Fundamentals of Infrared Detector Operation and Testing

11
Fundamentals of Infrared Detector Operation and Testing JOHN DAVID VINCENT Santa Barbara Research Center Goleta, California WILEY A Wiley-Interscience Publication John Wiley & Sons New York I Chichester I Brisbane I Toronto I Singapore

Transcript of Fundamentals of Infrared Detector Operation and Testing

Page 1: Fundamentals of Infrared Detector Operation and Testing

Fundamentals of Infrared Detector Operation and Testing

JOHN DAVID VINCENT Santa Barbara Research Center Goleta, California

WILEY

A Wiley-Interscience Publication

John Wiley & Sons

New York I Chichester I Brisbane I Toronto I Singapore

Page 2: Fundamentals of Infrared Detector Operation and Testing

Contents

UNIT 1 DETECTORS AND DETECTOR OPERATION

Chapter 1. Introduction and Overview

1.1 1.2 1.3 1.4 1.5 1.6

. 1.7 1.8

Infrared Radiation Heat Transfer Thermal Detectors Planck's Law Waves and Photons Quantum (Photon) Detectors IR Detectors as Transducers Detector Parameters: Definitions 1.8.1 1.8.2 1.8.3 1.8.4 1.8.5 1.8.6 1.8.7 1.8.8 1.8.9

Responsivity Noise Signal-to-Noise Ratio Noise Equivalent Power Specific Detectivity Linearity and Saturation Frequency Response Spatial Considerations Crosstalk

References Suggested Reading Problems

3 3 5 6 7 8 8 9 10 12 14 15 16 18 19 21 22 23 23 23

Chapter 2. Detector Types, Mechanisms, and Operation 25

2.1 Thermal Detectors 25 2.1.1 Bolometers 26

2.2 Photon (Quantum) Detectors 30 2.2.1 Carrier Generation 31 2.2.2 Spectral Response of Photon Detectors 32 2.2.3 Temperature Dependence of Semiconductor

Carrier Density 34 2.2.4 Types of Photon Detectors 36 2.2.5 Diodes and Photovoltaic Detectors 37 2.2.6 Photoconductive Detectors 40

t

Page 3: Fundamentals of Infrared Detector Operation and Testing

XIV CONTENTS

2.3 Detector Operation 40 2.3.1 Cooling 42 2.3.2 Photoconductor Biasing 45 2.3.3 Photovoltaic Circuits 50

2.4 Detector Parameters: Models and Predictions 51 2.4.1 Current Equations 52 2.4.2 Responsivity 55 2.4.3 Noise 56 2.4.4 Noise Equivalent Power 64 2.4.5 Specific Detectivity 65 2.4.6 Modulation Transfer Function 67

2.5 Detector Materials and Performance Predictions 69 2.5.1 Photovoltaic Indium Antimonide (InSb) f0 2.5.2 PV Mercury-Cadmium-Telluride (HgCdTe) 71 2.5.3 Schottky Barrier Detectors; Platinum

Silicide 73 2.5.4 Doped Germanium and Silicon 74 2.5.5 PC Mercury-Cadmium-Telluride (HgCdTe) 78 2.5.6 Lead Salts 79 References 81 Suggested Reading 82 Problems 83

Detector Types, Mechanism 85 Detector Operation 84 Detector Figure of Merit 84

Chapter 3 Radiometry 87

3.1 The General Method 87 3.1.1 The Incremental Limit 88 3.1.2 Extensions 91 3.1.3 Nomenclature and Notation 93 3.1.4 Blackbodies, Graybodies, and Emissivity 99

3.2 Spectral Content 101 3.2.1 Planck's Law for Spectral Exitance 101 3.2.2 The Spectral Integral 110 3.2.3 Accuracy of Radiometric Calculations 118 3.2.4 Signal from a Broad Spectral Source 121 3.2.5 Response per Degree Difference in Scene

