GaiaCal2014: Creating and Calibrating LSST Data Product

37
1 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Name of Mee)ng • Loca)on • Date Change in Slide Master Crea%ng and Calibra%ng the Large Synop%c Survey Telescope’s Data Products Mario Juric LSST Data Management Project Scien5st GAIACAL2014 July 9 th , 2014 Robyn Allsman, Yusra AlSayyad, Tim Axelrod, Jacek Becla, Andrew Becker, Steve Bickerton, Jim Bosch, Bill Chickering, Andy Connolly, Greg Daues, Gregory Dubois Fellsman, Mike Freemon, Andy Hanushevsky, Fabrice Jammes, Lynne Jones, Jeff Kantor, KianTat Lim, Dus5n Lang, Ron Lambert, Robert Lupton (the Good), Simon Krughoff, Serge Monkewitz, Jon Myers, Russell Owen, Steve Pietrowicz, Ray Plante, Paul Price, Andrei Salnikov, Dick Shaw, Schuyler Van Dyk, Daniel Wang featuring Chris Stubbs and the LSST Project Team

description

Talk given at GaiaCal2014 workshop at Ringberg (http://www.mpia.de/Gaia/GaiaCal2014/Programme.htm).

Transcript of GaiaCal2014: Creating and Calibrating LSST Data Product

Page 1: GaiaCal2014: Creating and Calibrating LSST Data Product

1 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Name  of  Mee)ng  •  Loca)on  •  Date    -­‐    Change  in  Slide  Master  

Crea%ng  and  Calibra%ng  the  Large  Synop%c  Survey  Telescope’s  Data  Products    

Mario  Juric  LSST  Data  Management  Project  Scien5st                      

GAIACAL2014 July 9th, 2014

Robyn  Allsman,  Yusra  AlSayyad,  Tim  Axelrod,  Jacek  Becla,  Andrew  Becker,      Steve  Bickerton,  Jim  Bosch,    Bill  Chickering,  Andy  Connolly,    Greg  Daues,  Gregory  Dubois-­‐Fellsman,  Mike  Freemon,  Andy  Hanushevsky,  Fabrice  Jammes,  Lynne  Jones,  Jeff  Kantor,    

Kian-­‐Tat  Lim,  Dus5n  Lang,    Ron  Lambert,  Robert  Lupton  (the  Good),    Simon  Krughoff,  Serge  Monkewitz,  Jon  Myers,  Russell  Owen,  Steve  Pietrowicz,  Ray  Plante,  Paul  Price,    Andrei  Salnikov,  Dick  Shaw,  Schuyler  Van  Dyk,  Daniel  Wang    featuring  Chris  Stubbs  and  the  LSST  Project  Team  

Page 2: GaiaCal2014: Creating and Calibrating LSST Data Product

2 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Overview  

−  LSST  overview  and  status  

−  LSST  data  products:  what  will  be  measured  and  how  

−  Instrumental  and  Astrophysical  Calibra)on  

−  Dethroning  “the  catalog”  

−  Does  soccer  need  a  mercy  rule?  

Page 3: GaiaCal2014: Creating and Calibrating LSST Data Product

3  GaiaCal  2014  •  Ringberg,  Germany  •  July  9,  2014  

LSST:  A  Deep,  Wide,  Fast,  Optical  Sky  Survey    

   8.4m  telescope  18000+  deg2  10mas  astrom.  r<24.5  (<27.5@10yr)  

 ugrizy  0.5-­‐1%  photometry  

3.2Gpix  camera  30sec  exp/4sec  rd      15TB/night  37  B  objects    

Imaging  the  visible  sky,  once  every  ~3  days,  for  10  years  (825  revisits)  

Page 4: GaiaCal2014: Creating and Calibrating LSST Data Product

4 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

A  Dedicated  Survey  Telescope  

−  A  wide  (half  the  sky),  deep  (24.5/27.5  mag),  fast  (image  the  sky  once  every  3  days)  survey  telescope.  Beginning  in  2022,  it  will  repeatedly  image  the  sky  for  10  years.  

