Fusion Reactor Technology I - ocw.snu.ac.kr

36
F usion Reactor Technology I (459.760, 3 Credits) Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Transcript of Fusion Reactor Technology I - ocw.snu.ac.kr

Page 1: Fusion Reactor Technology I - ocw.snu.ac.kr

Fusion Reactor Technology I(459.760, 3 Credits)

Prof. Dr. Yong-Su Na

(32-206, Tel. 880-7204)

Page 2: Fusion Reactor Technology I - ocw.snu.ac.kr

Week 1. ์—๋„ˆ์ง€์™€ ์ง€๊ตฌํ™˜๊ฒฝ ๋ฌธ์ œ

Week 2-3. ํ† ์นด๋ง‰๋กœ์˜ ๊ธฐ์ดˆ

Week 4-6. ํ† ์นด๋ง‰๋กœ์˜ ์„ค๊ณ„

Week 8-9. ๋…ธ์‹ฌ ํ”Œ๋ผ์ฆˆ๋งˆ์— ๊ด€ํ•œ ๊ธฐ๋ฐ˜๊ณผ ๊ณผ์ œ

Week 10-13. ๋…ธ๊ณตํ•™ ๊ธฐ์ˆ ์— ๊ด€ํ•œ ๊ธฐ๋ฐ˜๊ณผ ๊ณผ์ œ

Week 14. ์ƒ์šฉ๋กœ์˜ ๊ธธ / Project Presentation

2

Contents

Page 3: Fusion Reactor Technology I - ocw.snu.ac.kr

3

โ€ข Tritium

- The name is formed from the Greek word "tritosโ€œ meaning "third".

- Total steady state atmospheric and oceanic quantity produced

by cosmic radiation ~ 50 kg

โ€ข Tritium production by heavy water reactors (HWR)

- Extracted from the coolant and moderator of HWR

- Tritium could also be produced by placing lithium into control and shim

rods of fission reactors.

HHn 3

1

2

1

http://lhs2.lps.org/staff/sputnam/chem_notes/UnitII_Radioactivity.htmhttp://www-pord.ucsd.edu/whp_atlas/pacific/maps/tritum/pac2600_tritium_final.jpg

Ch. 2 ํ† ์นด๋ง‰๋กœ์˜ ๊ธฐ์ดˆ์‚ผ์ค‘์ˆ˜์†Œ ํ•œ์ˆ˜์› ์ž๋ฃŒ ์ฐธ๊ณ 

Page 4: Fusion Reactor Technology I - ocw.snu.ac.kr

4

Ch. 2 ํ† ์นด๋ง‰๋กœ์˜ ๊ธฐ์ดˆ

Deuterium(D)

Tritium(T)

Hydrogen(H)

Deuteron Triton

eeHeT 13

2

3

1

p

nn

e

p

n

e

pe

ฮฝeepn

Neutrino (โ€œlittle neutral oneโ€ in Italian by Fermi):

First postulated in 1930 by Wolfgang Pauli to

preserve conservation laws in beta decay

โ€ข Tritium

http://en.wikipedia.org/wiki/Neutrino

Proton

Page 5: Fusion Reactor Technology I - ocw.snu.ac.kr

5

Ch. 2 ํ† ์นด๋ง‰๋กœ์˜ ๊ธฐ์ดˆ

Ci

Ci

Bq

kg

kgs

m

Mn

dt

dnAct

t

tttt

t

7

10

17

17

27

19

10

107.3

1056.3

1056.3

105

11078.1

1 Bq (becquerel): unit of radioacitivity (SI unit).

activity of a quantity of radioactive material in

which one nucleus decays per second

1 Ci (curie): 3.7x1010 decays per second (Bq)

~ activity of 1 g of the radium isotope 226Ra

studied by the Curies

โ€ข Tritium

- Half life of 12.32 years with decay rate of 1.78x10-9 s-1

- Releasing 18.6 keV of energy with 5.7 keV of an average kinetic

energy of electrons

- Nuclear activity (decay rate of 1 kg of tritium)

Page 6: Fusion Reactor Technology I - ocw.snu.ac.kr

6

C. S. Kim, โ€œTritium Export Preparation for ITER Operation and Fusion Applicationsโ€, May 25, 2006, NFRI

โ€ข Total tritium to be received:

~ 29 kg due to tritium decay

โ€“ Decay rate: 5.47 %/year (Half life: 12.3 year)

โ€ข ITER Tritium Plant will be ready by 2016.

โ€ข Tritium available worldwide: ~ 20 kg (2006, Canada OPG) (+ Korea WTRF)

โ€“ ITER Tritium credit: $30M/kg

โ€“ Market value: $100M-$200M/kg (~1์–ต/g)

โ€ข Only one supplier for ITER written on the ITER documents now: Canada

โ€ข Canada OPG sells ~ 0.1 kg/year for other purposes.

โ€ข There is no other kgโ€™s order civilian tritium source at all.

