peaked near the direction of LIMF

Salvati, Astron. & Astrophys. arXiv:1001.4947

Malkov et al., ApJ 721, 750, 2010

11

Friday, April 6, 2012

Page 12: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

origin of small scale anisotropy ?effect of turbulence

12

‣ diffusion regime breaks down within mean free path

‣ interaction with turbulent interstellar magnetic field

‣ assuming an underlying dipole anisotropy, fractional localized regions form the effect of magnetic field turbulence

‣ the residual maps provide an image of magnetic field turbulence < 10’s pc

‣ cosmic ray energy spectra might also be affected by this propagation effects

Giacinti & Sigl, arXiv:1111.2536

20° smoothing

10 PeV

10 PeV

50 PeV

Friday, April 6, 2012

Page 13: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

diffusive propagation models ...

• … assume uniform diffusion coefficient across the Galaxy

• … do not account for energy-dependent interaction with ISM turbulence

• … do not account for magnetic field geometry

• … cannot explain non-dipolar anisotropy structures

• … break down within mean free path

13

Friday, April 6, 2012

Page 14: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

from the Galaxy to our local interstellar medium

Milky Way

Benjamin (2008)

Frisch

Frisch

< 30,000 pc >

< 500 pc >

< 10-50 pc >

< 0.001 - 0.05 pc >

Local Bubble

Local Interstellar Cloud

Heliosphere

14

Friday, April 6, 2012

Page 15: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

100 AU100 AU > 1,000 - 10,000 AU

~30

0-60

0 A

U

~1.4 TeV ~1.4 TeV ~14 - 140 TeV

~ 5

- 1

0 Te

V

3 µG

15

Rg ∼10−3

Z

�E

1 TeV

� �µG

B

�pcthe heliosphere

and the LIMF

Pogorelov & Zank (2004)

Vinterstellar flow ~ 26 km/s ≳ VAlfén

Friday, April 6, 2012

Page 16: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati16

the heliospheremagnetic structure3D simulations of heliosphere Opher et al., arXiv:1103.2236 !

3D simulation of heliosphere/heliotailPogorelov et al., ApJ, 696, 1478, 2009

~150 AU ~1,000’s AU

~200 AU~0.1-1 AU

Friday, April 6, 2012

Page 17: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

• the wake downstream the interstellar flow develops turbulence from plasma velocity difference across the heliopause (similar to Kelvin-Helmholtz instability)

• charge-exchange processes decelerate the solar wind near the heliopause, producing an effective drag force that pushes the higher ISM density into the heliosheath. This generates Rayleigh-Taylor instability oscillations with amplitude 10’s AU over 100’s years - Liewer et al. (1996).

• charge-exchange processes in plasma-neutral fluid model produces alternate growing and damping of Alfvénic, fast and slow turbulence modes, with amplitude 10-100 AU and slowly propagating downstream along the heliopause - Shaikh & Zank (2010).

‣ The 10-100 AU turbulent ripples propagate outward the ISM and are damped by ion-neutral collisions in mfp ~ 300 AU - Spangler et al. (2011).

the heliosphereturbulence

17

Friday, April 6, 2012

Page 18: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

scattering on heliosphericturbulence

18

Friday, April 6, 2012

Page 19: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

scattering on heliosphericturbulence

19

Friday, April 6, 2012

Page 20: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

• cosmic rays > 100 TeV do not feel the influence of the heliosphere

• cosmic rays < 100 TeV are influenced by the heliosphere from the downstream region

• resonant scattering of 1-10 TeV cosmic rays with 100’s AU turbulence ripples re-organizes the arrival direction distribution

• cosmic rays streaming along the LIMF experience the largest effect from the downstream region, and a minimal effect upstream

• perpendicular scattering is critical and determines the gradient region in cosmic ray arrival direction distribution

‣ evaluations and calculations to verify this scenario

scattering on heliosphericturbulence

20

Friday, April 6, 2012

Page 21: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati21

PD & Lazarian, arXiv:1111.3075

magneticequator

Funsten et al. (2009)Schwadron et al. (2009)Heerikhuisen et al. (2010)

LIMF direction compatible with• Ca II absorption & H I lines, Frisch (1996)• radio emission from inner heliosheath, Lallement et al. (2005), Opher et al. (2007)• polarization measurements, Frisch (2010)

scattering on heliosphericturbulence

Friday, April 6, 2012

Page 22: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati22

PD & Lazarian, arXiv:1111.3075

magneticequator

Funsten et al. (2009)Schwadron et al. (2009)Heerikhuisen et al. (2010)

LIMF direction compatible with• Ca II absorption & H I lines, Frisch (1996)• radio emission from inner heliosheath, Lallement et al. (2005), Opher et al. (2007)• polarization measurements, Frisch (2010)

scattering on heliosphericturbulence

!

Friday, April 6, 2012

Page 23: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

spectral feature associated to anisotropyAbdo A.A. et al., Phys. Rev. Lett., 101, 221101 (2008)

harder spectrum in region A

2 hr = 30˚ 2 hr = 30˚

Milagro & ARGO-YBJ

harder than average spectrum from region A

γ < 2.7 at 4.6 σ levelEc = 3 - 25 TeV

similar to hardening of “diffuse” cosmic rays by Pamela, CREAM, ATIC-2

23

Friday, April 6, 2012

Page 24: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

origin of spectral hardening ?

24

‣ magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail

‣ turbulence makes reconnection fast and not affected by ohmic dissipation

‣ magnetic mirror @ single reconnection as site of acceleration (test particle)

Lazarian & PD, ApJ, 722, 188, 2010

!Sweet (1959) Parker (1957)

Lazarian & Vishniac, ApJ, 517, 700, 1999

Friday, April 6, 2012

Page 25: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

origin of spectral hardening ?

25

‣ magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail

‣ turbulence makes reconnection fast and not affected by ohmic dissipation

‣ magnetic mirror @ single reconnection as site of acceleration (test particle)

Lazarian & PD, ApJ, 722, 188, 2010

~ 0.5 - 6 TeV

Friday, April 6, 2012

Page 26: galactic cosmic rays and the turbulent heliospheric tailburkhart/midwestMagneticField_2012/Desiati.… · Frisch Frisch < 30,000 pc > < 500 pc > < 10-50 pc >

Paolo Desiati

Conclusions

• < 100 TeV cosmic ray anisotropy generated by interaction with the very local interstellar medium

• scattering with turbulence inside and in the outer heliospheric boundary to play an important role to explain large scale and small scale TeV cosmic ray anisotropy

• might explain change of cosmic ray anisotropy between 20 TeV and 400 TeV

• spectral hardening observed by Milagro & ARGO-YBJ from the downstream direction from re-acceleration of a fraction of cosmic rays in stochastic magnetic reconnection within the heliotail

• similar hardening observed by Pamela and CREAM could be related to the heliotail, although astrophysical explanations @ source and from propagation are possible

26

Friday, April 6, 2012