Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U....

138
Fundamentals of Airborne Wind Energy Systems Antonello Cherubini PERCRO Robotics Laboratory, Via alamanni 13b, Ghezzano, Pisa December 2017 Universidad Carlos III de Madrid

Transcript of Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U....

Page 1: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Fundamentals of Airborne Wind Energy Systems

Antonello Cherubini

PERCRO Robotics Laboratory,

Via alamanni 13b, Ghezzano, Pisa

December 2017

Universidad Carlos III de Madrid

Page 2: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 2

About me

Antonello Cherubini ( www.antonellocherubini.com )

5 years experience in Wind DronesMechanical engineer

Work Experience in AWE

• 2013-2017 PhD in wind drones at Sant’Anna Pisa, the finest technical university in Italy

• 2012-2013 Mechanical engineer at Kitegen Research, Italian airborne wind energy company

Publications in AWE

• A. Cherubini, G. Moretti, M. Fontana, “Sistema aereo di captazione eolica d’alta quota per generatoreeolico”, patent application

• ‘Airborne Wind Energy Systems: A review of the technologies’, 2015First google result after wikipedia typing ‘airborne wind energy’

• ‘Simplified model of offshore airborne wind energy converters’, 2015

• ‘Dynamic modeling of floating offshore airborne wind energy converters’, 2016, accepted

• ‘Puleggia perfezionata per verricello ad alta efficienza’, patent application ITTO20130365, 2013

Page 3: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Program• Energy and Renewable Energies, the current scenario

• Introduction to Airborne Wind Energy (AWE)

• Basic power rating of Airborne Wind Energy Systems (AWES)

• AWES classifications and examples

• Tether sag shape and angle of attack control

• Power curve of AWES

• Betz limit does not exist in AWES

• Iterative solvers for AWES

• Momentum conservation in fly-gen AWES

Page 4: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Energy and Renewables Where are we?

Page 5: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 5

Energy is vital

• Everything is energy: food, houses, medical drugs, clothes

• Italy produces between 50 and 60% of its own wheat*,to move it we need energy

• Countries who do not have access to abundant energy are third world countries

* Source: http://www.ilfattoquotidiano.it/2016/07/11/produzione-grano-agricoltori-contro-industriali-si-accollino-perdite-stop-

ai-prezzi-da-discount-a-causa-dellimport/2891657/

Examples:

Page 6: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 6

31% production of inorganic fertilizers

19% production/use of machinery

16% transport of food

13% irrigations (pumps etc.)

8% stock farming (feeding excluded)

5% drying

5% production of pesticides

3% other consumptions

FOSSIL FUELS

91%

SUN 9%

Embodied energy

Sources: graphical representation by Marcello Corongiu, data from:

D.JC. MACKAY, Without the hot air, Cambridge University, 2000

D. COOLEY E. GOODLIFFE – J. MACDIARMIK - Embodied energy of food, Exeter University, 1998

Page 7: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 7

Effects of energy availability: +250% productivity in agriculture

Graphical representation by Marcello Corongiu

Page 8: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 8

Effects of energy availability: urbanization

Graphical representation by Marcello Corongiu

Page 9: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 9

Effects of energy availability: transport

Graphical representation by Marcello Corongiu

Page 10: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 10

Effects of energy availability: welfare (late 19th century)

Graphical representation by Marcello Corongiu

Health

care

Free

time

Pensions

Social

mobility

Page 11: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 11

Effects of energy availability: population growth

Picture from Wikipedia https://en.wikipedia.org/wiki/World_population#/media/File:Population_curve.svg

Page 12: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 12

The largest market in the world

9 of the top 12 companies with the largest revenue are in the energy market.

Energy is a multi trillion dollar market

Graphical representation by Daidalos Capital. Data source Fortune 500.

Page 13: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Avg. per-capita consumption, Italy 2014*

Non electrical Electrical

15 December, 2017 Antonello Cherubini 13

Primary energy vs electrical energy

Primary Energy: includes all energy

consumptions (e.g. petrol, gas, electricity..)