−  The  LSST  is  an  integrated  survey  system.  The  Observatory,  Telescope,  Camera  and  Data  Management  system  are  all  built  to  support  the  LSST  survey.  There’s  no  PI  mode,  proposals,  or  )me.    

−  The  ul%mate  deliverable  of  LSST  is  not  the  telescope,  nor  the  instruments;  it  is  the  fully  reduced  data.  •  All  science  will  be  come  from  survey  catalogs  and  images  

 

Telescope    è          Images    è          Catalogs  

Page 5: GaiaCal2014: Creating and Calibrating LSST Data Product

5 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Open  Data,  Open  Source:  A  Community  Resource  

−  LSST  data,  including  images  and  catalogs,  will  be  available  with  no  proprietary  period  to  the  astronomical  community  of  the  United  States,  Chile,  and  Interna%onal  Partners    

−  Alerts  to  variable  sources  (“transient  alerts”)  will  be  available  world-­‐wide  within  60  seconds,  using  standard  protocols    

−  LSST  data  processing  stack  will  be  free  soKware  (licensed  under  the  GPL,  v3-­‐or-­‐later)  

−  All  science  will  be  done  by  the  community  (not  the  Project!),  using  LSST’s  data  products  

Page 6: GaiaCal2014: Creating and Calibrating LSST Data Product

6 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  Survey  Themes  

 Time  Domain  Science  

 Census  of  the  Solar  System  

 Mapping  the  Milky  Way  

 Understanding  the  Nature  of  Dark  MaVer  and  Dark  Energy  

   

and  everything  in  between  …  

Page 7: GaiaCal2014: Creating and Calibrating LSST Data Product

7 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Current  Status  

−  December  6th,  2013:  Passed  the  NSF  Final  Design  Review;  declared  ready  for  Construc<on.  

−  January  17th,  2014:  FY2014  budget  signed,  with  NSF  appropria<on  allowing  for  LSST  start.  

−  May  8th,  2014:  NSB  authorizes  NSF  Director  to  start  the  project.  

−  Expec5ng  the  signing  of  coopera5ve  agreement  and  start  of  construc5on  this  month.  

Page 8: GaiaCal2014: Creating and Calibrating LSST Data Product

8 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Combined  Primary/Ter%ary  Mirror  Thin  Meniscus  Secondary  

−  Primary-­‐Ter)ary  was  cast  in  the  spring  of  2008.  −  Fabrica)on  underway  at  the  Steward  Observatory  

Mirror  Lab  -­‐  comple)on  by  the  end  of  2014.      

−  Secondary  substrate  fabricated  by  Corning  in  2009.  −  Currently  in  storage  wai)ng  for  construc)on.    

Page 9: GaiaCal2014: Creating and Calibrating LSST Data Product

9 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  Camera  

Parameter   Value  

Diameter   1.65  m  

Length   3.7  m  

Weight   3000  kg  

F.P.  Diam   634  mm  

1.65 m 5’-5”

–  3.2 Gigapixels –  0.2 arcsec pixels –  9.6 square degree FOV –  2 second readout –  6 filters

Page 10: GaiaCal2014: Creating and Calibrating LSST Data Product
Page 11: GaiaCal2014: Creating and Calibrating LSST Data Product

11 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Bandpasses:  u,g,r,i,z,y  

R  ~  0.2  spectrograph  

Page 12: GaiaCal2014: Creating and Calibrating LSST Data Product

12 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  Observatory  (cca.  late  ~2018)  

Page 13: GaiaCal2014: Creating and Calibrating LSST Data Product

13 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

HQ  Site  Science  Opera)ons  Observatory  Management  Educa)on  and  Public  Outreach  