Temperature 129 3.3 Spatial Integral 130

3.3.1 Solid Angles 130 3.3.2 Simple and Projected Solid Angles 132

Page 4: Fundamentals of Infrared Detector Operation and Testing

CONTENTS xv

3.3.3 Solid Angles for Specific Geometries 132 3.3.4 More Complicated Geometries: Angle

Factors 134 3.4 Time Dependence (Modulation) 137

3.4.1 Fourier Analysis of Waveforms 137 3.4.2 Modulation Factors 138 3.4.3 Sine-Wave Modulation 144

3.5 Examples and Cases of Special Interest 146 3.5.1 Background in a Test Dewar—Narrow

Bandpass Filter 148 3.5.2 Background in a Test Dewar—Wide

Bandpass Filter 150 3.5.3 Incidence from a Blackbody Test Set (All

Wavelengths) 151 3.5.4 Sunlight on the Earth 153 3.5.5 Sunlight Reflected from a Window 153 3.5.6 Moonlight on the Earth 154 3.5.7 Sterance from the Earth 157

3.6 FORTRAN Computer Code for Radiometric Calculations 157 3.6.1 AMDOF: Prints Table of Modulation

Factors 157 3.6.2 AMODF2: Generates Case II Modulation

Factors 159 3.6.3 AMODF3: Generates Case III Modulation

Factors 159 3.6.4 AFLUX: Generates rms Incidences 160 3.6.5 FLUX TABLES: Prints Tables of

Blackbody Incidance 161 References 162 Suggested Reading 163 Problems 164

General Radiometry 164 Spectral Content 165 The Spatial Integral 168 Modulation 169

Chapter 4 The Test Set 171

4.1 Types of Test Sets 171 4.1.1 Blackbody and Dewar 171 4.1.2 Chambers 172 4.1.3 Focused Optics: Spot and Line Scanners 172

Page 5: Fundamentals of Infrared Detector Operation and Testing

XVI CONTENTS

4.1.4 Spectrometers 173 4.1.5 Special Applications 176

4.2 Design and Documentation 176 4.2.1 Requirement Definition 176 4.2.2 Design Review 177 4.2.3 Scale Drawings 179 4.2.4 Emissivity and Reflectivity in the Infrared 179

4.3 The Blackbody Test Set 180 4.3.1 Blackbodies 181 4.3.2 Mounting of the Blackbody 181 4.3.3 Measurement of Blackbody Temperature 182 4.3.4 Measurement and Documentation of

Blackbody Aperture Diameters 184 4.3.5 Shutters and Choppers 186

4.4 Between the Source and Detector 188 4.4.1 Folding Mirrors 188 4.4.2 Orientation of Knife-Edged Apertures and

Baffles 188 4.4.3 Unwanted Reflecting Surfaces 188 4.4.4 Accuracy Required in Measuring Detector-

to-Blackbody Distances 190 4.5 Dewars 193

4.5.1 Design Decisions for Background Reduction 193 4.5.2 Effect of Ambient Temperature on

Background 196 4.5.3 Field of View Baffles 196 4.5.4 Windows and Filters 199

4.6 Test Set Evaluation and Troubleshooting 203 4.7 The Radiometric Calibration Problem 204

4.7.1 Radiometric Standards 205 4.7.2 Radiometric Verification 205 References 207 Suggested Reading 209

IR Reflectance of Optical Blacks 209 IR Reflectance of "Mirrors" (High-Reflectivity Coatings) 210 Blackbody Theory and Design 211

Problems 212

Chapter 5 Detector Testing 213

5.1 Preliminaries 213 5.1.1 Information Needed 214

Page 6: Fundamentals of Infrared Detector Operation and Testing

5.1.2 Test Planning 215 5.1.3 Test Procedure 215 5.1.4 Pretest Operations 216

5.2 V-I Curves 217 5.2.1 Equipment Used for V-I Curves 218 5.2.2 Analysis of V-I Curves for Photovoltaic

Detectors 218 5.2.3 V-I Data for Photoconductors 220

5.3 Noise 220 5.3.1 Digital Calculations 220 5.3.2 Error in Digital Noise Measurements 222 5.3.3 Analog Measurements of Noise: Meters and

Their Errors 227 5.3.4 Bandwidth for Noise Calculations 227 5.3.5 Characterization of Low-Frequency Noise 229

5.4 Blackbody Signal and Responsivity 234 5.4.1 Blackbody Test Set 235 5.4.2 Blackbody Responsivity 235 5.4.3 Optimization of Bias Voltage 236

5.5 Accuracy of Blackbody Responsivity Data 237 5.5.1 Effect of Sample Size on Signal Uncertainty 238 5.5.2 Effective Area 239 5.5.3 Confidence-Building Techniques 240 5.5.4 Hints for Data Reduction 241

