Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences...

91
Gabriel Kotliar Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513, (2007) PT Colloquium LANL May 3 PT Colloquium LANL May 3 rd rd 2007 2007 1 1 Strong Correlation Effects Strong Correlation Effects in the Actinide Series in the Actinide Series
  • date post

    22-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences...

Page 1: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Gabriel KotliarGabriel Kotliar

and Center for Materials Theory

$upport : NSF -DMR DOE-Basic Energy Sciences

Collaborators: K. Haule and J. Shim Ref: Nature 446, 513, (2007)

PT Colloquium LANL May 3PT Colloquium LANL May 3rdrd 2007 2007

11

Strong Correlation Effects in the Strong Correlation Effects in the Actinide SeriesActinide Series

Page 2: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Band Theory: electrons as waves.

Landau Fermi Liquid Theory.

Electrons in a Solid:the Standard Model Electrons in a Solid:the Standard Model

•Quantitative Tools. Density Functional Theory

•Kohn Sham (1964)2 / 2 ( )[ ] KS kn kn knV r Er y y- Ñ + =

Rigid bands , optical transitions , thermodynamics, transport………

Static Mean Field Theory.

22

[ ]totE r

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

[ ]nk E kn band index, e.g. s, p, d,,fn band index, e.g. s, p, d,,f

M. VanSchilfgaardeM. VanSchilfgaarde

Page 3: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Strong Correlation Problem:where Strong Correlation Problem:where the standard model failsthe standard model fails

• Fermi Liquid Theory works but parameters can’t be computed in perturbation theory.

• Fermi Liquid Theory does NOT work . Need new concepts to replace of rigid bands !

• Partially filled d and f shells. Competition between kinetic and Coulomb interactions.

• Breakdown of the wave picture. Need to incorporate a real space perspective (Mott).

• Non perturbative problem.

44

Page 4: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

5f elements: actinide series5f elements: actinide series

s/cs/c AFAF FMFM

Deocalisation Localization Deocalisation Localization

1.4K1.4K 0.40.4KK

0.9K0.9K 0.8K0.8K 52K52K 25K25K 52K52K

Page 5: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Delocalization Localization in ActinidesDelocalization Localization in Actinides

after G. Lander, Science (2003).

Mott Transition

PuPu

Page 6: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Basic Questions Basic Questions

• How does the electron go from being localized to itinerant.

• How do the physical properties evolve.

• How to bridge between the microscopic information (atomic positions) and experimental measurements.

• New concepts, new techniques….. DMFT simplest approach to meet this challenge

Page 7: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Phases of Pu Phases of Pu A. Lawson. Los Alamos ScienceA. Lawson. Los Alamos Science

Page 8: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Small amounts of impurities stabilize Small amounts of impurities stabilize phase. phase. A. Lawson Los Alamos ScienceA. Lawson Los Alamos Science

Page 9: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Anomalous ResistivityAnomalous Resistivity

2 ( )F Fe k k l

h

Maximum metallic resistivity 2

Fe k

h

Page 10: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Specific heat and susceptibility. Specific heat and susceptibility. Pu is non magnetic Pu is non magnetic

J. Lashley J. Lashley

Page 11: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Standard model FAILS in the late actinidesStandard model FAILS in the late actinides

• Predicts Pu and Am to be magnetic, with a large moment. (about 5 B)

• Paramagnetic DFT understimates volume of delta Pu by 25 %

• Many proposals to explain why Pu is non magnetic. Mixed level model Zwicknagl and Fulde , Erickson Balatzki Wills , (5f)4 conf.

LDA+U (Shick, Anisimov) (5f)6 conf

• Cannot account for anomalous transport and thermodynamics

Page 12: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

DMFT Spectral Function Photoemission and DMFT Spectral Function Photoemission and correlationscorrelations

• Probability of removing an electron and transfering energy =Ei-Ef, and momentum k

f() A() M2

e

Angle integrated spectral Angle integrated spectral function function

( , ) ( )dkA k A 88

a)a) Weak CorrelationWeak Correlation

b)b) Strong CorrelationStrong Correlation

Page 13: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

DMFT cavity construction. A. Georges and G. Kotliar PRB 45, 6479 (1992).DMFT cavity construction. A. Georges and G. Kotliar PRB 45, 6479 (1992). H Happy appy marriage of atomic and band physics. Extremize functional of A(marriage of atomic and band physics. Extremize functional of A())

Reviews: A. Georges G. Kotliar W. Krauth and M. Rozenberg RMP68 , 13, 1996 Gabriel Kotliar and Dieter Vollhardt Physics Today 57,(2004). G. Kotliar S. Savrasov K. Haule V. Oudovenko O. Parcollet and C. Marianetti (RMP 2006).