* Source: statistiche Terna 2014 http://download.terna.it/terna/0000/0607/85.PDF

** Source: statistiche Ministero Sviluppo Economico 2014:

http://dgsaie.mise.gov.it/dgerm/downloads/situazione_energetica_nazionale_2014_v4_con_allegati.pdf

Electrical

580 W

(16%)

(non electrical)

3020 W

(84%)

Electrical energy: it is a fraction of primary

energy

Primary

3600 W

Page 14: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 14

Sources of energy (primary)

Sources of primary energy in Italy 2015*

Natural Gas OilCoal and solid fuels Electricity from other renewablesHeat from renewables Electricity from solar and wind

Natural gas

720 TWh

Oil

688 TWh

Electricity from renewables

(excluding solar and wind) 69 TWh

Heat from renewables

123.2 TWh

Coal and solid fuels

168.5 TWh

Solar 1.2 % (22,9 TWh)

Wind 0.8% (14,9 TWh)

* Fonte: statistiche Ministero Sviluppo Economico 2015:

http://dgsaie.mise.gov.it/dgerm/downloads/situazione_energetica_nazionale_2015.pdf

Page 15: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 15

The problem with NON renewables

1. They won’t last

2. Global warming

“..even if by a magic wand we could stop all emissions overnight, the average temperature of Earth would continue to rise or stay at current levels for several hundred years.” [1,2]

[1] Solomon S, Plattner G K, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions.

Proceeding of the National Academy of Sciences 2009; 106(6): 1704–9.

[2] Tingzhen Ming, Renaudde Richter, WeiLiu, Sylvain Caillol, Fighting global warming by climate engineering: Is the Earth

radiation management and the solar radiation management any option for fighting climate change?, Renewable and

Sustainable Energy Reviews, 31 (2014) 792–834

* Pictures from: NASA http://www.giss.nasa.gov/research/news/20150116/ , http://climate.nasa.gov/evidence/

Page 16: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 16

The problem with NON renewables

Picture from: https://oilandgasleaks.wordpress.com/2011/12/03/the-gulf-of-mexico-is-dying/

28000 abandoned wells in the Gulf of Mexico

Page 17: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 17

The problem with renewables

1. Expensive*

(example 300 €/MWh photovoltaic, roughly 4 times higher than coal or gas)

2. Intermittent

(We can’t fully manage renewables, they just happen to be there when they want)

* Hydro power is the only exception, no surprise that it is historically well exploited

Page 18: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 18

Grid balancing

* Source: Terna daily data, 3 sept 2016 https://www.terna.it/it-it/sistemaelettrico/dispacciamento/datiesercizio/datigiornalieri.aspx

Today we do not store energy, it costs too much.

This is a sample daily electricity demand/offer, Italian grid, 2016 (forecasts in green, real data in red)

Page 19: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 19

Sad truth

When you here something like “grid parity has been reached by renewable energy project x in location y”, be happy but remember that:

- renewables are usually given priority over fossil fuels

- electricity is only 16% of the energy problem

Page 20: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 20

So what?

• Assume (desperately hope) that some geniuses (or wise politicians) create a cheap and high-density storage solution (Public investments in supercapacitors? Synthetic fuels?)

• Assume (desperately hope) that some geniuses (or wise politicians) bring down the cost of renewables (Airborne Wind Energy? Stabilized Perovskites solar panels?)

OR

• Get ready for the worst times of modern history since WW2

Page 21: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 21

Some good news

• Global PV industry is now a net energy provider (it produces more energy than it consumes) and by 2020 it will likely have completed its energy payback time [1]

[1] M. Dale, S. M. Benson, “Energy Balance of the Global Photovoltaic (PV) Industry - Is the PV Industry a Net Electricity Producer?” Environ. Sci. Technol., 2013, 47 (7), pp 3482–3489

Page 22: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 22

Some good news

• Laboratory efficiency of solar cells keeps growing [1]

[1] Data: Solar Cell Efficiency Tables (Versions 1-50), Progress in Photovoltaics: Research and Applications, 1993-2017. Graph: Fraunhofer ISE 2017 https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

Page 23: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 23

Some good news

• Some offshore wind farms in Northern Europe reached grid parity with prices as low as 50€/MWh [1]

(typical LCOE for offshore wind is around 130€/MWh)

[1] McKinsey Report 2017 https://www.mckinsey.com/business-functions/sustainability-and-resource-productivity/our-insights/winds-of-change-why-offshore-wind-might-be-the-next-big-thing

Page 24: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 24

So what?