Archive  Site  Archive  Center  

Alert  Produc)on  Data  Release  Produc)on  

Calibra)on  Products  Produc)on  EPO  Infrastructure  

 Long-­‐term  Storage  (copy  2)  Data  Access  Center  

Data  Access  and  User  Services  

Summit  and  Base  Sites  Telescope  and  Camera  

Data  Acquisi)on  Crosstalk  Correc)on  

Long-­‐term  storage  (copy  1)  Chilean  Data  Access  Center  

Dedicated  Long  Haul  Networks  

 Two  redundant  40  Gbit  links  from  La  

Serena  to  Champaign,  IL  (exis)ng  fiber)  

Page 14: GaiaCal2014: Creating and Calibrating LSST Data Product

14 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

 LSST  Data  Products:  Images  and  Catalogs  

Page 15: GaiaCal2014: Creating and Calibrating LSST Data Product

15 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Why  We  Create  Catalogs?  

Model          ß  inference  –          Data  

And  metadata!  

Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data  

Project  Scien<sts  Scien<sts  

Scien)sts   Project   Project   Project  Scien)sts  

Computa)onally  (and  cogni)vely)  expensive,  science-­‐case  speciific  

Computa)onally  cheaper,  Easier  to  understand,  Science-­‐case  speciific  

•  Computa)onally  expensive,  general  •  Reprojec)on;  may  or  may  not  involve  

compression  •  Almost  always  introduces  some  

informa)on  loss  •  Data  Processing  ==  Instrumental  

Calibra)on  +  Measurement  

Page 16: GaiaCal2014: Creating and Calibrating LSST Data Product

16 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Guiding  Principles  for  LSST  Products  

−  There  are  virtually  infinite  op)ons  on  what  quan))es  one  can  measure  on  images  

−  But  if  catalog  genera)on  is  understood  as  a  (generalized)  cost  reduc<on  tool,  the  guiding  principles  become  easier  to  define  

−  Defining  principles  for  the  LSST  data  products:    1.   Maximize  science  enabled  by  the  catalogs  

- Working  with  images  takes  )me  and  resources;  a  large  frac)on  of  LSST  science  cases  should  be  enabled  by  just  the  catalog.  

2.   Minimize  informa%on  loss  -  Provide  (as  much  as  possible)  es)mates  of  likelihood  surfaces,  not  just  single  point  es)mators  

3.   Provide  and  document  the  transforma%on  (the  soKware)  

Page 17: GaiaCal2014: Creating and Calibrating LSST Data Product

17 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  From  the  User’s  Perspec%ve  

−  A  stream  of  ~10  million  )me-­‐domain  events  per  night,  detected  and  transmiped  to  event  distribu)on  networks  within  60  seconds  of  observa)on.  

−  A  catalog  of  orbits  for  ~6  million  bodies  in  the  Solar  System.  

−  A  catalog  of  ~37  billion  objects  (20B  galaxies,  17B  stars),  ~7  trillion  single-­‐epoch  detec)ons  (“sources”),  and  ~30  trillion  forced  sources,  produced  annually,  accessible  through  online  databases.  

−  Deep  co-­‐added  images.  

−  Services  and  compu)ng  resources  at  the  Data  Access  Centers  to  enable  user-­‐specified  custom  processing  and  analysis.  

−  Soqware  and  APIs  enabling  development  of  analysis  codes.  

Level  3  Level  1  

Level  2  

Page 18: GaiaCal2014: Creating and Calibrating LSST Data Product

18 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  Catalog  Contents  (Level  2)  

−  Object  characteriza%on  (models):  •  Moving  Point  Source  model  •  Double  Sérsic  model  (bulge+disk)  

-  Maximum  likelihood  peak  -  Samples  of  the  posterior  (hundreds)  

−  Object  characteriza%on  (non-­‐parametric):  •  Centroid:  (α,  δ),  per  band  •  Adap)ve  moments  and  ellip)city  

measures  (per  band)  •  Aperture  fluxes  and  Petrosian  and  Kron  

fluxes  and  radii  (per  band)  −  Colors:  

•  Seeing-­‐independent  measure  of  object  color  

−  Variability  sta%s%cs:  •  Period,  low-­‐order  light-­‐curve  moments,  

etc.  

