FYP Poster

1
Carbon Nanotube Composites: Proper2es, Problems and Poten2al Samuel Chuah Department of Civil Engineering, Monash University, Australia (Email: [email protected] ) Acknowledgements This study is currently in progress for the Final Year Project. This Poster is made possible with the help of my supervisor, Asghar Korayem and Unit Coordinator Dr. Wen Hui Duan Table 1: Time planner for Semester 1 2012. Objec2ves 1. IncorporaPng the properPes of carbon nanotube to nanocomposites 2. Understand the reinforcement mechanisms of carbon nanotube in an epoxy and cement matrix 3. Conduct the experiments in a safe and proper manner 4. Study the role and properPes of epoxy in facilitaPng a successful composite 5. InvesPgate possible failure modes in carbon nanotube Fig. 1: Growing demand for steel Data to Collect Conclusion Further studies and tests are required to fully understand and hence, maximise the potenPal of carbon nanotubes as a composite material. Scope/Methodology 1. Conduct literature review on carbon nanotubes, nano material reinforced polymers, nano cement and concrete composites 2. Fabricate and idenPfy the characterisPcs of nano epoxy composites 3. Perform laboratory tests to invesPgate the relevant characterisPcs of carbon nanotube composites. 4. Provide a comprehensive report regarding the project outcomes. Time Schedule Fig. 6: Experimental variables. Fig. 5: Tensile test. #53 Aim Ensuring a reliable and easily available building material to meet the market demand Exploring carbon nanotubes as an alternaPve construcPon material to convenPonal steel Harnessing the superior characterisPcs of nanocarbons in the construcPon industry specifically Fig. 2: Conceptual design of Shimizu City ProperPes Mechanical Density Young’s Modulus Tensile Strength Flexural strength Flexural modulus Hardness Thermal T g Storage modulus Loss modulus Fig. 4: Laboratory work. Fig. 3: Sample fabrication. Current Progress

Transcript of FYP Poster

Page 1: FYP Poster

Carbon  Nanotube  Composites:  Proper2es,  Problems  and  Poten2al  Samuel  Chuah  Department  of  Civil  Engineering,  Monash  University,  Australia  (E-­‐mail:  [email protected])    

Acknowledgements  This  study  is  currently  in  progress  for  the  Final  Year  Project.  This  Poster  is  made  possible  with  the   help   of   my   supervisor,   Asghar   Korayem  and  Unit  Coordinator  Dr.  Wen  Hui  Duan  

Table 1: Time planner for Semester 1 2012.

Objec2ves  1.  IncorporaPng  the  properPes  of  carbon  nanotube  to  

nanocomposites  2.  Understand  the  reinforcement  mechanisms  of  carbon  

nanotube  in    an  epoxy  and  cement  matrix  3.  Conduct  the  experiments  in  a  safe  and  proper  manner  4.  Study  the  role  and  properPes  of  epoxy  in  facilitaPng  a  

successful  composite  5.  InvesPgate  possible  failure  modes  in  carbon  nanotube  

Fig. 1: Growing demand for steel

Data  to  Collect  

Conclusion  Further   studies   and   tests   are  required   to   fully   understand  and   hence,   maximise   the  potenPal   of   carbon   nanotubes  as  a  composite  material.  

Scope/Methodology  1.  Conduct  literature  review  on  

carbon  nanotubes,  nano  material  reinforced  polymers,  nano  cement  and  concrete  composites  

2.  Fabricate  and  idenPfy  the  characterisPcs  of  nano  epoxy  composites  

3.  Perform  laboratory  tests  to  invesPgate  the  relevant  characterisPcs  of  carbon  nanotube  composites.  

4.  Provide  a  comprehensive  report  regarding  the  project  outcomes.  

Time  Schedule    

Fig. 6: Experimental variables. Fig. 5: Tensile test.

#53  

Aim  Ø Ensuring  a  reliable  and  easily  available  building  material                to  meet  the  market  demand  Ø Exploring  carbon  nanotubes  as  an  alternaPve              construcPon  material  to  convenPonal  steel  Ø Harnessing  the  superior  characterisPcs  of  nanocarbons            in  the  construcPon  industry  specifically  

Fig. 2: Conceptual design of Shimizu City

ProperPes  

Mechanical  

Density  Young’s  Modulus   Tensile  

Strength  Flexural  strength  

Flexural  modulus  

Hardness  

Thermal  

Tg  

Storage  modulus  

Loss  modulus  

Fig. 4: Laboratory work.

Fig. 3: Sample fabrication.

Current  Progress