Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits...

13
Fundamentals of Modern Electric Circuit Analysis and Filter Synthesis

Transcript of Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits...

Page 1: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Fundamentals of Modern Electric Circuit Analysisand Filter Synthesis

Page 2: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Afshin Izadian

Fundamentals of ModernElectric Circuit Analysisand Filter SynthesisA Transfer Function Approach

Page 3: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Afshin IzadianPurdue School of Engineering and Technology, IUPUIIndianapolis, IN, USA

ISBN 978-3-030-02483-3 ISBN 978-3-030-02484-0 (eBook)https://doi.org/10.1007/978-3-030-02484-0

Library of Congress Control Number: 2018961400

© Springer Nature Switzerland AG 2019This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of thematerial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting, reproduction on microfilms or in any other physical way, and transmission or informationstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodologynow known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoes not imply, even in the absence of a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.The publisher, the authors, and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor the authors orthe editors give a warranty, express or implied, with respect to the material contained herein or for anyerrors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 4: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Preface

The electric circuits are perhaps the fundamental step toward understandingcomplex electrical engineering concepts. A strong knowledge of circuit analysisleads to advanced techniques that are moving the industry forward. However, thetraditional circuits as known by many of the educators have changed. For instance,most of the circuits are now being combined in Integrated Circuits and are built onchips. Strong processors are now accomplishing most of the operations in softwareand sometimes exceed performances that were previously just expected fromhardware implementations. Therefore, although the principles of the circuit anal-ysis are still required, their implementation is drastically changing. Some examplesinclude programmable logic controller (PLCs), MP3 players, video games, modernvideo processors, vehicle’s electronic control units (ECU), and other industrialmicrocontrollers. Their data processing power, filtration of noise, and operationsare all accomplished in the code they run. Not much of the hardware implemen-tation is expected except for the microprocessor itself and its supporting circuits torun in hardware.

In this book, the knowledge of circuit analysis and the design of hardware-basedfilters and operational amplifiers are provided to lay out a rich background.However, the approach in the second half of the book is more toward the mathe-matical analysis of circuits, their transfer functions, closed-loop operations, controlactions, and filter applications. Numerous solved problems and end-of-chapterunsolved problems are provided to establish a strong background on circuits andemphasize the importance of the modern circuit analysis. The analysis of circuit inthe frequency domain is limited to the Laplace transform as most of the signalprocessing courses offer their own basics of Fourier transform. Three-phase circuitsare also expected to be covered in the basic power systems courses where theanalysis of a three-phase circuit is needed.

v

Page 5: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Book Organization

The book has 12 chapters that cover from basics of electric circuits to the advancedLaplace and transfer function-based analysis. The book is designed to cover atwo-semester circuit course, as most electrical engineering or technology programsdo. The first part covers an introduction to circuits, components, voltage and currentlaws, sources and waveforms, first order and second order circuits, and sinusoidalsteady-state analysis. The second part covers topics including mutual inductance,Laplace transform, application of Laplace transform in circuits, transfer functions,passive filters, operational amplifiers, active filters, and two-port networks. In someengineering schools, operational amplifiers can be covered in the first part, in alower-level circuits course.

Indianapolis, IN, USA Afshin Izadian

vi Preface

Page 6: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Contents

1 Introduction to Electric Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Electric Circuit Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Hinged Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measurement Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Scales and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Most Common Electric Circuit Symbols . . . . . . . . . . . . . . . . . . . . . . . 6

2 Component Voltage and Current Laws . . . . . . . . . . . . . . . . . . . . . . 9Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Definition of Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Definition of Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Conductors, Insulators, and Semiconductors . . . . . . . . . . . . . . . . 12Effect of Temperature on Resistance . . . . . . . . . . . . . . . . . . . . . . 12Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Series Connection of Circuit Elements . . . . . . . . . . . . . . . . . . . . 13Parallel Connection of Circuit Elements . . . . . . . . . . . . . . . . . . . 13Mixed Connection of Circuit Elements . . . . . . . . . . . . . . . . . . . . 14

Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Kirchhoff Voltage Law (KVL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Kirchhoff Current Law (KCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Equivalent of Resistors in Series . . . . . . . . . . . . . . . . . . . . . . . . . 21Equivalent of Resistors in Parallel . . . . . . . . . . . . . . . . . . . . . . . . 22Power and Energy in Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Definition of a Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii

Page 7: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

What Is an Inductor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Energy and Power of an Inductor . . . . . . . . . . . . . . . . . . . . . . . . 28Equivalent of Inductors in Series . . . . . . . . . . . . . . . . . . . . . . . . 29Equivalent of Inductors in Parallel . . . . . . . . . . . . . . . . . . . . . . . 29

What Is a Capacitor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Ohm’s Law and Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Energy and Power of a Capacitor . . . . . . . . . . . . . . . . . . . . . . . . 32Equivalent of Capacitors in Series . . . . . . . . . . . . . . . . . . . . . . . . 34Equivalent of Capacitors in Parallel . . . . . . . . . . . . . . . . . . . . . . . 35