1( , )

( )k

G k ii i

Extremize a functional of the local spectra. Local self energy.

Page 14: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Dynamical Mean Field TheoryDynamical Mean Field Theory• Weiss field is a function. Multiple scales in strongly correlated

materials.• Exact large coordination (Metzner and Vollhardt 89) .• Not restricted to single site-CDMFT.• Extension to real materials DFT+DMFT. Input slater integrals. Functionals of density and spectra. Review Kotliar et. al. RMP (2006)

, ,

, 22

[ ] [ ]( )

[ ] [ ]spd sps spd f

f spd ff

H k H kk

H k H ke

æ ö÷ç ÷ç ÷ç ÷çè ø®

| 0 ,| , | , | | ... JLSJM g> ­> ¯> ­ ¯> >®

1212

Page 15: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Total­Energy­as­a­function­of­volume­for­Total­Energy­as­a­function­of­volume­for­Pu­Pu­W (ev) vs (a.u. 27.2 ev)

(Savrasov, Kotliar, Abrahams, Nature ( 2001)Non magnetic correlated state of fcc Pu.

iw

Nick Zein Following Aryasetiwan et. al. PRB 70 195104. (2004)

Moment is first reduced by orbital spin moment compensation. The

remaining moment is screened by the spd and f electrons

Page 16: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Double well structure and Double well structure and Pu Pu Qualitative explanation of negative thermal expansion[Lawson, A. C., Roberts J. A., Martinez, B., and Richardson, J. W., Jr. Phil. Mag. B, 82, 1837,(2002). G. Kotliar J.Low Temp. Physvol.126, 1009 27. (2002)]

Natural consequence of the conclusions on the model Hamiltonian level. We had two solutions at the same U, one metallic and one insulating. Relaxing the

volume expands the insulator and contract the metal.

F(T,V)=Fphonons+F(T,V)=Fphonons+FinvarFinvar

Page 17: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

DMFT­­Phonons­in­fcc­DMFT­­Phonons­in­fcc­-Pu-Pu

  C11 (GPa) C44 (GPa) C12 (GPa) C'(GPa)

Theory 34.56 33.03 26.81 3.88

Experiment 36.28 33.59 26.73 4.78

( Dai, Savrasov, Kotliar,Ledbetter, Migliori, Abrahams, Science, 9 May 2003)

(experiments from Wong et.al, Science, 22 August 2003)2121

Page 18: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

The “DMFT-The “DMFT-valence” in the valence” in the late actinides.late actinides.

Time scale of the fluctuations. Ef*

Page 19: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

­­Photoemission­Gouder , Havela PRB

2002, 2003

Page 20: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Photoemission­Spectra[­Shim.­Photoemission­Spectra[­Shim.­Haule,GK­Nature­(2007)]Haule,GK­Nature­(2007)]

alpa->delta­volume­collapse­transition

F0=4,F2=6.1

F0=4.5,F2=7.15

Page 21: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Photoemission and Mixed valence in Pu Photoemission and Mixed valence in Pu

-6 -4 -2 0 2 4 6

ENERGY(eV)

0.0

0.1

0.2

0.3

0.4

0.5

DOS

[Ground State> =a[f[Ground State> =a[f55 (spd) (spd)33> +b [f> +b [f6 6 (spd)(spd)22>>

<f5 ]<f5 ]----<f6]----<f6]

<f4 ]<f4 ]----<f5]----<f5]

<f6 ]----.<f7]<f6 ]----.<f7]

Page 22: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Approach the Mott point from the right Am under Approach the Mott point from the right Am under pressurepressureExperimental­Equation­of­State­(after Heathman et.al, PRL 2000)

Mott Transition?“Soft”

“Hard”

Page 23: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Am equation of state. LDA+DMFT.New acceleration Am equation of state. LDA+DMFT.New acceleration technique for solving DMFT equations S. Savrasov K. technique for solving DMFT equations S. Savrasov K. Haule G. Kotliar cond-mat. 0507552 (2005)Haule G. Kotliar cond-mat. 0507552 (2005)

Superconductivity ambient pressure J. L. Smith and R. G. Haire, Science 200, 535 (1978).