โ€ข WTRF can produce more than 0.7 kg/year from year 2006.

โ€ข We have Tritium and good reason to supply.

โ€“ Korea is a partner for ITER, Canada is not.

โ€“ Korea is to procure the Tritium Storage and Delivery System for ITER.

Tritium Export

Page 7: Fusion Reactor Technology I - ocw.snu.ac.kr

7

Tritium Fuel Dynamics (Hams Ch.14)

Tritium

Loss, ฮตb

F+t,c

F-t,c

F+t,x

F-t,b

Page 8: Fusion Reactor Technology I - ocw.snu.ac.kr

8

Mechanisms of tritium transport

1) Intragranular diffusion

2) Grain boundary diffusion

3) Surface adsorption/desorption

4) Pore diffusion

5) Purge flow convection

(solid/gas interface where adsorption/desorption occurs)

Li(n, 4He)T

Purge gas composition:

He + 0.1% H2

Tritium release composition:

T2, HT, T2O, HTO

Breeder

pebble

Page 9: Fusion Reactor Technology I - ocw.snu.ac.kr

Tritium Fuel Dynamics (Hams Ch.14)

0,,,

, dtcttdtctct

ctRFfRFF

dt

dN

b

bt

dtt

btbbtt

bt

bt

dtt

btbbttbtbt

bt

NRC

NNN

RC

NNFFdt

dN

,

,,

,

,

,,,,

,

bt

btb

,

11

0)0(, btN

bb

t

bdtt

t

bt eRCBAeN 1,

9

Steady state

t

dtct

f

RF ,

ft: respective burn

fraction of tritium

Tritium decay neglected due to shorter time scale

Page 10: Fusion Reactor Technology I - ocw.snu.ac.kr

Tritium Fuel Dynamics (Hams Ch.14)

xt

t

xtxt

t

dt

t

bt

bdtt

xtxxtt

t

dt

bt

bt

xtxxttxtxt

xt

NAeAA

Nf

Re

RC

NNf

RN

NNFFdt

dN

b

b

,210

,

,

,,

,

,

,,,,

,

1

10

xt

bt

btdt

tbt

btdt ACRA

fCRA

2

,

1

,

0 , ,1

t

dtctxt

f

RFF ,,

b

t

bdttbt eRCN 1,

Page 11: Fusion Reactor Technology I - ocw.snu.ac.kr

Tritium Fuel Dynamics (Hams Ch.14)

0,, )0( txt NN

11

2

0

2

1

2

0

2

10,

321,

11 2

2

A

Ae

A

Ae

A

A

A

AN

cececN

b

b

t

b

tA

b

t

t

tA

xt

Page 12: Fusion Reactor Technology I - ocw.snu.ac.kr

12

1. ์ค‘์„ฑ์ž์™€๋ฌผ์งˆ๊ณผ์˜์ƒํ˜ธ์ž‘์šฉ

โ€ข ์ค‘์„ฑ์ž๋Š” ๋ฌผ์งˆ์„ ๊ตฌ์„ฑํ•˜๋Š” ์›์ž์˜ ๊ถค๋„์ „์ž์— Coulomb force๋ฅผ

๋ฏธ์น˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์›์ž, ๋ถ„์ž๋ฅผ ์ง์ ‘ ์ „๋ฆฌ์‹œํ‚ค์ง€ ๋ชปํ•จ.

โ€ข ์ฃผ์š” ์ƒํ˜ธ์ž‘์šฉ

- ํƒ„์„ฑ์‚ฐ๋ž€

- ๋น„ํƒ„์„ฑ์‚ฐ๋ž€

- ์ค‘์„ฑ์ž ํฌํš

- ํ•˜์ „์ž…์ž์˜ ๋ฐฉ์ถœ (ํ•ต๋ณ€ํ™˜)

- ํ•ต๋ถ„์—ด ๋ฐ˜์‘

HW. ์ค‘์„ฑ์ž์™€ plasma ion ๊ฐ„ scattering ํšจ๊ณผ๋Š” ๋ฌด์‹œํ• ๋งŒํ•œ๊ฐ€? ์™œ?

Page 13: Fusion Reactor Technology I - ocw.snu.ac.kr

13

1) ํƒ„์„ฑ์‚ฐ๋ž€

โ€ข ์ค‘์„ฑ์ž๊ฐ€ ์›์žํ•ต๊ณผ ํƒ„์„ฑ์ถฉ๋Œํ•˜์—ฌ ์›์žํ•ต์€ ์šด๋™์—๋„ˆ์ง€๋ฅผ ๊ฐ€์ง€๊ณ  recoil ๋˜๊ณ ,

์ค‘์„ฑ์ž๋Š” ๊ทธ ๋งŒํผ ์šด๋™์—๋„ˆ์ง€๋ฅผ ์žƒ๊ณ  ์‚ฐ๋ž€๋˜๋Š” ํ˜„์ƒ (n,n)

โ€ข ์ค‘์„ฑ์ž์˜ ์—๋„ˆ์ง€ < ์›์žํ•ต์˜ ์—ฌ๊ธฐ์—๋„ˆ์ง€ (~1 MeV)

โ€ข Maximum of energy transferred to the atom by head-on collision

(๋ฐ˜๋ฐœ์›์žํ•ต์˜ ์—๋„ˆ์ง€)

- ์ˆ˜์†Œ์›์žํ•ต์ผ ๋•Œ ์ตœ๋Œ€

- ์ค‘์›์†Œ์˜ ๊ฒฝ์šฐ์—๋Š” ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ์ž‘์Œ.

