Fusion and Inversion of SAR Data to Obtain a ... · Fusion and Inversion of SAR Data to Obtain a...

1
Fusion and Inversion of SAR Data to Obtain a Superresolution Image Ali MOHAMMAD-DJAFARI 1 , Franck DAOUT 2 and Philippe FARGETTE 3 1 Laboratoire de signaux et syst ` emes (L2S), UMR 8506 CNRS-SUPELEC-Univ Paris Sud 11, Gif-sur-Yvette, France 2 SATIE, ENS Cachan, Universit´ e Paris 10, France 3 DEMR, ONERA, Palaiseau, France Absract The Synthetic Aperture Radar (SAR) data obtained from a single emitter and a single receiver gives information in the Fourier domain of the scene over a line segment whose width is related to the bandwidth of the emitted signal. The mathematical problem of image reconstruction in SAR then becomes a Fourier Synthesis (FS) inverse problem. When there are more than one emitter and/or receiver looking the same scene, the problem becomes fusion and inversion. In this paper we report on a Bayesian inversion framework to obtain a Super Resolution (SR) image doing jointly data fusion and inversion. We applied the proposed method on some synthetic data to compare its performances to other classical methods and on experimental data obtained at ONERA. Synthetic Aperture Radar (SAR) imaging s (t , u )= f (x , y ) p (t τ (x , y , u )) dx dy k = k x k y = k cos(θ ) k sin(θ ) |k | = k = ω/c s (ω, u )= f (x , y ) exp [j ωτ (x , y (u ))] dx dy = f (x , y ) exp [j (k x x + k y y )] dx dy u (rad/m) v (rad/m) S(u,v) 15 20 25 30 35 40 45 50 55 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 u (rad/m) v (rad/m) S(u,v) 10 15 20 25 30 35 40 45 50 55 -70 -60 -50 -40 -30 -20 -10 0 10 Monostatic Bistatic & Multistatic k x = k cos(θ ) k y = k sin(θ ) k x = k (cos(θ tc )+ cos(θ cr ) k y = k (sin(θ tc )+ sin(θ cr ) Forward model: Fourier Synthesis f (x , y ) G (k x , k y ), M (k x , k y ) Inverse problem: G (k x , k y ), M (k x , k y ) f (x , y ) g (u i , v i ) = f (x , y ) exp [j (u i x + v i y )] dx dy g = Hf + ǫ Bayesian Estimation Approach Forward model M : g = H f + ǫ Likelihood: p (g |f ; M)= p ǫ (g H f ) A priori information: p (f |M) Bayes : p (f |g ; M)= p (g |f ; M) p (f |M) p (g |M) Estimators: Mode (Maximum A Posteriori) Mean (Posterior Mean) Marginal modes Proposed Bayesian Approach f = arg min f {J (f )= ln p (g |f ) ln p (f )} p (g |f ) exp 1 2σ ǫ 2 g Hf 2 Generalized Gaussian: p (f ) exp γ j |f j | 2 Cauchy: p (f ) exp γ j ln(1 −|f j | 2 Generalized Gauss-Markov p (f ) exp γ j |f j f j 1 | β Gauss-Markov-Potts Comparison with classical methods fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 Gerchberg-Papoulis Least Squares fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 Quad. Reg. Proposed MAP Multistatic data fusion methods Method 1: Data Fusion followed by inversion G 1 (u , v ) M 1 (u , v ) | G 2 (u , v ) M 2 (u , v ) G (k x , k y ) M (u , v ) Inversion f (x , y ) with G (u , v ) = G 1 (u ,v )+G 2 (u ,v ) 2 (u , v ) M 1 (u , v ) G 2 (u , v ) G 1 (u , v ) (u , v ) M 1 (u , v ) G 2 (u , v ) (u , v ) M 2 (u , v ) and M (k x , k y ) = M 1 (u , v ) M 2 (u , v ) Method 2: Separte inversion followed by image fusion G 1 (u , v ) M 1 (u , v ) Inversion f 1 (x , y ) | G 2 (u , v ) M 2 (u , v ) Inversion f 2 (x , y ) Fusion f (x , y ) Image fusion Coherent addition f (x , y ) =( f 1 (x , y ) + f 2 (x , y ))/2 Incoherent addition f (x , y ) =(| f 1 (x , y )| + | f 2 (x , y )|)/2 Bayesian Simultaneous Data Fusion and Inversion G 1 (u , v ) M 1 (u , v ) | G 2 (u , v ) M 2 (u , v ) Joint Fusion and Inversion f (x , y ) g 1 = H 1 f + ǫ 1 g 2 = H 2 f + ǫ 2 p (f |g 1 , g 2 ) p (g 1 |f ) p (g 2 |f ) p (f ) MAP : f = arg max f {p (f |g 1 , g 2 )} = arg min f {J (f )} with J (f )= ln p (g 1 |f ) ln p (g 2 |f ) ln p (f ) = g 1 H 1 f 2 2σ 2 ǫ 1 + g 2 H 2 f 2 2σ 2 ǫ 2 + γ j [D f ] j | β Simulated data fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 fh(x,y) 0 50 100 150 200 250 0 50 100 150 200 250 Data Fusion followed Joint Fusion by Inversion and Inversion Experimental data (Vv polarisation) BF1 band x (m) y (m) Reconstruction by backpropagation -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) Reconstruction by backpropagation -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) Reconstruction by backpropagation -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 BF2 band x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 BF1 & BF2 x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 x (m) y (m) fh(x,y) -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 References A. Mohammad-Djafari, F. Daout & Ph. Fargette, Fusion et inversion des signaux SAR pour obtenir une image super r ´ esolue, GRETSI 2009, 7-10 Sept., Dijon, France. A. Mohammad-Djafari, Sh. Zhu, F. Daout & Ph. Far- gette, Fusion of Multistatic Synthetic Aperture Radar Data to obtain a Superresolution Image, WIO 2009, 20- 24 July, Paris, France.

