G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

16
DEVELOPMENT OF A NEW APPARATUS FOR THE ASSESSMENT OF HEALTH IMPACT FROM EXPOSURE TO FIRE COMBUSTION PRODUCTS G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4 1 School of Civil and Environmental Engineering 2 School of Chemical sciences 3 School of Chemical Engineering and Industrial Chemistry 4 School of Safety Science The University of New South Wales, Sydney 2052, Australia

description

DEVELOPMENT OF A NEW APPARATUS FOR THE ASSESSMENT OF HEALTH IMPACT FROM EXPOSURE TO FIRE COMBUSTION PRODUCTS. G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4 1 School of Civil and Environmental Engineering 2 School of Chemical sciences - PowerPoint PPT Presentation

Transcript of G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Page 1: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

DEVELOPMENT OF A NEW APPARATUS FOR THE ASSESSMENT OF HEALTH IMPACT FROM

EXPOSURE TO FIRE COMBUSTION PRODUCTS

G. Chattopadhyay1, Paul Hallahan2, Paul Brockbank3, F. Lestari4, A. Hayes4, A. Green4

1School of Civil and Environmental Engineering2School of Chemical sciences

3School of Chemical Engineering and Industrial Chemistry4School of Safety Science

The University of New South Wales, Sydney 2052, Australia

Page 2: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

TECHNIQUES INCORPORATED IN THE APPARATUS

• Fire combustion dynamics measurement (TGA analysis)

• In vitro cytotoxicity measurement – Impinger– Direct exposure

• Sampling for chemical analysis

• GC-MS Chemical analysis– Thermal desorption– Cryo-focusing

Page 3: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

TGA data Acc

Flow control

Load cell for TGA data

Tube furnace

Mixing chamber

Basic components of the apparatus

Frame

Page 4: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Temperature profile inside tube furnace at 680oC furnace setting

0

100

200

300

400

500

600

700

800

0 10 20 30 40

Distance from the bottom (cm)

Tem

per

atu

re (

oC

)

Tube Furnace

Quartz tube 1000 mm long X 40 mm diameter

Page 5: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Load Cell for TGA data

TGA data cable

Gas inlet

Bottom of the quartz Tube furnace

Ground glass joint Fits onto the tubefurnace

Hole in polycarbonateEnclosure to tarebalance

Polycarbonate enclosure

Page 6: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Mixing Chamber

Sampling lines

Exhaust line from mixing chamberto lab suction system

Exhaust line to lab suction system fromTube furnace enclosure

Mixing Chamber : 310 (L) X 300(W) X

310 (H)

Volume: 28.83 (L)

Page 7: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Flow control components

Temperature control forDirect exposure cells

Flow control for gas and sampling streams

Impinger

Suction pump for Collecting samples

Temperature control For tube furnace

Page 8: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Air sampling using culture medium (serum free)

96 well platesMTS assay

Experiment flowchart

Impinger method

Page 9: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

                                              

inletoutlet

membrane

Membrane preparationSnapwell insert

Navicyte chamber MTS Assay

Direct exposure at the air/liquid interface

Page 10: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Chemical analysis for combustion products

Sorption in a solid sorbent

ATD-GCMS

Page 11: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Tube DesorbTube Desorb

Cold trap at -20° CCold trap at -20° C

To GC column transfer lineTo GC column transfer line

Page 12: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Trap DesorbTrap Desorb

To GC column transfer lineTo GC column transfer line

Page 13: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

PMMA Mass Loss Data (Non-Flaming)

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000

Time (second)

weig

ht

(gra

m)

Page 14: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Preliminary result CO2

Impinger methodDirect exposure

0

20

40

60

80

100

120

0 20 40 60 80 100

Dose %

% C

ell v

iabi

lity

Air

A549

HepG2

Fibroblast

0%

20%

40%

60%

80%

100%

120%

Control CO2

% C

ell v

iabi

lity

A549

HepG2

Fibroblast

Page 15: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

4h post exposure incubation time

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Dose (%)

%ce

ll vi

abili

ty

A549

Fibro

HepG2

24 h postexposure incubation time

0

20

40

60

80

100

120

0 20 40 60 80 100

Dose (%)

% c

ell v

iabi

lity

A549

Skin Fibroblast

HepG2

PMMA cytotoxicity under non-flaming condition at different post exposure time

Page 16: G. Chattopadhyay 1 , Paul Hallahan 2 , Paul Brockbank 3 , F. Lestari 4 , A. Hayes 4 , A. Green 4

Potential applicationsPotential applications

• Fire toxicity testing for materials or products

• Screening and early sign of fire hazard to fire fighters (biosensor)

• Toxicity studies for gases, particulates, non-hydrosoluble compounds, complex mixtures, and organic volatile compounds

• Many applications in odour analysis and odour management