5.6 Analysis of Detector Current, Signal, and Noise Data 246

5.7 Frequency Response 249 5.7.1. Response versus Frequency 249 5.7.2 Time Constant and Corner Frequency 250

5.8 Low-Background Testing 252 5.8.1 Background Reduction Methods 253 5.8.2 Background Leaks 254 5.8.3 Low-Signal Problems 254 5.8.4 High-Impedance Electronics 255 5.8.5 Frequency Response 256

5.9 Spectral Measurements 257 5.9.1 Relative Spectral Response 257 5.9.2 Absolute Spectral Response Values 260 5.9.3 Effective Incidence and Blackbody-to-Peak

Conversion 260 5.9.4 Reflectance and Transmittance

Measurements 261

Page 7: Fundamentals of Infrared Detector Operation and Testing

XVUl CONTENTS

5.10 Spatial Measurements 262 5.10.1 Spot Scans 262 5.10.2 Modulation Transfer Function 263 5.10.3 Crosstalk 264

5.11 Test Reports 265 References 267 Suggested Reading 268 Problems 268

UNIT 2 RELATED SKILLS 273

Chapter 6. Science and Measurements 275

6.1

6.2

6.3

6.4

6.5

6.1.1 Units 6.1.2 Basic Estimate 6.1.3 Rejecting Data 6.1.4 Uncertainty Experimental Error 6.2.1 Systematic Errors 6.2.2 Random Errors 6.2.3 Illegitimate Errors 6.2.4 Validity of the Model Estimating Uncertainties 6.3.1 Subjective or Intuitive Estimate of

Uncertainty 6.3.2 The Probability of Blunders 6.3.3 Estimating the Magnitude of Systematic

Errors 6.3.4 Estimating the Magnitude of Random Errors Probability 6.4.1 An Introduction to Probability: Normal

Curve of Error 6.4.2 Standard Deviations for Common Best

Estimates 6.4.3 Example of Standard Deviations for Two

Data Sets Propagation of Errors 6.5.1 Direct Method 6.5.2 Shortcuts in Estimating Error Propagation 6.5.3 Probable Total Error

276 276 278 278 279 280 280 280 281 282

282 282

283 283 284

284

285

290 290 291 292 293

Page 8: Fundamentals of Infrared Detector Operation and Testing

CONTENTS xix

6.6 Reporting Uncertainties 293 6.7 The Ethics of Scientific Work 294

6.7.1 Independent Checks 295 6.7.2 Agressive Learning 296 6.7.3 A Note of Caution 296

6.8 The Overall Test Task 296 6.8.1 Designing the Test 296 6.8.2 Data Review and Interpretation 297 6.8.3 Presentation of Results 298 6.8.4 Graphing 299 References 300 Suggested Reading 300 Problems 301

Chapter 7. Cryogenics 305

7.1 Cryogens 305 7.1.1 Heat of Vaporization 307 7.1.2 Enthalpy 308 7.1.3 Storage of Cryogens; Dewars 308 7.1.4 Transfer of Cryogens 309 7.1.5 Continual Transfer Systems 309 7.1.6 Liquid Level Sensors 310

7.2 Thermal Properties of Solids 311 7.2.1 Thermal Expansion 311 7.2.2 Heat Conduction; Thermal Conductivity 312 7.2.3 Heat Capacity; Specific Heat 320 7.2.4 Electrical Analogs 322

7.3 Dewar Design 323 7.4 Refrigerators 325

7.4.1 Joule-Thompson Liquefier 325 7.4.2 Thermoelectric Coolers 325 7.4.3 Radiation Coolers 326

7.5 Temperature Measurement 326 7.5.1 Temperature Sensors 326 7.5.2 Mounting of Cryogenic Thermometers 331

7.6 Cryogenics and Safety 331 References 333 Suggested Reading 335

Cryogenics: General and Engineering 335 Handbook and Tabular Material 335

Problems 337

Page 9: Fundamentals of Infrared Detector Operation and Testing

XX CONTENTS

Chapter 8. Vacuum Practices 339 8.1 Introduction 339

8.1.1 Units 339 8.1.2 Conversion between Molecular Density and

Pressure 341 8.2 Gauges 342

8.2.1 Thermocouple Gauges 342 8.2.2 Ion Gauges 342

8.3 Pumps 343 8.3.1 Oil Sealed Rotary Pumps 343 8.3.2 Turbomolecular Pumps 343 8.3.3 Diffusion Pumps 343 8.3.4 Cold Traps 344 8.3.5 Sorption Pumps 344 8.3.6 Ion Pumps 344 8.3.7 Manifolds 344 8.3.8 Operation of a Typical Multiport Vacuum