OK!!! Let’s be optimistic! Someone will create the

technological system to make us all happy, what next?

Page 25: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 25

We need 16TW, from where do we take them?

Elaborated from: S.M. Benson - F.M. Orr, Sustainability and energy conversions, MRS Bulletin, Apr 2008, Marcello Corongiu

Page 26: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 26

Physical limitations: how much solar surface do we need?

* Assuming total solar irradiance

of 1500 kWh/m2/year and total

efficiency of 10%. Each square is

45 km wide

To satisfy electricity

demand

(34 m^2 per capita)*

To satisfy non electrical

primary consumption

(211 m^2 per capita)*

Each of us needs 245 m^2 (approx, slightly pessimistic)

Page 27: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 27

How much solar surface do we need?

Each of us needs 245 m^2 (approx.)

Countryside example: Marta (my hometown) needs to cover 2.5% of its surface

(3440 people in 33 km^2)

Big city example: Milan would need to be 83% bigger and be 100% covered by panels

(1 360 000 people in 181 km^2)

Page 28: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 28

Physical limitations: how many wind mills do we need?

We need a wind turbine each 55 people (approx.)

Italy needs 1 090 000 wind turbines*

* Assuming all wind turbines are

2MW size and operate at 10%

total efficiency

Page 29: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 29

How much solar surface do we need?

Countryside example: Marta (my hometown) needs 62 windmills

(3440 people in 33 km^2)

Big city example: Milan would need 24500 windmills

(1 360 000 people in 181 km^2)

We need a wind turbine each 55 people (approx.)

Page 30: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 30

Offshore would be nice but it’s even more expensive

Will it happen?

Page 31: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

High altitude wind energy

Page 32: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 32

Wind Power Density

𝑊𝑃𝐷 =1

2𝜌 𝑉3

[ W/ m 2]

Page 33: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 33

High altitude winds, way more power, everywhere

Page 34: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 34

High altitude winds, way more power, everywhere

Page 35: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 35

High altitude winds, way more power, everywhere

Page 36: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 36

High altitude winds, everywhere

Picture from: Cristina L. Archer; Ken Caldeira. Global Assessment of High-Altitude Wind Power. Energies, v 2, n 2, p 307-319, June 2009. See

also Atlas of high altitude wind power http://homes.esat.kuleuven.be/~highwind/wp-content/uploads/2011/07/atlas_of_airborne_wind_energy.pdf

Green regions at

10,000 m feature

more than

5kW/m^2 for

more than

50% of the time

Page 37: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 37

High altitude winds, way more power, everywhere

Picture from: Antonello Cherubini, “Advances in Airborne Wind Energy and Wind Drones”, PhD Thesis, Sant’Anna University of

Pisa, 2017

Page 38: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 38

High altitude winds, higher availability

Pictures from: Ragusa Salvatore Marco. Valutazioni energetiche dell'eolico d'alta quota: Kitegen. Politecnico di Torino, Bachelor

Thesis, 2007.

Page 39: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 39

Please be elegant

Picture from a company website, company not stated on purpose

Do not use average

Use percentile instead

Page 40: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 40

Low altitude winds, smooth?

Picture from: Antonello Cherubini, based on http://blog.ucsusa.org/john-rogers/climbing-on-top-of-a-wind-turbine

Did you know that large scale conventional wind turbines capture a wind stream that flows in different directions?

Up to 60 degrees angular difference from the top to the bottom

Page 41: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 41

High altitude winds, smooth?

Picture from: antonellocherubini.com AWE Blog

Page 42: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Where is AWE?

Page 43: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 43

Some investors in wind drones

Graphical representation by Daidalos Capital.

Page 44: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 44

Where is AWE?

Picture from: http://www.starnetllc.net/valley-of-death/

AWESales

start

Page 45: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 45

Technology development

Pictures from: Delabole wind farm, UK http://130.226.56.150/site_background_information.php?site_code=delaboleAirborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation of High Performance Airborne Wind Turbines» Chapter 28

Wind farm 4 MW 10 turbine VESTAS WD34 400 kW

Makani 20 kW prototype, 2013

Page 46: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 46

Wind drones vs wind turbines: lower size, lower cost

Wind drone (left) vs a conventional

wind turbine (right) with the same

power output.