Page 24: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Mott transition in open (right) and closed (left) shell systems. Mott transition in open (right) and closed (left) shell systems. Superconductivity ? Application to Am ?Superconductivity ? Application to Am ?

S S

U U

TLog[2J+1]

Uc

~1/(Uc-U)

J=0

???

Tc

Page 25: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 26: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Resistivity of Am under pressure. J. C. Griveau et.al. PRL 94, 097002 (2005).

Page 27: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Photoemission spectra using Hubbard I solver and Sunca . Photoemission spectra using Hubbard I solver and Sunca . [Savrasov Haule and Kotliar cond-mat 0507552 PRL (2006)] [Savrasov Haule and Kotliar cond-mat 0507552 PRL (2006)]

Hubbard bands width is determined by multiplet splittings.Hubbard bands width is determined by multiplet splittings.

Expt Negele, Theory Savrasov HauleExpt Negele, Theory Savrasov Haule

Page 28: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Photomission Spectra of Am under pressure. Sunca. Onset of Photomission Spectra of Am under pressure. Sunca. Onset of

mixed valence. Savrasov Haule Kotliar (2005) PRL (2006)mixed valence. Savrasov Haule Kotliar (2005) PRL (2006)

Page 29: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

ConclusionsConclusions• Pu and Am are unique strongly correlated

elements. Unique mixed valence.

• They require, new concepts, new computational methods, new algorithms, DMFT !

• Interplay of theory and experiment.

• Many extensions of DMFT are possible, many strongly correlated compounds, research opportunity in correlated materials.

Page 30: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 31: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 32: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Prospects for Extensions and Applications Prospects for Extensions and Applications to More Complex Heavy Fermion Systems to More Complex Heavy Fermion Systems

• More complicated crystal structures, more atoms per unit cell. 115’s , alpha Pu……

• Non local physics. Heavy fermion quantum criticality. a) Local Quantum Criticality scenario of Q. Si and collaborators. Nature 413 (2001) 804. Single site EDMFT

b) Cluster Quantum Multicriticality. L. DeLeo and GK. Requires 2 impurity Kondo model for its description.

• Better interface with electronic structure

Page 33: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 34: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 35: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 36: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Conclusion AmConclusion Am

• Americium undergoes Mott transition under pressure. [AmIII-AmIV] boundary.

• Unusual superconductivity and resistivities.

• Theoretical clue mixed valent due to admixture of (5f) upon application of pressure.

• Realizes Mott transition from the insulating side, towards a close shell configuration..

Page 37: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 38: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

WW110110 =2/3<l.s> and banching ratio =2/3<l.s> and banching ratio

Moore and van der Laan, Ultramicroscopy 2007.

110

h

2 3 + B

5 5

w

n

Page 39: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

X Ray Absortion and Branching X Ray Absortion and Branching ratio:theory ShimHaule and Kotliarratio:theory ShimHaule and Kotliar

Expt. K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Page 40: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 41: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

. Mott transition in the open shell case. Heathman et. al. Science 309,110 (2006)

Approach the Mott transition from the right.

Page 42: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

LS coupling L=0 S=7

jj coupling J=7/2

=2S+L

Expt monent . is closer to L S coupling

Curium is magnetic Hurray et.al. Physica. B (1980) 217

Page 43: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

K.Haule­and­J.­Shim­K.Haule­and­J.­Shim­Trends­in­ActinidesTrends­in­Actinides

alpa->delta­volume­collapse­transition

Curium has large magnetic moment and orders antif Pu does is non

magnetic.

F0=4,F2=6.1

F0=4.5,F2=7.15

F0=4.5,F2=8.11

Page 44: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Conclusion Conclusion

• A Few References ……

• A.Georges, G. K., W. Krauth and M. J. Rozenberg, Reviews of . Modern Physics 68, 13 (1996).

• G. K, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C.A. Marianetti, RMP 78, 865-951, (2006).

• G. K and D. Vollhardt Physics Today, Vol 57, 53 (2004).

2929

Page 45: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

WW110110 =2/3<l.s> and banching ratio =2/3<l.s> and banching ratio

Moore and van der Laan, Ultramicroscopy 2007.