Station 344 8.4 Pumping Dynamics 346

8.4.1 Vocabulary and Units 347 8.4.2 Mean Free Path 348 8.4.3 Conductance Formulas 348 8.4.4 Time to Pump a Perfectly Clean Volume 349 8.4.5 Outgassing 350 8.4.6 Time to Pump a Real System 353 8.4.7 Reduction of Outgassing 355 8.4.8 Permanent Vacuum 356

8.5 Leaks 357 8.5.1 Leak Detection 357

8.6 Adequate Vacuum for Test Dewars 358 8.6.1 Heat Conduction by Gases 359 8.6.2 Allowable Condensation 362 8.6.3 Leaks and Outgassing 362 8.6.4 Pumping Dynamics 362 8.6.5 Condensation 363

8.7 Vacuum and Safety 364 References 365 Suggested Reading 365 Problems 366

Chapter 9. Optics and Optical Materials 369 9.1 Infrared Optical Materials 369

9.1.1 Selection of Window Materials 369

Page 10: Fundamentals of Infrared Detector Operation and Testing

CONTENTS xxi

9.1.2 Required Thickness for Vacuum Windows 374 9.1.3 Index of Refraction 375 9.1.4 Dispersion 375 9.1.5 Transmittance of Windows 376

9.2 Geometrical Optics 376 9.2.1 Angle of Reflection 376 9.2.2 Refraction Snell's Law 377 9.2.3 Optical Thickness 377

9.3 Reflectance and Transmittance Calculations 378 9.3.1 Reflectance and Transmittance of

Nonabsorbing Materials 378 9.3.2 Reflectance at Other than Normal Incidence 382 9.3.3 Absorption in Optical Materials 382 9.3.4 Mirrors and Blacks 382 9.3.5 Bidirectional Reflectance Distribution

Function 385 9.4 Interference Effects 385

9.4.1 Antireflection Coatings 386 9.4.2 Spectral Filters 387 9.4.3 Spectral Transmittance Measurements 388 9.4.4 Neutral Density Filters 389 9.4.5 Transmittance of Two Filters in Series 389

9.5 Diffraction 391 9.5.1 Resolution Limits and Criteria 393 9.5.2 Resolution of the Human Eye 395 References 397 Suggested Reading 397 Catalogues and Handbooks from Vendors 398 Problems 399

Chapter 10. Electronics 401

10.1 Passive Components 401 10.1.1 Resistors 402 10.1.2 Capacitors 408

10.2 Transistors and Their Use as Amplifiers 412 10.2.1 Bipolar Junction Transistors 412 10.2.2 Junction Field-Effect Transistors 421 10.2.3 Metal-Oxide Field-Effect Transistors 425

10.3 Amplifiers 428 10.3.1 Feedback Theory and Stability 428 10.3.2 Operational Amplifiers 430 10.3.3 Amplifiers for High-Impedance Detectors 433

Page 11: Fundamentals of Infrared Detector Operation and Testing

XXII CONTENTS

10.3.4 Amplifiers for Intermediate Impedance Detectors 436

10.3.5 Amplifiers for Low-Impedance Detectors 438 10.4 Laboratory Testing 440

10.4.1 Grounding 441 10.4.2 Laboratory Equipment 442 References 444 Suggested Reading 445 Problems 445

APPENDIXES 449

Appendix A Symbols and Abbreviations 451

Appendix В Glossary 455

Appendix С Decibel Convention 457

Appendix D Characterization of Semiconductor Materials

1. Resistance Measurements 1.1 Rectangular Bar 1.2 Four-Lead Method 1.3 Hall Bar

2. Wafer Measurements 3. Hall Effect 4. Energy Level and Band Gap Determination 5. Lifetime

461

461 461 461 462 463 464 467 468

References 468

Index 469