LSST  Science  Book,    Fig.  9.3  

Page 19: GaiaCal2014: Creating and Calibrating LSST Data Product

19 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Never  measure  off  the  coadds!  

−  Impossible  to  combine  mul)-­‐epoch  data  taken  in  different  seeings/exposure  )mes  without  informa)on  loss  •  Subop)mal  S/N  

−  Warping  and  resampling  correlates  pixel  values  and  noise;  correla)on  matrices  are  (prac)cally)  impossible  to  carry  forward.  •  Source  of  systema)c  error  

−  Detector  effects  have  to  be  taken  out  at  the  pixel  level  •  Further  correlates  the  noise  

−  The  effec)ve  bandpass  changes  from  exposure  to  exposure.  •  Coadding  different  sorts  of  apples…  

−  Stars  move!  

Page 20: GaiaCal2014: Creating and Calibrating LSST Data Product

20 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Op%mal  Mul%-­‐Epoch  Measurement  

Exposure  1  

Exposure  2  

Exposure  3  

Coadd  

Galaxy  /  Star  Models  

Fiyng  Warp,  

Convolve  

Coadd  Measurement  

Exposure  1  

Exposure  2  

Exposure  3  

Galaxy  /  Star  

Models  

Transformed  Model  1  

Transformed  Model  2  

Transformed  Model  2  

Warp,  Convolve  

Fiyng  

Mul)Fit  (Simultaneous  Mul)-­‐Epoch  Fiyng)  

Hard,  but  we  only  have  to  do  it  once.  

Easy;  rela)vely  few  data  points.  

Easier  (depends  on  model),  but  we  have  to  do  it  every  itera5on!  

Same  number  of  parameters,  but  with  orders  of  magnitude  

more  data  points.  

Page 21: GaiaCal2014: Creating and Calibrating LSST Data Product

21 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Sampling  and  retaining  the  posterior  (likelihood)  

Perform  importance  sampling  from  a  proposal  distribu<on  determined  on  the  coadd.  Plan  to  characterize  (and  keep!)  the  full  posterior  for  each  object.  (Unexplored)  possibili5es  for  compression.  

Page 22: GaiaCal2014: Creating and Calibrating LSST Data Product

22 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Op%mal  Mul%epoch  Source  Measurements  

Op)mal  measurement  of  proper)es  of  objects  imaged  in  mul)ple  epoch.  Leq:  extrac)on  of  a  moving  point  source  (Lang  2009).                                    

Individual  exposures:  objects  are  undetected  or  marginally  detected  

Moving  point-­‐source  and  galaxy  models  are  indis)nguishable  on  the  coadd  

Page 23: GaiaCal2014: Creating and Calibrating LSST Data Product

23 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Where  Does  Calibra%on  Come  In?  

−  With  mul)-­‐epoch  data,  (rela)ve)  instrument  calibra)on  becomes  inextricably  connected  with  the  measurement  process.    

−  Instrumental:  •  Photometric  

-  Provide  above-­‐the-­‐atmosphere  flux  es)mate  through  a  standard  passband  (rela)ve  and  absolute).  

•  Astrometric  -  Provide  the  posi)on  of  each  object  with  respect  to  an  external  (Gaia)  reference  

frame.  

•  Shapes  -  Provide  an  unbiased  es)mate  of  some  measure  of  the  PSF-­‐deconvolved  shape  of  

each  object.    

−  Astrophysical:  •  No  unique  answer,  as  it  depends  on  (subjec)ve)  externally  imposed  priors.  It  is  

not  a  data  product  of  the  LSST  project.  •  Short  answer  (in  the  Galac)c  context):  Gaia!  