110

h

2 3 + B

5 5

w

n

Page 46: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

J. Tobin et.al. PRB 72,085109 (2005)J. Tobin et.al. PRB 72,085109 (2005)K. Moore et.al.K. Moore et.al.

XAS white lines branching ratio and EELS: Pu is closer to jj coupling

Page 47: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

2/3<l.s> in the late actinides [DMFT 2/3<l.s> in the late actinides [DMFT results: K. Haule and J. Shim ]results: K. Haule and J. Shim ]

See the expt. work of K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Am H2

Page 48: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

The “DMFT-The “DMFT-valence” in the valence” in the late actinides.late actinides.

Fluctuation time scale Ef*-1

Page 49: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 50: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 51: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 52: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

2/3<l.s> in the late actinides [DMFT 2/3<l.s> in the late actinides [DMFT results: K. Haule and J. Shim ]results: K. Haule and J. Shim ]

See the expt. work of K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Am H2

Page 53: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

WW110110 =2/3<l.s> and banching ratio =2/3<l.s> and banching ratio

See the expt. work of K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Am H2

Page 54: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

U/t=4.

Two Site Cellular DMFTTwo Site Cellular DMFT (G.. Kotliar et.al. PRL (2001)) in the 1D in the 1D Hubbard modelHubbard model M.Capone M.Civelli V. Kancharla C.Castellani and GK PRB

69,195105 (2004)T. D Stanescu and GK PRB (2006)

2424

Page 55: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 56: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

““Invar model “ for Pu-Ga. Lawson et. al.Phil. Mag. Invar model “ for Pu-Ga. Lawson et. al.Phil. Mag. (2006) Data fits only if the excited state has zero (2006) Data fits only if the excited state has zero

stiffness.stiffness.

Page 57: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

ConclusionsConclusions• Constant interplay between theory and

experiment has lead to new advances.• General anomalies of correlated electrons

and anomalous system specific studies, need for a flexible approach. (DMFT).

• New understanding of Pu. Methodology applicable to a large number of other problems, involving correlated electrions, thermoelectrics, batteries, optical devices, memories, high temperature superconductors, ……..

Page 58: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

ConclusionsConclusions

• DMFT produces non magnetic state, around a fluctuating (5f)^5 configuraton with correct volume the qualitative features of the photoemission spectra, and a double minima structure in the E vs V curve.

• Correlated view of the alpha and delta phases of Pu. Interplay of correlations and electron phonon interactions (delta-epsilon).

• Calculations can be refined in many ways, electronic structure calculations for correlated electrons research program, MINDLAB, ….

Page 59: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

What do we want from What do we want from materials theory?materials theory?

• New concepts , qualitative ideas

• Understanding, explanation of existent experiments, and predictions of new ones.

• Quantitative capabilities with predictive

power.

Notoriously difficult to achieve in strongly correlated materials.

Page 60: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Some new insights into the funny Some new insights into the funny properties of Puproperties of Pu

• Physical anomalies, are the result of the unique position of Pu in the periodic table, where the f electrons are near a localization delocalization transition. We learned how to think about this unusual situation using spectral functions.

• Delta and Alpha Pu are both strongly correlated, the DMFT mean field free energy has a double well structure, for the same value of U. One where the f electron is a bit more localized (delta) than in the other (alpha). Negative thermal expansion, multitude of phases.

Page 61: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Quantitative calculationsQuantitative calculations• Photoemission spectra,equilibrium volume,

and vibration spectra of delta. Good agreement with experiments given the approximations made.Many systematic improvements are needed.

• Work is at the early stages, only a few quantities in one phase have been considered.

• Other phases? Metastability ? Effects of impurities? What else, do electrons at the edge of a localization localization do ? [ See epsilon Pu spectra ]

Page 62: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Collaborators, Acknowledgements ReferencesCollaborators, Acknowledgements References

Los Alamos Science,26, (2000)

S. Savrasov and G. Kotliar Phys. Rev. Lett. 84, 3670-3673, (2000). S.Savrasov G. Kotliar and E. Abrahams, Nature 410, 793 (2001).