Transcript of Fusion and Inversion of SAR Data to Obtain a ... · Fusion and Inversion of SAR Data to Obtain a...

Page 1: Fusion and Inversion of SAR Data to Obtain a ... · Fusion and Inversion of SAR Data to Obtain a Superresolution Image Ali MOHAMMAD-DJAFARI1, Franck DAOUT 2 and Philippe FARGETTE

Fusion and Inversion of SAR Data to Obtain a Superresolution ImageAli MOHAMMAD-DJAFARI 1, Franck DAOUT 2 and Philippe FARGETTE 3

1 Laboratoire de signaux et systemes (L2S), UMR 8506 CNRS-SUPELEC-Univ Paris Sud 11, Gif-sur-Yvette, France2 SATIE, ENS Cachan, Universite Paris 10, France

3 DEMR, ONERA, Palaiseau, France'

&

$

%

AbsractThe Synthetic Aperture Radar (SAR) data obtained from a single emitter and a single receiver gives information in the Fourier domain of the sceneover a line segment whose width is related to the bandwidth of the emitted signal. The mathematical problem of image reconstruction in SAR thenbecomes a Fourier Synthesis (FS) inverse problem. When there are more than one emitter and/or receiver looking the same scene, the problembecomes fusion and inversion. In this paper we report on a Bayesian inversion framework to obtain a Super Resolution (SR) image doing jointlydata fusion and inversion. We applied the proposed method on some synthetic data to compare its performances to other classical methods and onexperimental data obtained at ONERA.

'

&

$

%

Synthetic Aperture Radar (SAR)imaging

s(t, u) =

∫∫f (x, y) p(t − τ (x, y , u)) dx dy

k =

[kx

ky

]=

[k cos(θ)k sin(θ)

]|k| = k = ω/c

s(ω, u) =

∫∫f (x, y) exp [−jωτ (x, y, θ(u))] dx dy

=

∫∫f (x, y) exp [−j(kxx + kyy)] dx dy

u (rad/m)

v (r

ad/m

)

S(u,v)

15 20 25 30 35 40 45 50 55

−70

−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

u (rad/m)

v (r

ad/m

)

S(u,v)

10 15 20 25 30 35 40 45 50 55

−70

−60

−50

−40

−30

−20

−10

0

10

Monostatic Bistatic & Multistatic{kx = k cos(θ)ky = k sin(θ)

{kx = k (cos(θtc) + cos(θcr)ky = k (sin(θtc) + sin(θcr)