Page 24: GaiaCal2014: Creating and Calibrating LSST Data Product

24 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST  Photometric  Calibra%on  (In  Brief)  

−  Goal:  es)mate  (PSF)  flux  above  the  atmosphere  through  a  standard  bandpass  that  does  not  change.    

−  Approach:  •  Directly  measure  the  system  bandpass  (monochroma)c  flats)  •  Measure  and  model  the  atmospheric  bandpass  

-  A  calibra)on  telescope  will  take  spectra  of  standard  stars  as  the  observing  unfolds.  These  will  be  used  to  fit  a  nightly,  slowly  changing,  atmosphere  model  (MODTRAN).  

-  Addi)onal  measurements  of  precipitable  water  vapor  will  be  collected  with  a  GPS  system  and  a  co-­‐boresighted  microwave  radiometer.  Needed  to  accurately  calibrate  the  y  band.  

-  Idea  being  explored:  It  is  possible  that  the  atmospheric  bandpasses  could  be  derived  from  the  imaging  data  alone.  

•  Run  self-­‐calibra)on  (Ubercal)  to  determine  the  rela)ve  zero-­‐points.  •  Tie  to  an  external  system  (DA  WD  standards  or  Gaia).  

Page 25: GaiaCal2014: Creating and Calibrating LSST Data Product

25 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Astrometry:  Tree  Rings  

Above:  PRNU  (Photo-­‐response  non-­‐uniformity)  of  an  LSST  sensor  segment.  One  sees  tree  rings,  sensi)vity  varia)ons  at  at  a  ~percent  level.    Due  to  varying  dopant  density  in  silicon  boules,  which  creates  parasi)c  lateral  E  fields.    The  gotcha:  these  DO  NOT  behave  as  QE  varia)ons.  If  you  try  to  flat  field  this,  you  make  the  problem  WORSE  by  ~2x.  

Page 26: GaiaCal2014: Creating and Calibrating LSST Data Product

26 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Page 27: GaiaCal2014: Creating and Calibrating LSST Data Product

27 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Astrometry/Photometry:  The  “Brighter-­‐Fafer  PSF”  Effect  

Most  of  today’s  devices  (DES,  HSC,  LSST,  GPC1)  are  thick.  The  photon  conver)ng  at  the  top  has  a  long  way  to  go  to  reach  the  bopom  −  Tree  rings  (and  related  effects)  −  “Brighter-­‐fafer”  effect  

As  the  poten)al  wells  fill  up  with  electrons,  the  bias  voltage  drops  making  it  easier  for  electrons  to  be  diverted  to  neighboring  pixels.  Correlates  the  values  of  neighboring  pixels;  results  in  an  intensity-­‐dependent  PSF.  

HSC  

LSST  

Page 28: GaiaCal2014: Creating and Calibrating LSST Data Product

28 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Astrophysical  Calibra%on:  Gaia,  the  “Great  Calibrator”  

−  Will  provide  a  network  of  astrometric  standards  covering  the  en)re  sky  −  Similarly,  will  provide  an  internally  consistent  photometric  catalog  to  aid  

calibra)on  

−  Scien)fically,  it  will  determine  to  unprecedented  precision  a  number  of  astrophysical  rela)ons  that  will  directly  enable  LSST  science:  •  Directly  calibrate  color-­‐luminosity  (photometric  parallax)  rela)ons  for  MS  and  

other  stars  •  Calibrate  period-­‐luminosity  rela)ons  for  a  wide  range  of  variables  

−  Enable  the  LSST  to  extend  Galac)c  census/maps  4-­‐7  magnitudes  deeper  

Eyer,  Ivezic  &  Monet    Sec<on  6.12,    LSST  Science  Book  hVp://ls.st/sb  

Page 29: GaiaCal2014: Creating and Calibrating LSST Data Product

29 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Chapter 6: Stellar Populations