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Waveform and Source Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Waveform Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Impulse Function f(t) ¼ δ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Unit Step Function f(t) ¼ u(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Ramp Function f(t) ¼ r(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Power Function f tð Þ ¼ At

n!nu tð Þ . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Exponential Function f(t) ¼ Aeαt u(t) . . . . . . . . . . . . . . . . . . . . . 52Sinusoidal Function f(t) ¼ A sin (ωt þ φ) . . . . . . . . . . . . . . . . . . 53Polar to Cartesian (Rectangle) Conversion . . . . . . . . . . . . . . . . . . 54Cartesian (Rectangle) to Polar Conversion . . . . . . . . . . . . . . . . . . 55

Mathematical Operation of Polar and Complex Numbers . . . . . . . . . . . 57Adding Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Product of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Product of Polar Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Division of Polar Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Summation of Polar Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Summation of Sinusoidal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 59Damped Sinusoidal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Average of a Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Root Mean Square (RMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Independent Voltage Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Independent Current Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Dependent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Circuit Simplification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Voltage Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Current Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Source Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Thevenin Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii Contents

Page 8: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Norton Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Norton and Thevenin Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . 80

Power Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Consumption of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Generation of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Maximum Power Transfer to Load in Pure Resistive Circuits . . . . 83

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Circuit Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Order of a Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97First-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Natural Response: RL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 100Natural Response: RC First-Order Circuit . . . . . . . . . . . . . . . . . . 104

Forced Response of First-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . 107Step Response of RL Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Forced Response of First-Order RC Circuit . . . . . . . . . . . . . . . . . 111

Second-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Natural Response of RLC Parallel Circuits . . . . . . . . . . . . . . . . . 114Summary of RLC Parallel Circuit . . . . . . . . . . . . . . . . . . . . . . . . 119Natural Response of RLC Series Circuits . . . . . . . . . . . . . . . . . . 124Summary of RLC Series Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 129

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Steady-State Sinusoidal Circuit Analysis . . . . . . . . . . . . . . . . . . . . . 135Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135How to Use Phasor in Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . 136Circuit Response Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Resistors in Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Power Factor of Resistive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Inductors in Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Power Factor of Inductive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Capacitors in Steady-State Sinusoidal . . . . . . . . . . . . . . . . . . . . . . . . . 141Power Factor of Capacitive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 142Resistive-Inductive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Power Factor of Resistive-Inductive Circuits . . . . . . . . . . . . . . . . . . . . 144Vector Analysis of RL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Resistive-Capacitive Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Using Admittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Using Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Power Factor of Resistive-Capacitive Circuits . . . . . . . . . . . . . . . . . . . 148Vector Analysis of RC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Contents ix

Page 9: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Steady-State Analysis of Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153RLC Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153RLC Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Power in Sinusoidal Steady-State Operation . . . . . . . . . . . . . . . . . . . . 165

Apparent Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Active Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167Reactive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Non-ideal Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Quality Factor (Qf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170Non-ideal Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Model as RC Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174Model as RC Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175Dielectric Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Thevenin Equivalent Circuits in Sinusoidal Steady State . . . . . . . . . . . 178Norton Equivalent and Source Conversion . . . . . . . . . . . . . . . . . . . . . 180Maximum Power Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Self-Inductance and Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . 198Induced Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Energy Stored in Coupled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Limit of Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Turn Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Equivalent Circuit of Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . 210

T Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Π Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Ideal Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214Ideal Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7 Laplace Transform and Its Application in Circuits . . . . . . . . . . . . . 225Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Laplace of Unit Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . 227Laplace of Impulse Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 227Laplace of Ramp Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Laplace of Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . 228Laplace of Sinusoidal Function . . . . . . . . . . . . . . . . . . . . . . . . . . 230Laplace of Co-sinusoidal Function . . . . . . . . . . . . . . . . . . . . . . . 231Laplace of Hyperbolic Sinusoidal Function . . . . . . . . . . . . . . . . . 233Laplace of Hyperbolic Co-sinusoidal Function . . . . . . . . . . . . . . . 233Laplace of Derivatives of Impulse . . . . . . . . . . . . . . . . . . . . . . . . 235Laplace of Differential Functions . . . . . . . . . . . . . . . . . . . . . . . . 235

x Contents

Page 10: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Laplace Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237Linear Combination of Functions . . . . . . . . . . . . . . . . . . . . . . . . 237Shift in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Product by an Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Product by Time Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240Divide by Time Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Complementary Laplace Inverse Techniques . . . . . . . . . . . . . . . . . . . . 242Long Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Partial Fraction Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Application of Laplace in Electric Circuits . . . . . . . . . . . . . . . . . . . . . 246Resistors in Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . 246Inductors in Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . 246Capacitors in Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . 247

Circuit Analysis Using Laplace Transform . . . . . . . . . . . . . . . . . . . . . 249Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