X. Dai,S. Savrasov, G. Kotliar,A. Migliori, H. Ledbetter, E. Abrahams Science, Vol300, 954 (2003).

Collaborators: S. Savrasov ( Rutgers-NJIT)

X. Dai ( Rutgers), E. Abrahams (Rutgers), A. Migliori (LANL),H Ledbeter(LANL).

Acknowledgements: G Lander (ITU) J Thompson(LANL)

Funding: NSF, DOE, LANL.

Page 63: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Cluster DMFTCluster DMFT: removes limitations of single site DMFTlimitations of single site DMFT

11 23

24

( , ) (cos cos )

cos coslatt k kx ky

kx ky

wS =S +S +

+S

•No k dependence of the self energy.

•No d-wave superconductivity.

•No Peierls dimerization.

•No (R)valence bonds.

Reviews: Reviews: Georges et.al. RMP(1996). Th. Maier et. al. RMP (2005); Kotliar et. .al. RMP (2006).

2323

Page 64: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

U/t=4.

Two Site Cellular DMFTTwo Site Cellular DMFT (G.. Kotliar et.al. PRL (2001)) in the 1D in the 1D Hubbard modelHubbard model M.Capone M.Civelli V. Kancharla C.Castellani and GK PRB

69,195105 (2004)T. D Stanescu and GK PRB (2006)

2424

Page 65: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

Self Energy Self Energy

VanShilfgaarde (2005)VanShilfgaarde (2005)

33

Page 66: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 67: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 68: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

ConclusionsConclusions

• Unique properties of Pu and Am under pressure result from a proximity of a localization delocalization transition. Rare form of mixed valence.

• DMFT provides a good start. Qualitative insights, some quantitative predictions into delta Pu. Other Pu phases.

• Meaningful interplay of theory and experiment. Key in condensed matter physics.

Page 69: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 70: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Smith Kmeko Phase diagram. Minimum in melting Smith Kmeko Phase diagram. Minimum in melting curve and divergence of the compressibility at the curve and divergence of the compressibility at the

Mott endpointMott endpoint

( )dT V

dp S

Vsol

Vliq

Page 71: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

The enhancement of the specific heat, further evidence for an The enhancement of the specific heat, further evidence for an open shell configuration, presence of electronic entropy. open shell configuration, presence of electronic entropy.

J. Lashley et.al. PRB(2005)

Page 72: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Double well structure and Double well structure and Pu Pu Qualitative explanation of negative thermal expansion[Lawson, A. C., Roberts J. A., Martinez, B., and Richardson, J. W., Jr. Phil. Mag. B, 82, 1837,(2002). G. Kotliar J.Low Temp. Physvol.126, 1009 27. (2002)]

Natural consequence of the conclusions on the model Hamiltonian level. We had two solutions at the same U, one metallic and one insulating. Relaxing the

volume expands the insulator and contract the metal.

F(T,V)=Fphonons+F(T,V)=Fphonons+FinvarFinvar

Page 73: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

““Invar model “ for Pu-Ga. Invar model “ for Pu-Ga.

(Data fits if the excited state has zero stiffness.(Data fits if the excited state has zero stiffness.

Page 74: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Dynamical Mean Field Theory. Cavity Construction.Dynamical Mean Field Theory. Cavity Construction. A. Georges and G. Kotliar PRB 45, 6479 (1992).A. Georges and G. Kotliar PRB 45, 6479 (1992).

0 0 0

( )[ ( ' ] ( '))o o o oc c U n nb b b

s st m tt

t t ­ ¯

¶+ D-

¶- +òò ò

,ij i j i

i j i

J S S h S- -å å eMF offhH S=-† †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

*

( )V Va a

a a

ww e

D =-å

† † † † †Anderson Imp 0 0 0 0 0 0 0

, , ,

( +c.c). H c A A A c c UcV c c c

A(A())

1010

Page 75: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

A. Georges, G. Kotliar (1992)

( )wDlatt ( ,

1 G [ ]

( ) [( ) ])

[ ]n impn

n

ik ii

ktw m

ww+ + - S

DD

=

latt( ) G ([ [)] ] ,imp n nk

G i i kw wD D=å

[ ]ijij

jm mJth hb= +å

11

( ( )( )

( [))

][ ]

imp n

imp n

kn

G i

Gti

ik

w

ww -D

D

=+-

å

A(A())

1111

Page 76: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Expt. Wong et. al.Expt. Wong et. al.