Impression from Ampyx Power

Page 47: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 47

Where is AWE?

Picture from: Antonello Cherubini, “Advances in Airborne Wind Energy and Wind Drones”, PhD Thesis, Sant’Anna University of

Pisa, 2017

Page 48: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 48

Where is AWE?

Picture from: Antonello Cherubini, “Advances in Airborne Wind Energy and Wind Drones”, PhD Thesis, Sant’Anna University of

Pisa, 2017

Page 49: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 49

Where is AWE?

Picture from: Prof. Roland Schmehl

Page 50: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

How does it work?

Page 51: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 51

Crosswind flight

Example: Leading Edge Inflatable (LEI) kite

Picture in public domain.

Page 52: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Wind window (wind going inward)

15 December, 2017 Antonello Cherubini 52

Crosswind flight

Page 53: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 53

Ground-gen vs fly-gen

Picture from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Example of Ground-Gen (a) and Fly-Gen (b) AWESs.

Page 54: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Picture from: Ampyx Power website, 2015. http://www.ampyxpower.com/our-technology/technology-concept/

15 December, 2017 Antonello Cherubini 54

Ground-gen pumping cycle

Page 55: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Modified version of picture by R. Paelinck from: Moritz Diehl “Airborne Wind Energy: Basic Concepts and Physical

Foundations”, “Airborne Wind Energy” book, 2013.

15 December, 2017 Antonello Cherubini 55

Single wind drone - fly-gen

Fly-gen continuous operation

Page 56: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 56

Single wind drone - flygen

Video from: Makani Power Website.

http://www.google.com/makani/solution/

Constant

cable length

Page 57: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 57

Ground-gen vs Fly-gen

Ground-gen Fly-gen

Simpler, easier testing and development

More complex, slowerdevelopment

Duty cycle efficiency Continuous operations

Gravity affects power output and cut-in

Gravity affects mainly cut-in

Takeoff: needs motors or other features

Takeoff ok, built-in

Page 58: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 58

Math time

Theoretical optimal power output, Loyd 1980

Hypotheses:

- Steady state flight

- E > 10

- Power zone flight

WPDAerodynamic

parameters

Wing area

Page 59: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 59

Basic power rating

• Start from Loyd’s model

• Add cable drag

• Add elevation angle cosine

Picture from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, Airborne Wind Energy Systems, a review of

the technologies, 2015

Page 60: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

State of the art

Page 61: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 61

AWES Taxonomy (1)

Picture updated from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy

Systems, a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Page 62: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Pictures from: Companies’ websites and web

15 December, 2017 Antonello Cherubini 62

AWES Taxonomy (2) - drones

Makani Power

Fly-gen drone

Kitemill

Ground-gen with

takeoff motors

Skypull

Biplane

TwingTech

Ground-gen with

takeoff motors

Sant’Anna Pisa

Multi drone

system

Ampyx Power

tethered glider

Page 63: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Pictures from: Companies’ websites

15 December, 2017 Antonello Cherubini 63

AWES Taxonomy (2) - kites

Kitegen

2 lines

semirigid kite

NTS Energy

4 line kite on rail

Kitenergy

2 lines kite

Skysails power

1 line kite with

control pod

Skysails marine

1 line kite

with control pod

Swiss Kite

Power

3 lines kite

TU Delft

Soft kite with

control pod

Page 64: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 64

AWES

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 65: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 65

Sailplane

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 66: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 66

Ampyx Power

Picture from: AWEC 2017, Freiburg, book of abstracts

• Ground-gen

• Sailplane as kite

• Onboard control and batteries

Page 67: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 67

Ampyx Power – winch takeoff and autonomous crosswind

Video from: https://www.youtube.com/watch?v=oP8t4zHFxD0&t=2099s Ampyx Power 50 minutes fully automatic flight

Page 68: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 68

Ampyx Power – landing without tether

Video from: https://www.youtube.com/watch?v=oP8t4zHFxD0&t=2099s Ampyx Power 50 minutes fully automatic flight