- ๊ฐ€๋ฒผ์šด ์›์†Œ์˜ ๋ฌผ์งˆ์€ ํˆฌ๊ณผํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ณ , ๋ฌด๊ฑฐ์šด ์›์†Œ์˜ ๋ฌผ์งˆ์€

ํˆฌ๊ณผํ•˜๊ธฐ ์‰ฌ์›€.

โ€ข ๋ฐ˜๋ฐœ์›์žํ•ต์€ ๊ถค๋„์ „์ž์˜ ์ผ๋ถ€ ๋˜๋Š” ์ „๋ถ€๋ฅผ ๋ฐ”๊ฟ€ ์ •๋„๋กœ ๊ณ ์†์œผ๋กœ ์›€์ง์ž„.

โ€“ ๊ทผ์ฒ˜์˜ ์›์ž, ๋ถ„์ž๋ฅผ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ ์‹œํ‚ด (๋ฐ˜๋ฐœํ•ต์— ์˜ํ•œ ๊ฐ„์ ‘์ ์ธ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ).

incEA

A

mm

mmvmE

22

21

212

11max)1(

4

)(

4

2

1)(

A: ๋ฐ˜๋ฐœ ์›์žํ•ต์˜ ์งˆ๋Ÿ‰์ˆ˜

Einc: kinetic energy of the incident ion (neutron)

Page 14: Fusion Reactor Technology I - ocw.snu.ac.kr

14

2) ๋น„ํƒ„์„ฑ์‚ฐ๋ž€

โ€ข ์ค‘์„ฑ์ž๊ฐ€ ์›์žํ•ต๊ณผ ์ถฉ๋Œํ•˜๋ฉด์„œ ์›์žํ•ต์— ๋ฐ˜๋ฐœ์—๋„ˆ์ง€๋ฅผ ์คŒ๊ณผ ๋™์‹œ์— ํ•ต์„

์—ฌ๊ธฐ์‹œํ‚ค๋Š” ํ˜„์ƒ (n,nโ€™)

โ€ข ์ค‘์„ฑ์ž์— ์˜ํ•ด ์—ฌ๊ธฐ๋œ ์›์žํ•ต์€ ๊ณง ฮณ์„ ์„ ๋ฐฉ์ถœํ•˜๊ณ  ๊ธฐ์ €์ƒํƒœ๋กœ ๋Œ์•„๊ฐ.

โ€ข ๋ฐฉ์ถœ๋œ ฮณ์„ ์ด ์ฃผ์œ„์˜ ์›์ž, ๋ถ„์ž๋ฅผ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ ์‹œํ‚ด (๊ฐ„์ ‘์ ์ธ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ).

โ€ข ์ค‘์„ฑ์ž์˜ ์—๋„ˆ์ง€๊ฐ€ ๋†’์„ ์ˆ˜๋ก ์ผ์–ด๋‚˜๊ธฐ ์‰ฌ์›€ (>ํ•ต์˜ ์—ฌ๊ธฐ์—๋„ˆ์ง€).

์ˆ˜ MeV๊ฐ€ ๋˜๋ฉด ํƒ„์„ฑ์‚ฐ๋ž€๊ณผ ๊ฐ™์€ ๋น„์œจ๋กœ ์ผ์–ด๋‚จ.

ํ•ต์˜ ์—ฌ๊ธฐ์—๋„ˆ์ง€ ๋ณด๋‹ค ์ž‘์•„์ง€๋ฉด ์ผ์–ด๋‚˜์ง€ ์•Š์Œ.

Page 15: Fusion Reactor Technology I - ocw.snu.ac.kr

15

3) ํฌํš

โ€ข ์ค‘์„ฑ์ž์˜ ์†๋„๊ฐ€ ๋Š๋ ค์ง€๋ฉด (< 1 keV) ์›์žํ•ต์— ์ถฉ๋Œํ•˜์—ฌ๋„ ์‚ฐ๋ž€์ด ์ผ์–ด๋‚˜์ง€

์•Š๊ณ  ๊ทธ๋Œ€๋กœ ์›์žํ•ต์— ํฌํš๋˜์–ด ํก์ˆ˜๋จ. ํฌํš ์งํ›„ ์›์žํ•ต์€ ์—ฌ๊ธฐ์ƒํƒœ๊ฐ€

๋˜์–ด ์—๋„ˆ์ง€๋ฅผ ฮณ์„ (ํฌํš ฮณ์„ )์˜ ํ˜•ํƒœ๋กœ ๋ฐฉ์ถœํ•˜๊ณ  ์•ˆ์ •ํ™”๋จ (n,ฮณ).