Page 77: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Elastic DeformationsElastic Deformations

In most cubic materials the shear does not depend strongly on crystal orientation,fcc Al, c44/c’=1.2, in Pu C44/C’ ~ 7 largest shear anisotropy of any element.

Uniform compression:p=-B V/V Volume conserving deformations:

F/A=c44 x/L F/A=c’ x/L

Page 78: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 79: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Localization Delocalization in ActinidesLocalization Delocalization in Actinides

after G. Lander, Science (2003).

Mott Transition

Modern understanding of this phenomena using functional Modern understanding of this phenomena using functional approach toDMFT. K Haule S.Savrasov J Shim approach toDMFT. K Haule S.Savrasov J Shim

PuPu

1818

Page 80: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

w110

nh

5

2B

3

5

110

h

2 3 + B

5 5

w

n

<w110> = n7/2 – 4/3 n5/2nf = n7/2 + n5/2

Page 81: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Spectral Function and PhotoemissionSpectral Function and Photoemission

• Probability of removing an electron and transfering energy =Ei-Ef, and momentum k

f() A() M2

e

Angle integrated spectral Angle integrated spectral function function

( , ) ( )dkA k A 88

Page 82: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in

the screened interactions (Hedin 1965)

Self Energy Self Energy

Succesful description of the total energy and the Succesful description of the total energy and the excitation spectra of a large number of simple metals excitation spectra of a large number of simple metals semiconductors and insulators.semiconductors and insulators.

Succesfully predicts semiconducting gaps, phonon Succesfully predicts semiconducting gaps, phonon frequencies, resistivities, of countless materials. frequencies, resistivities, of countless materials.

33

a)a) Weak CorrelationWeak Correlation

b)b) Strong CorrelationStrong Correlation

Page 83: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

T/W

Phase diagram of a Hubbard model with partial frustration at integer filling. [Rozenberg et. al. PRL 1995] Evolution of the Local Spectra as a function of U,and T. Mott transition driven by transfer of spectral weight Zhang Rozenberg Kotliar PRL (1993)..

.

Page 84: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

OUTLINE OUTLINE

• The challenge of strongly correlated electron systems. Heavy Fermions and Late actinides: experimental overview

• Introduction to Dynamical Mean Field Theory

(DMFT).

• Theory of delta Pu

• Theory of Am and Cm

• Conclusions

Page 85: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Inelastic X Ray. Phonon energy 10 Inelastic X Ray. Phonon energy 10 mev, photon energy 10 Kev.mev, photon energy 10 Kev.

E = Ei - EfQ =ki - kf

Page 86: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

WW110110 =2/3<l.s> and banching ratio =2/3<l.s> and banching ratio

Moore and van der Laan, Ultramicroscopy 2007.

110

h

2 3 + B

5 5

w

n

Page 87: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

2/3<l.s> in the late actinides [DMFT 2/3<l.s> in the late actinides [DMFT results: K. Haule and J. Shim ]results: K. Haule and J. Shim ]

See the expt. work of K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Am H2

Page 88: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

WW110110 =2/3<l.s> and banching ratio =2/3<l.s> and banching ratio

See the expt. work of K. Moore G. Van der Laan G. Haire M. Wall and A. Schartz

Am H2

Page 89: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Phonon freq (THz) vs q in delta Pu X. Phonon freq (THz) vs q in delta Pu X. Dai et. al. Science vol 300, 953, 2003Dai et. al. Science vol 300, 953, 2003

Page 90: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,
Page 91: Gabriel Kotliar and Center for Materials Theory $upport : NSF -DMR DOE-Basic Energy Sciences Collaborators: K. Haule and J. Shim Ref: Nature 446, 513,

Band Theory: electrons as waves.

Landau Fermi Liquid Theory.

Electrons in a Solid:the Standard Model Electrons in a Solid:the Standard Model

•Quantitative Tools. Density Functional Theory

•Kohn Sham (1964)2 / 2 ( )[ ] KS kn kn knV r Er y y- Ñ + =

Rigid bands , optical transitions , thermodynamics, transport………

Static Mean Field Theory.

22

[ ]totE r

Kohn Sham Eigenvalues and Eigensates: Excellent starting point for perturbation theory in the screened interactions (Hedin 1965)

[ ]nk E kn band index, e.g. s, p, d,,fn band index, e.g. s, p, d,,f