Figure 6.26: A comparison of photometric, proper motion and parallax errors for SDSS, Gaia and LSST, as a functionof apparent magnitude r, for a G2V star (we assumed r = G, where G is the Gaia’s broad-band magnitude). Inthe top panel, the curve marked “SDSS” corresponds to a single SDSS observation. The red curves correspond toGaia; the long-dashed curve shows a single transit accuracy, and the dot-dashed curve the end of mission accuracy(assuming 70 transits). The blue curves correspond to LSST; the solid curve shows a single visit accuracy, andthe short-dashed curve shows accuracy for co-added data (assuming 230 visits in the r band). The curve marked“SDSS-POSS” in the middle panel shows accuracy delivered by the proper motion catalog of Munn et al. (2004).In the middle and bottom panels, the long-dashed curves correspond to Gaia, and the solid curves to LSST. Notethat LSST will smoothly extend Gaia’s error vs. magnitude curves four magnitudes fainter. The assumptions usedin these computations are described in the text.

194

Chapter 6: Stellar Populations

Figure 6.26: A comparison of photometric, proper motion and parallax errors for SDSS, Gaia and LSST, as a functionof apparent magnitude r, for a G2V star (we assumed r = G, where G is the Gaia’s broad-band magnitude). Inthe top panel, the curve marked “SDSS” corresponds to a single SDSS observation. The red curves correspond toGaia; the long-dashed curve shows a single transit accuracy, and the dot-dashed curve the end of mission accuracy(assuming 70 transits). The blue curves correspond to LSST; the solid curve shows a single visit accuracy, andthe short-dashed curve shows accuracy for co-added data (assuming 230 visits in the r band). The curve marked“SDSS-POSS” in the middle panel shows accuracy delivered by the proper motion catalog of Munn et al. (2004).In the middle and bottom panels, the long-dashed curves correspond to Gaia, and the solid curves to LSST. Notethat LSST will smoothly extend Gaia’s error vs. magnitude curves four magnitudes fainter. The assumptions usedin these computations are described in the text.

194

Chapter 6: Stellar Populations

Figure 6.26: A comparison of photometric, proper motion and parallax errors for SDSS, Gaia and LSST, as a functionof apparent magnitude r, for a G2V star (we assumed r = G, where G is the Gaia’s broad-band magnitude). Inthe top panel, the curve marked “SDSS” corresponds to a single SDSS observation. The red curves correspond toGaia; the long-dashed curve shows a single transit accuracy, and the dot-dashed curve the end of mission accuracy(assuming 70 transits). The blue curves correspond to LSST; the solid curve shows a single visit accuracy, andthe short-dashed curve shows accuracy for co-added data (assuming 230 visits in the r band). The curve marked“SDSS-POSS” in the middle panel shows accuracy delivered by the proper motion catalog of Munn et al. (2004).In the middle and bottom panels, the long-dashed curves correspond to Gaia, and the solid curves to LSST. Notethat LSST will smoothly extend Gaia’s error vs. magnitude curves four magnitudes fainter. The assumptions usedin these computations are described in the text.

194

6.12 A Comparison of Gaia and LSST Surveys

Table 6.6: Adopted Gaia and LSST Performance

Quantity Gaia LSST

Sky Coverage whole sky half sky

Mean number of epochs 70 over 5 yrs 1000 over 10 yrs

Mean number of observations 320a over 5 yrs 1000b over 10 yrs

Wavelength Coverage 320–1050 nm ugrizy

Depth per visit (5�, r band) 20 24.5; 27.5c

Bright limit (r band) 6 16-17

Point Spread Function (arcsec) 0.14⇥0.4 0.70 FWHM

Pixel count (Gigapix) 1.0 3.2

Syst. Photometric Err. (mag) 0.001, 0.0005d 0.005, 0.003e

Syst. Parallax Err. (mas) 0.007f 0.40f

Syst. Prop. Mot. Err. (mas/yr) 0.004 0.14a One transit includes the G-band photometry (data collected over 9 CCDs), BP and RP spec-trophotometry, and measurements by the SkyMapper and RVS instruments.b Summed over all six bands (taken at di↵erent times).c For co-added data, assuming 230 visits.d Single transit and the end-of-mission values for the G band (from SkyMapper; integrated BPand RP photometry will be more than about 3 times less precise).e For single visit and co-added observations, respectively.f Astrometric errors depend on source color. The listed values correspond to a G2V star.