โ€ข ์ค‘์„ฑ์ž๋ฅผ ํฌํšํ•œ ์›์žํ•ต์€ ์งˆ๋Ÿ‰์ˆ˜๊ฐ€ 1๋งŒํผ ๋งŽ์€ ๋™์œ„์›์†Œ๊ฐ€ ๋จ.

๋ฐฉ์‚ฌ์„ฑ์ธ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์Œ.

ex) 59Co(n,ฮณ)60Co

โ€ข ์ค‘์„ฑ์ž์˜ ์—๋„ˆ์ง€๊ฐ€ ๋‚ฎ์„ ์ˆ˜๋ก ์ผ์–ด๋‚˜๊ธฐ ์‰ฌ์›€.

1 eV ์ดํ•˜์—์„œ ํฌํš๋‹จ๋ฉด์ ์€ 1/v์— ๋น„๋ก€ํ•˜์—ฌ ์ฆ๊ฐ€

์—ด์ค‘์„ฑ์ž์—์„œ ์‰ฝ๊ฒŒ ๋ฐœ์ƒ

cf) ๊ณ ์†์ค‘์„ฑ์ž (500 keV ~ 10 MeV). ์ €์†์ค‘์„ฑ์ž (1 eV ~ 500 keV)

โ€ข ๊ณต๋ช…ํฌํš: ํŠน์ •ํ•œ ์›์žํ•ต์ด ํŠน์ •ํ•œ ์—๋„ˆ์ง€์˜ ์ค‘์„ฑ์ž์— ๋Œ€ํ•˜์—ฌ ๋†’์€

ํฌํš๋‹จ๋ฉด์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ˜„์ƒ. ํ•ต์ข…์— ๋”ฐ๋ผ ๊ณ ์œ ๊ฐ’์„ ๊ฐ€์ง.

โ€ข ๊ฒฐ๊ตญ ์ค‘์„ฑ์ž๋Š” ์—ด์ค‘์„ฑ์ž๋กœ ๋ณ€ํ•˜์—ฌ ์›์žํ•ต์— ํฌํšโˆ™ํก์ˆ˜๋˜๊ฑฐ๋‚˜

ํ˜น์€ ๋ฒ ํƒ€๋ถ•๊ดด๋ฅผ ํ†ตํ•ด ๋ถ•๊ดดํ•จ (๋ฐ˜๊ฐ๊ธฐ ~ 14.8๋ถ„).eepn

Page 16: Fusion Reactor Technology I - ocw.snu.ac.kr

16

4) ํ•˜์ „์ž…์ž์˜๋ฐฉ์ถœ (ํ•ต๋ณ€ํ™˜)

โ€ข ๊ณ ์—๋„ˆ์ง€์˜ ์ค‘์„ฑ์ž๊ฐ€ ์›์žํ•ต์— ์ถฉ๋Œํ•˜์—ฌ ๋ณตํ•ฉํ•ต์„ ํ˜•์„ฑํ•˜๊ณ , ํ˜•์„ฑ๋œ

์—ฌ๊ธฐ์ƒํƒœ์˜ ๋ณตํ•ฉํ•ต์ด ์–‘์„ฑ์ž์™€ ์•ŒํŒŒ์ž…์ž ๋“ฑ๊ณผ ๊ฐ™์€ ํ•˜์ „์ž…์ž๋ฅผ ๋ฐฉ์ถœํ•˜๊ณ 

๋‹ค๋ฅธ ์›์†Œ๋กœ ๋ณ€ํ™˜๋˜๋Š” ๋ฐ˜์‘.

โ€ข ๋ฐฉ์ถœ๋œ ํ•˜์ „์ž…์ž๋Š” ์ฃผ์œ„์˜ ์›์ž, ๋ถ„์ž๋ฅผ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ์‹œํ‚ด

(๊ฐ„์ ‘์ ์ธ ์ „๋ฆฌโˆ™์—ฌ๊ธฐ).

โ€ข ํ•ต๋ฐ˜์‘์˜ ๋‹จ๋ฉด์ ์€ ์‚ฐ๋ž€๋‹จ๋ฉด์ ์— ๋น„ํ•ด ์••๋„์ ์œผ๋กœ ์ž‘์Œ.

โ€ข ์ค‘์„ฑ์ž์˜ ์—๋„ˆ์ง€๊ฐ€ ์–ด๋Š threshold ์ด์ƒ์ผ ๊ฒฝ์šฐ ๋ฐœ์ƒ ( > ์ˆ˜ MeV).