8 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Definition of Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Multi-input-Multi-output Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Obtaining Transfer Function of Electric Circuits . . . . . . . . . . . . . . . . . 267Transfer Function Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271Parallel Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273Feedback Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273Feedback and Change of Order of Circuit . . . . . . . . . . . . . . . . . . . . . . 275Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Phase Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276Limit of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Initial Value and Final Value Theorems . . . . . . . . . . . . . . . . . . . . . . . 280Order and Type of a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282First-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282Second-Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283Step Response of Second-Order System . . . . . . . . . . . . . . . . . . . . . . . 286The Effect of Controller on Type-Zero Systems . . . . . . . . . . . . . . . . . 290Tracking Error Considering the Type and the Input as ReferenceWaveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Convolution Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293State Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Obtaining State Space Equations from Differential Equations . . . . . . . . 302Obtaining Block Diagram of a State Space Equation . . . . . . . . . . . . . . 304Obtaining State Space of Differential Equations that InvolveDifferential of the Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Obtaining Transfer Function from State Space Representation . . . . . . . 307Bode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Transfer Function Amplitude and Phase . . . . . . . . . . . . . . . . . . . . . . . 312Bode Plot of A Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 313Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Contents xi

Page 11: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

9 Passive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Passive and Active Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Category of Passive Filter Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 341Filter Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344Cutoff and Half-Power Point Frequencies . . . . . . . . . . . . . . . . . . . . . . 347Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

RL Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348RC Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357RL HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357RC High Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361Analysis of LC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Band-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367BPF Circuit 1: Using LC Series . . . . . . . . . . . . . . . . . . . . . . . . . 368BPF Circuit 2: Using LC Parallel . . . . . . . . . . . . . . . . . . . . . . . . 372

Band-Reject Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375BRF Circuit 1: LC Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376BRF Circuit 2: Using LC Parallel . . . . . . . . . . . . . . . . . . . . . . . . 380

Summary of Filters in Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382Higher-Order Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Repeated LPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384Repeated HPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387Repeated BPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388Repeated BRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Low-Pass Filter Using Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . 391High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392High-Pass Filter Using Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . 392Series and Parallel LC circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 393Band-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393Band-Pass Filters Using Laplace . . . . . . . . . . . . . . . . . . . . . . . . . 394Band-Reject Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395Band-Pass Filters Using Laplace . . . . . . . . . . . . . . . . . . . . . . . . . 395Overall Filtration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397Higher-Order Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397Higher-Order Filter Using Laplace . . . . . . . . . . . . . . . . . . . . . . . 398

10 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399Ideal Opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401Opamp in Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

xii Contents

Page 12: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Mathematical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411Differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . 414Unit Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415Function Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Negative Immittance Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418Negative Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418Negative Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420Negative Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420Negative Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Gyrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422Realization of a Gyrator in Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 427Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

11 Active Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433Active Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Active Low-Pass Filters Using Feedback Impedance . . . . . . . . . . 434Active Low-Pass Filters Using Input Impedance . . . . . . . . . . . . . 435

Active High-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436Active High-Pass Filters Using Feedback Impedance . . . . . . . . . . 436Active High-Pass Filters Using Input Impedance . . . . . . . . . . . . . 437

Active Band-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437Active Band-Pass Filter Using a Combinationof Low- and High-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 439Transfer Function of a Band-Pass Filter . . . . . . . . . . . . . . . . . . . . 440

Active Band-Reject Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440Multiple Feedback Opamp Circuits (MFB) . . . . . . . . . . . . . . . . . . . . . 442

Creating a Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443Creating a High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445Creating a Band-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

12 Two-Port Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451Impedance Matrix of a Two-Port Network . . . . . . . . . . . . . . . . . . . . . 453Equivalent of an Impedance Network . . . . . . . . . . . . . . . . . . . . . . . . . 454

Reciprocal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454Nonreciprocal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455Alternative Approach in Impedance Matrix . . . . . . . . . . . . . . . . . 458Finding Impedance Matrix in Multi-loop Networks . . . . . . . . . . . 461Impedance Matrix Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Contents xiii

Page 13: Fundamentals of Modern Electric Circuit Analysis …978-3-030-02484...Preface The electric circuits are perhaps the fundamental step toward understanding complex electrical engineering

Admittance Matrix of a Two-Port Network . . . . . . . . . . . . . . . . . . . . . 467Equivalent of Admittance Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Reciprocal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469Nonreciprocal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469Alternative Approach in Admittance Matrix . . . . . . . . . . . . . . . . 473Finding Admittance Matrix in Multi-node Networks . . . . . . . . . . 476Admittance to Impedance Conversion . . . . . . . . . . . . . . . . . . . . . 480Admittance Matrix Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . 480Nonreciprocal Admittance Matrix . . . . . . . . . . . . . . . . . . . . . . . . 489

Hybrid Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492Inverse Hybrid Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492Transmission Matrix Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493Presenting the Transmission Matrix Parametersin Terms of Impedance and Admittance Matrices . . . . . . . . . . . . . . . . 494

Parallel Connection of an Element . . . . . . . . . . . . . . . . . . . . . . . 496Series Connection of an Element . . . . . . . . . . . . . . . . . . . . . . . . 497Transmission Matrix of Cascade Systems . . . . . . . . . . . . . . . . . . 498

Finding Thevenin Equivalent Circuit from Transmission Matrix . . . . . . 500Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

xiv Contents