'

&

$

%

Forward model: Fourier Synthesis

f (x, y) → G(kx, ky), M(kx, ky)

Inverse problem:G(kx, ky), M(kx, ky) → f (x, y)

g(ui, vi) =

∫∫f (x, y) exp [−j(uix + viy)] dxdy

g = Hf + ǫ'

&

$

%

Bayesian Estimation Approach◮ Forward model M : g = Hf + ǫ

◮ Likelihood: p(g|f ; M) = pǫ(g − Hf)

◮ A priori information: p(f |M)

◮ Bayes :

p(f |g; M) =p(g|f ; M) p(f |M)

p(g|M)

◮ Estimators:◮ Mode (Maximum A Posteriori)◮ Mean (Posterior Mean)◮ Marginal modes

'

&

$

%

Proposed Bayesian Approach

f = arg minf

{J(f) = − ln p(g|f) − ln p(f)}

p(g|f) ∝ exp[

1

2σǫ2‖g − Hf‖2

]

◮ Generalized Gaussian:p(f) ∝ exp

∑j |fj|

2]

◮ Cauchy:p(f) ∝ exp

∑j ln(1 − |fj|

2]

◮ Generalized Gauss-Markov

p(f) ∝ exp

γ∑

j

|fj − fj−1|β

◮ Gauss-Markov-Potts'

&

$

%

Comparison with classical methodsfh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

fh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

Gerchberg-Papoulis Least Squaresfh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

fh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

Quad. Reg. Proposed MAP'

&

$

%

Multistatic data fusion methodsMethod 1:Data Fusion followed by inversion

G1(u, v)M1(u, v)

|G2(u, v)M2(u, v)

→G(kx, ky)M(u, v)

→ Inversion → f (x, y)

withG(u, v) =

G1(u,v)+G2(u,v)2 (u, v) ∈ M1(u, v) ∩ G2(u, v)

G1(u, v) (u, v) ∈ M1(u, v)G2(u, v) (u, v) ∈ M2(u, v)

and M(kx, ky) = M1(u, v) ∪ M2(u, v)

Method 2:Separte inversion followed by image fusion

G1(u, v)M1(u, v)

− Inversion − f1(x, y)

|

G2(u, v)M2(u, v)

− Inversion − f2(x, y)

→ Fusion→f (x, y)

◮ Image fusion◮ Coherent addition

f (x, y) = (f1(x, y) + f2(x, y))/2◮ Incoherent addition

f (x, y) = (|f1(x, y)| + |f2(x, y)|)/2

'

&

$

%

Bayesian SimultaneousData Fusion and Inversion

G1(u, v)M1(u, v)

|G2(u, v)M2(u, v)

→Joint Fusion

andInversion

→ f (x, y)

{g1 = H1f + ǫ1

g2 = H2f + ǫ2

p(f |g1, g2) ∝ p(g1|f) p(g2|f) p(f)

MAP :

f = arg maxf

{p(f |g1, g2)} = arg minf

{J(f)}

withJ(f) = − ln p(g1|f) − ln p(g2|f) − ln p(f)

=‖g1 − H1f‖2

2σ2ǫ1

+‖g2 − H2f‖2

2σ2ǫ2

+ γ∑

j

[Df ]j|β

'

&

$

%

Simulated datafh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

fh(x,y)

0 50 100 150 200 250

0

50

100

150

200

250

Data Fusion followed Joint Fusionby Inversion and Inversion

'

&

$

%

Experimental data (Vv polarisation)

BF1 band x (m)

y (m

)

Reconstruction by backpropagation

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

Reconstruction by backpropagation

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

Reconstruction by backpropagation

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

BF2 band x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

BF1 & BF2 x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x (m)

y (m

)

fh(x,y)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

'

&

$

%

ReferencesA. Mohammad-Djafari, F. Daout & Ph. Fargette, Fusion

et inversion des signaux SAR pour obtenir une image

super resolue, GRETSI 2009, 7-10 Sept., Dijon, France.A. Mohammad-Djafari, Sh. Zhu, F. Daout & Ph. Far-

gette, Fusion of Multistatic Synthetic Aperture Radar

Data to obtain a Superresolution Image, WIO 2009, 20-

24 July, Paris, France.