์—๋„ˆ์ง€๊ฐ€ ๋†’์„ ์ˆ˜๋ก ์—ฌ๊ธฐ ์ƒํƒœ์˜ ๋ณตํ•ฉํ•ต์˜ ์—ฌ๊ธฐ์—๋„ˆ์ง€๊ฐ€ ๋†’์•„์ง€๊ธฐ ๋•Œ๋ฌธ์—

ํ•˜์ „์ž…์ž์˜ ์šด๋™์—๋„ˆ์ง€์˜ ํ˜•ํƒœ๋กœ ๋ฐฉ์ถœํ•จ.

Cf. 14N(n,p)14C๋Š” ์ €์† ์ค‘์„ฑ์ž์— ์˜ํ•ด ๋ฐœ์ƒ.

10B(n,ฮฑ)7Li์€ ์—ด์ค‘์„ฑ์ž์— ์˜ํ•ด ๋ฐœ์ƒ.

Page 17: Fusion Reactor Technology I - ocw.snu.ac.kr

17

5) ํ•ต๋ถ„์—ด๋ฐ˜์‘

โ€ข ํฐ ์›์ž(๋ณดํ†ต ์šฐ๋ผ๋Š„, ํ”Œ๋ฃจํ† ๋Š„)์˜ ์›์žํ•ต์ด ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋‹ค๋ฅธ ์›์žํ•ต์œผ๋กœ

์ชผ๊ฐœ์ง€๋Š” ํ˜„์ƒ

โ€ข ํ•ต๋ถ„์—ด์˜ ๊ฒฐ๊ณผ๋กœ ๋ณดํ†ต 2, 3๊ฐœ์˜ ์ค‘์„ฑ์ž๊ฐ€ ๋‹ค์‹œ ์ƒ๊ฒจ๋‚จ. ์—ฐ์‡„ ๋ฐ˜์‘

โ€ข 1938๋…„ ๋…์ผ์˜ ์˜คํ†  ํ•œ๊ณผ ํ”„๋ฆฌ์ธ  ์ŠคํŠธ๋ผ์šฐ์Šค๋งŒ์ด ์šฐ๋ผ๋Š„์— ์ค‘์„ฑ์ž๋ฅผ ์กฐ์‚ฌ

์‹œํ‚ค๋ฉด ๋ฐ”๋ฅจ์˜ ๋™์œ„ ์›์†Œ๊ฐ€ ์ƒ์„ฑ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์ฒ˜์Œ์œผ๋กœ ์ž…์ฆ

Page 18: Fusion Reactor Technology I - ocw.snu.ac.kr

18

2. ๋ฌผ์งˆ์—๋Œ€ํ•œ์กฐ์‚ฌ์†์ƒ

โ€ข ๋ฌผ์งˆ์— ๋Œ€ํ•œ ์กฐ์‚ฌ ์†์ƒ์˜ ์˜ํ–ฅ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ถ„๋ฅ˜๋˜์–ด์ง.

- Impurity production

- Atomic displacement

- Ionization

Page 19: Fusion Reactor Technology I - ocw.snu.ac.kr

19

1) Impurity Production

โ€ข ๋ฐฉ์‚ฌ์„ฑ ํ•ต์œผ๋กœ ๋ณ€ํ™˜๋˜๋Š” ๊ฒƒ์€ ์ค‘์„ฑ์ž์— ์˜ํ•œ ์ค‘์„ฑ์ž ํฌํš, ํ•˜์ „์ž…์ž ๋ฐฉ์ถœ,

ํ•ต๋ถ„์—ด ๋“ฑ์„ ํ†ตํ•ด ๋ฐœ์ƒ.

โ€ข ์ค‘์„ฑ์ž๊ฐ€ ์ž…์‚ฌํ•œ ๊ฒฝ์šฐ, (n,ฮฑ) ๋ฐ (n,p) ๋ฐ˜์‘ ๋“ฑ์„ ํ†ตํ•ด ์–‘์„ฑ์ž ๋ฐ ์•ŒํŒŒ์ž…์ž๊ฐ€

์ƒ์„ฑ๋˜๊ณ , ์žฌ๋ฃŒ ๋‚ด์—์„œ ์ค‘์„ฑํ™”๋˜์–ด ์–‘์„ฑ์ž๋Š” ์ˆ˜์†Œ๋กœ, ์•ŒํŒŒ์ž…์ž๋Š” ํ—ฌ๋ฅจ์ด ๋จ.

์‹ค๋‚ด์˜จ๋„์—์„œ๋Š” ์ด๋“ค์ด ๊ธฐ์ฒด๋กœ ์กด์žฌํ•˜๋ฏ€๋กœ, ๊ทผ์ ‘ํ•œ ์›์ž์—๊ฒŒ ์••๋ ฅ์„

๊ฐ€ํ•˜์—ฌ ๊ณ ์ฒด์—์„œ๋Š” ์ด ๋‚ด๋ถ€์••๋ ฅ์— ๋ฌผ์งˆ์˜ swelling์„ ์œ ๋ฐœ.