195

Gaia  and  LSST:  The  Science  LSST  Science  Book:  hVp://ls.st/sb  

Gaia:  hVp://sci.esa.int/gaia  

Page 30: GaiaCal2014: Creating and Calibrating LSST Data Product

30 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Figure  3.13,    LSST  Science  Book  hVp://ls.st/sb  

The  volume  number  density  (stars/kpc3/mag,  log  scale  

according  to  legend)  of  ∼2.8  million  SDSS  stars  with    

14  <  r  <  21.5  and  b  >  70◦,  as  a  func)on  of  their  distance  

modulus  (distances  range  from  100  pc  to  25  kpc)  and  their  g  −  i  

color.    

The  sample  is  dominated  by  color-­‐selected  main  sequence  

stars.  

Page 31: GaiaCal2014: Creating and Calibrating LSST Data Product

31  GaiaCal  2014  |  Ringberg,  Germany  |  July  9,  2014  

LSST:  Mapping  the  Milky  Way  Halo  

RR  Lyrae  limit  

MS  stars  limit  

Dwarf  Galaxies  

Page 32: GaiaCal2014: Creating and Calibrating LSST Data Product

32 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

LSST:  Extended  Mapping  of  the  Milky  Way  

−  LSST  will  enable  extended  mapping  of  the  Milky  Way  because  of  a  unique  combina)on  of  capabili)es:  •  The  existence  of  the  u  band,  allowing  the  measurement  of  stellar  metallici<es  of  

near  turn-­‐off  stars  and  its  mapping  throughout  the  observed  disk  and  halo  volume.    

•  The  near-­‐IR  y  band,  allowing  the  mapping  of  stellar  number  densi<es  and  proper  mo<ons  even  in  regions  of  high  ex<nc<on.    

•  Well  sampled  <me  domain  informa<on,  allowing  for  the  unambiguous  iden<fica<on  and  characteriza<on  of  variable  stars  (e.g.,  RR  Lyrae),  facilita<ng  their  use  as  density  and  kinema<c  tracers  to  large  distances.    

•  Proper  mo<on  measurements  for  stars  4  magnitudes  fainter  than  will  be  obtained  by  Gaia  (see  LSST  Science  Book;  §  3.6).    

•  The  depth  and  wide-­‐area  nature  of  the  survey,  which  combined  with  the  characteris<cs  listed  above,  permits  a  uniquely  uniform,  comprehensive,  and  global  view  of  all  luminous  Galac<c  components.    

  Juric  &  Bullock    Sec<on  7.2    LSST  Science  Book  hVp://ls.st/sb  

Page 33: GaiaCal2014: Creating and Calibrating LSST Data Product

33 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Discussion  Point:  Can  We  Skip  the  Catalogs?  

−  As  our  measurements  become  more  and  more  systema)cs  limited,  what  occurs  in  the  “Data  Processing”  box  above  becomes  incredibly  important.  

−  Some)mes,  an  assump)on  or  an  algorithmic  choice  that’s  been  made  there  may  introduce  a  systema)c  that  drowns  out  the  signal  (or  eliminates  it).  •  Different  deblending  algorithm  (or  no  deblending)  •  Extremely  crowded  field  photometry  (e.g.,  globular  clusters)  •  Searching  for  SNe  light  echos  •  Characteriza)on  of  diffuse  structures  (e.g.,  ISM)  

−  For  op)mal  inference,  one  would  always  construct  a  measurement  that  directly  forward-­‐models  the  aspect  of  the  imaging  data  they’re  interested  in,  and  not  the  catalog.  Or  derive  a  more  appropriate  catalog.  Can  we  do  this?  