โ€ข ๋ฐฉ์‚ฌ์„  ์กฐ์‚ฌ์— ์˜ํ•ด ์ƒ๊ฒจ๋‚œ ๋ถˆ์ˆœ๋ฌผ์€ ๊ฒฐ์ •์ฒด์— ์ „๊ธฐ์ , ๊ธฐ๊ณ„์  ์„ฑ์งˆ์„ ๋ฐ”๊ฟ€

์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๊ฒฐํ•จ์„ ์•ผ๊ธฐํ•จ.

โ€ข ์ค‘์„ฑ์ž ํฌํš์„ ํ†ตํ•ด ๋ฐœ์ƒํ•œ ๋ฐฉ์‚ฌ์„ฑ ํ•ต์ข…(๋™์œ„์›์†Œ)์€ decay scheme ์— ๋”ฐ

๋ผ ๋ถ•๊ดดํ•˜๋ฉด์„œ ํ™”ํ•™ ์›์†Œ๋ฅผ ๋ณ€ํ™”์‹œํ‚ด. ๋ถ•๊ดด ์ง„ํ–‰๊ณผ์ •์—์„œ ๋ฐฉ์ถœ๋˜๋Š” ๋ฐฉ์‚ฌ์„ 

์€ ๋ฌผ์งˆ์— ํก์ˆ˜๋˜์–ด ๋ฐฉ์ถœ์—๋„ˆ์ง€์— ๋”ฐ๋ผ ๋ฌผ์งˆ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ฐ˜๋ณตํ•จ.

โ€ข ์ด์˜จ์ด ์กฐ์‚ฌ๋œ ๊ฒฝ์šฐ, ํ•ต์˜ ์ด์˜จ ํก์ˆ˜๋Š” ์ฆ‰์‹œ ํ™”ํ•™ ์›์†Œ๋ฅผ ๋ฐ”๊พธ์–ด ํ•ต๋ณ€ํ™˜์ด

์ผ์–ด๋‚จ.

Page 20: Fusion Reactor Technology I - ocw.snu.ac.kr

20

2) Atomic Displacement

โ€ข ์›์ž์˜ ์ •์ƒ์ ์ธ ์œ„์น˜์—์„œ ์›์ž์˜ ์œ„์น˜ ์ด๋™. ์ฆ‰, ์œ„์น˜๋ฅผ ์ด๋™ํ•œ ์›์ž๋Š” ๋นˆ

๊ฒฉ์ž ๊ณต๊ฐ„์„ ๋‚จ๊ธฐ๊ณ , interstitial ์œ„์น˜์— ๋จธ๋ฌผ๊ฑฐ๋‚˜ ํ˜น์€ ๊ฒฉ์ž๊ตฌ์กฐ์—์„œ ๋‹ค๋ฅธ ์›์ž

์™€์˜ ๋‚ด๋ถ€๊ต์ฒด๊ฐ€ ๋ฐœ์ƒ. ์–‘์„ฑ์ž, ์ค‘์„ฑ์ž, 150 keV ์ด์ƒ์˜ ์ „์ž์— ์˜ํ•ด ์ฃผ๋กœ ๋ฐœ์ƒ

โ€ข Atomic displacement๋Š” ํƒ„์„ฑ์ถฉ๋Œ์„ ํ†ตํ•ด ๋˜๋Š” ๋ฐฉ์‚ฌ์„ ์— ์˜ํ•ด ์œ ๊ธฐ๋œ ์—ฌ๊ธฐ

(excitation)๋ฅผ ์›์ž ์šด๋™, ์ฆ‰ ๋˜ํŠ€๊น€ ์šด๋™์œผ๋กœ ๋ณ€ํ™˜ํ•จ์— ์˜ํ•ด ๋ฐœ์ƒ.

(ํ•˜์ „์ž…์ž๊ฐ€ ๋ฌผ์งˆ์„ ํ†ต๊ณผ ์‹œ, ํ•˜์ „์ž…์ž์—๋„ˆ์ง€๋Š” ๊ถค๋„์ „์ž์˜ ์—ฌ๊ธฐ ๋ฐ ๋ฌผ์งˆ๋“ค์˜

nuclei์™€์˜ ํƒ„์„ฑ์ถฉ๋Œ์— ์†Œ๋น„๋จ.)

โ€ข ํƒ„์„ฑ์ถฉ๋Œ์— ์˜ํ•ด ํŠ•๊ฒจ๋‚œ ์›์ž๋Š” primary

knock-on. Interstitial, vacancy์™€ ํ•จ๊ป˜

Frenkel pair ๊ตฌ์„ฑ.

์ด์ฐจ displacement๋ฅผ ์•ผ๊ธฐํ•˜๊ธฐ๋„ ํ•จ.

โ€ข ๊ฒฐํ•จ(vacancy, interstitial, Frenkel pairs,

dislocation ๋“ฑ)์€ ์ด์ฐจ์ž…์ž์˜ ๋น„์ ์„ ๋”ฐ๋ผ ๋ฐœ์ƒ.

โ€ข ๋น„์ „๋ฆฌ์—๋„ˆ์ง€์†์‹ค(no-ionizing energy loss: NIEL)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •๋Ÿ‰ํ™”.

NIEL, MeV/m, MeVโˆ™m2/kg: ๋‹จ์œ„ ๊ธธ์ด๋‹น ๋น„์ „๋ฆฌ events์— ์˜ํ•ด ์†์‹ค๋œ ์—๋„ˆ์ง€

(displacement damage๋Š” ์ถฉ๋Œ์— ์˜ํ•œ ์—๋„ˆ์ง€ ์†์‹ค์— ๋น„๋ก€)

Page 21: Fusion Reactor Technology I - ocw.snu.ac.kr

21

Vacancy ๊ฒฐํ•จ Interstitial ๊ฒฐํ•จ Substitutional atom

Frenkel ๊ฒฐํ•จ(๊ณต๊ณต๊ณผ ์นจ์ž…ํ˜• ์›์ž์˜ ์Œ)

Schottky ๊ฒฐํ•จ(์–‘์ด์˜จ ๊ณต๊ณต๊ณผ ์Œ์ด์˜จ ๊ณต๊ณต์˜ ์Œ)

2) Atomic Displacement

Page 22: Fusion Reactor Technology I - ocw.snu.ac.kr

22

Edge and Screw Dislocation (์ „์œ„)

Stress states around an edge dislocation

2) Atomic Displacement

http://en.wikipedia.org/wiki/Dislocation

Page 23: Fusion Reactor Technology I - ocw.snu.ac.kr

23

3) Ionization

โ€ข ์›์ž๋กœ๋ถ€ํ„ฐ์˜ ์ „์ž์ œ๊ฑฐ์™€ ํ•˜์ „์ž…์ž์˜ ์ด๋™๊ฒฝ๋กœ์—์„œ ์ด์˜จ์Œ์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ

โ€ข ์ „๋ฆฌ๋Š” ์ „์ž๊ฐ€ ์ค‘์„ฑ์›์ž์— ๋ถ™๊ฑฐ๋‚˜ ์ œ๊ฑฐ๋˜๋Š” ๊ฒƒ.

โ€ข ฮฑ, ฮฒ, p์€ ๋ฌผ์งˆ์„ ์ง์ ‘์ ์œผ๋กœ ์ „๋ฆฌ์‹œํ‚ฌ ์ˆ˜ ์žˆ์ง€๋งŒ, n, ฮณ๋Š” ๊ฐ„์ ‘์ ์œผ๋กœ ์ผ์œผํ‚ด.

โ€ข ์ „๋ฆฌ์— ์˜ํ•ด ์•„๋ž˜ ์ˆœ์„œ๋กœ ๋ถ„์žํ˜•์„ฑ์— ๋Œ€ํ•œ ์†์ƒ์ด ์ฆ๊ฐ€ํ•จ.

- Metallic bond (least damaged): ๊ธˆ์†๊ฒฐํ•ฉ

- Ionic bond: ์ด์˜จ๊ฒฐํ•ฉ

- Covalent bond (most damaged): ๊ณต์œ ๊ฒฐํ•ฉ ex) ์ƒ์ฒด์กฐ์ง

- ์ž‘์€ ์ฒด์ ์—์„œ์˜ large energy release. Thermal heating: ๋ฐฉ์‚ฌ์ฐจํ์ฒด์— ์ค‘์š”

โ€ข ๋ฌผ๊ณผ ์œ ๊ธฐ๋ฌผ์—์„œ ํก์ˆ˜๋œ ์ „๋ฆฌ์—๋„ˆ์ง€์˜ ๋Œ€๋ถ€๋ถ„์€ ํ™”ํ•™์  ๊ฒฐํ•ฉ์„ ๊นธ.

๊ธˆ์†์˜ ๊ฒฝ์šฐ์—๋Š” ์—ด๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋ฌผ์งˆ์˜ ์„ฑ์งˆ์„ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ.

โ€ข ์ค‘์„ฑ์ž๋Š” metallic bond, ionic bond์— ์ฃผ๋กœ ์†์ƒ์„ ๊ฐ€ํ•จ.