Model          ß  inference  –          Data  

Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data  

Page 34: GaiaCal2014: Creating and Calibrating LSST Data Product

34 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Discussion  Point:  Can  We  Skip  the  Catalogs?  

−  Some  reasons  we  don’t  do  this:  1.  Computa)onally  (and  I/O  !!)  intensive  2.  Conceptually  difficult  

-  Exper)ze  in  sta)s)cs,  applied  math,  and  soqware  engineering  is  oqen  not  there  -  Catalogs  are  too  oqen  taken  as  “$DEITY  given”,  fundamental,  result  of  a  survey  

−  Things  are  changing  •  Big  data  problems  are  becoming  increasingly  computa)onally  tractable  

-  Most  of  the  cost  of  LSST  DM  is  not  in  the  hardware,  it’s  in  the  people  wri)ng  the  soqware.  LSST  compu)ng  hardware  in  ~2020  ==  ~$3-­‐5M/yr  (just  ~200  TFLOPS!).  

•  The  basic,  modular,  soqware  components  are  being  made  available  by  big  surveys,  lowering  the  barrier  to  entry.  Average  astronomer  in  the  2020s  will  grow  up  with  an  expecta)on  of  being  well  versed  in  Stats,  SE,  Appl.  Math.  

Model          ß  inference  –          Data  

Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data  

Page 35: GaiaCal2014: Creating and Calibrating LSST Data Product

35 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Discussion  Point:  Can  We  Skip  the  Catalogs?  

−  LSST  “Level  3”  concept  is  the  first  step  in  that  direc)on:  Enabling  the  community  to  create  new  products  using  LSST’s  soqware,  services,  or  compu)ng  resources.  This  means:  •  Providing  the  soKware  primi%ves  to  construct  custom  

measurement/inference  codes  •  Enabling  the  users  to  run  those  codes  at  the  LSST  data  center,  

leveraging  the  investment  in  I/O  (piggyback  onto  LSST’s  data  trains).    

−  Looking  ahead:  Right  now,  we  see  the  data  releases  as  the  key  product  of  a  survey.  By  the  end  of  LSST,  I  wouldn’t  be  surprised  if  we  saw  the  soKware  as  the  key  product,  with  hundreds  specialized  (and  likely  ephemeral)  catalogs  being  generated  by  it.  

−  The  “data  releases”  will  just  be  some  of  those  catalogs,  designed  to  be  more  broadly  useful  than  others,  and  retained  for  a  longer  period  of  )me.    

−  LSST  soKware  soKware  and  hardware  is  being  engineered  to  make  this  possible.  

Page 36: GaiaCal2014: Creating and Calibrating LSST Data Product

36 GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014

Summary  

−  LSST  will  provide  photometric  (ugrizy)  and  shape  characteriza)on  for  ~40B  objects  (to  r=27.5)  over  ~half  the  sky  (southern  hemisphere),  with  ~800-­‐1000  epochs  per  object  (to  r=24.5).    

−  LSST  products  will  consist  of  images,  catalogs,  and  the  soqware  used  to  produce  them.  We  try  to  minimize  informa)on  loss  by  retaining  the  informa)on  about  the  likelihoods  (extended  sources  only  (for  now)).  We  will  report  above-­‐the-­‐atmosphere  fluxes  calibrated  to  a  standard  band.    

−  Astrophysical  calibra)on  of  LSST  is  not  a  formal  part  of  the  project;  the  community  (Science  Collabora)ons)  is  beginning  to  think  about  it.  In  the  Galac)c  context,  Gaia  will  provide  crucial  calibra)ons  for  LSST.  

−  Going  forward,  we  expect  that  enabling  user-­‐generated  soqware  (“Level  3”)  will  be  increasingly  important.  

Page 37: GaiaCal2014: Creating and Calibrating LSST Data Product