Page 24: Fusion Reactor Technology I - ocw.snu.ac.kr

24

Physical Phenomena in Radiation Effects

Page 25: Fusion Reactor Technology I - ocw.snu.ac.kr

25

Simulation Hierarchy

Page 26: Fusion Reactor Technology I - ocw.snu.ac.kr

26

International Fusion Materials Irradiation Facility (IFMIF)

D + Li โ†’ n + Be

Page 27: Fusion Reactor Technology I - ocw.snu.ac.kr

27

International Fusion Materials Irradiation Facility (IFMIF)

PIE: Post Irradiation ExaminationRFQ: Radio Frequency QuadrupoleDTL: Drift Tube Linac

Page 28: Fusion Reactor Technology I - ocw.snu.ac.kr

International Fusion Materials Irradiation Facility (IFMIF)

PIE: Post Irradiation ExaminationRFQ: Radio Frequency QuadrupoleDTL: Drift Tube Linac

- $700M- Only small samples, a few square centimeters in size

TypicalReactions

7Li(d,2n)7Be 6Li(d,n)7Be 6Li(n,T)4He

Deuterons 40 MeV 2x125 mABeam footprint

5x20 cm228

Page 29: Fusion Reactor Technology I - ocw.snu.ac.kr

International Fusion Materials Irradiation Facility (IFMIF)

29

Page 30: Fusion Reactor Technology I - ocw.snu.ac.kr

30

International Fusion Materials Irradiation Facility (IFMIF)

โ€ข IFMIF Target Area

Page 31: Fusion Reactor Technology I - ocw.snu.ac.kr

31

Main Parameters of IFMIF Accelerator

Particle Type D+

Ion Injector 100 keV, 140 mA

RFQ 175 MHz, 8 MeV, 125 mA

DTL 175 MHz, 8-40 MeV, 125 mA

Number of Accelerators 2 (parallel operation)

Output Current 250 mA

Beam spot on Target 20 cm (horizontal) x 5 cm (vertical)

Output Energy 32, 36 or 40 MeV

Duty Factor Cw

Availability > 88%

Maintainability Hands on

Design Lifetime 40 years

Page 32: Fusion Reactor Technology I - ocw.snu.ac.kr

32

โ€ข Lithium Target

โ€ข Irradiation Volume (dpa in iron)

* fpy = full power year

Target Specification of IFMIF

Jet Thickness 0.025 m (for 40 MeV D+)

Jet Width 0.26 m

Jet Velocity 15 m/s (range 10-20)

Inlet Temperature 250 ยฐC

Outlet Temperature 300 ยฐC

High Flux (> 20 dpa/fpy*) 0.5 L

Medium Flux (1.0 to 20 dpa/fpy) 6 L

Low Flux (0.1 to 1.0 dpa/fpy) 7.5 L

Very Low Flux (0.01 to 0.1 dpa/fpy) > 100 L

Page 33: Fusion Reactor Technology I - ocw.snu.ac.kr

33

International Fusion Materials Irradiation Facility (IFMIF)

โ€ข To simulate neutron field in the blanket (and possibly in other components)

of DEMO relevant devices using accelerator-based D+Li source based on

the similarity of nuclear responses (e.g. displacement damage production,

gas production) in the materials after irradiation

โ€ข To be criticized by the small testing volume (~500 cm3 for highest flux

area) and the high energy tail of neutron spectrum

โ€ข To apply Small Specimen Testing Technique (typical dimensions ~ mm in

thickness, ~ cm in length) to avoid excessive activation and overcome

smallness of volume

โ€ข Nuclear data above 20 MeV have an important role to provide the level of

proximity of the irradiation condition to the actual condition in DEMO.

Page 34: Fusion Reactor Technology I - ocw.snu.ac.kr

34

International Fusion Materials Irradiation Facility (IFMIF)

Page 35: Fusion Reactor Technology I - ocw.snu.ac.kr

IFMIF

35

IrradiationParameter

DEMO ITERIFMIFHFTM

IFMIFMFTM

Total n-flux (n/cm2s)

1.3โˆ™1015 4โˆ™1014 (4-10)โˆ™1014 (2-6)โˆ™1014

H production (appm/fpy)

1200 500 1000-1500 300-500

He production (appm/fpy)

300 120 250-600 70-120

Displacement damage production

(dpa/fpy)30 < 2 20-55 7-10

H per dpa (appm/fpy) 40 45 40-50 30-50

He per dpa (appm/fpy) 10 11 10-12 8-14

- MCNPX calculations in Fe-alloys based on extended nuclear data libraries & detailed geometry models

- HFTM: High Flux Test Module- MFTM: Medium Flux Test Module

Strategy of Fusion Materials Development and the Intense Neutron Source IFMIF, A. Mรถslang

Page 36: Fusion Reactor Technology I - ocw.snu.ac.kr

Fusion Testing Requirements

36

Required ITER

Neutron wall load > 1 MW/m2 (0.57 MW/m2)

Neutron fluence > 6 MWยทy/m2 (0.1 MWยทy/m2)

Long pulse > 1000 s (400 s)

Testing area/volume > 10 m2/5 m3

โ€ข IFMIF only provides radiation damage effects

โ€ข For Blanket/PFC development, testing inNon-fusion facilities (Lab. Exp. + fission reactors + Accel. n) and Fusion facilities

โ€ข Small size, low-fusion power DT plasma-based device(โ€œComponent Test Facilityโ€) in which Fusion NuclearTechnology experiments can be performed in fusionenvironment.