Page 69: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 69

Ampyx Power

Picture from: AWEC 2017, Freiburg, book of abstracts

Page 70: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 70

Scalability of onboard batteries

• As size grows, batteries become THE payload

Storage material Energy type Specific energy(MJ/kg)

Deuterium-Helium-3 (in Fusion reactor)

Nuclear fusion 384,000,000[2]

Uranium (in breeder) Nuclear fission 80,620,000[3]

Hydrogen (compressed at 700 bar)

Chemical 142

Methane or natural gas Chemical 55.5

Diesel Chemical 48

Gasoline (petrol) Chemical 46.4

Table from Wikipedia https://en.wikipedia.org/wiki/Energy_density

Page 71: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 71

Scalability of onboard batteries

• As size grows, batteries become THE payload

Storage material Energy type Specific energy(MJ/kg)

Gasoline (petrol) Chemical 46.4

Coal, bituminous Chemical 24-35

Methanol fuel (M100) Chemical 19.7

Carbohydrates Chemical 17

Lithium metal battery Electrochemical 1.8

Lithium-ion battery Electrochemical 0.36[7]–0.875[8]

Flywheel Mechanical .36 – .5

Alkaline battery Electrochemical 0.5[9]

Lead-acid battery Electrochemical 0.17

Supercapacitor (EDLC)Electrical (electrostatic)

0.01-0.036[10][11][12][13][14][15]

Table from Wikipedia https://en.wikipedia.org/wiki/Energy_density

Page 72: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 72

Scalability of onboard batteries

• Modern batteries have a density 50-100 times lower than

petrol

• As size grows, batteries become THE payload

• For example a commercial plane powered by batteries would

have a flight range of approx. 500km [1] instead of 6000km

[1] http://finanza.lastampa.it/News/2017/04/19/laereo-di-linea-di-wright-electric-e-un-sogno-ma-davvero-lontano-nel-

tempo/MTc5XzIwMTctMDQtMTlfVExC

Page 73: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 73

Scalability of onboard batteries

Page 74: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 74

Platform takeoff (with propeller)

Video courtesy of Pasquale Adobbato, Pisa, 2017

Page 75: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 75

Platform takeoff (with propeller and tether)

Picture from: Prof. Lorenzo Fagiano, AWEC 2017, Freiburg, book of abstracts

Page 76: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 76

Video from: Prof. Lorenzo Fagiano, https://www.youtube.com/watch?v=UPiTiHPXciE

Platform takeoff (with propeller and tether)

Page 77: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 77

LEI kites

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 78: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 78

TU Delft 20 kW

Pictures from: Uwe Fechner, Roland Schmehl “Model-Based Efficiency Analysis of Wind Power

Conversion by a Pumping Kite Power System”; Rolf van der Vlugt, Johannes Peschel, Roland Schmehl “Design and

Experimental Characterization of a Pumping Kite Power System”, “Airborne Wind Energy” book, 2013.

20 kW peak power output

4 kW average electrical output

• Ground-gen

• LEI kite

• 1 line and Airborne control

pod

Page 79: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 79

TU Delft 20 kW

Picture from: Uwe Fechner, Roland Schmehl “Efficiency Analysis of Wind Power Conversion by a Pumping Kite

Power System”; “Airborne Wind Energy” book, Chapter 14, 2013

Efficiencies of the TU Delft demonstrator, simulated at different wind speeds

Product of the first two

Time spent to reel in

Motor and generator

Can be increased

to 50 or 60%

Negative reel in energy

Page 80: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 80

TU Delft 100 kW

Picture from: AWEC 2017, Freiburg, book of abstracts

Page 81: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 81

Kite Power Systems

Picture from: AWEC 2017, Freiburg, book of abstracts

• Ground-gen

• Ram air kite

• Airborne control pod

• 5 M£ recent investment

• Little information available

Page 82: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 82

Other kite systems

Pictures from: Lorenzo Fagiano, Trevor Marksx “Design of a small-scale prototype for research in airborne wind

energy” 2013

Lorenzo Fagiano at UC Santa Barbara

4 consecutive hours of autonomous figure-8 flight

• 3 lines kite

• No control pod

• 2 Angular sensors

• Similar to UC3M

student’s project

Page 83: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 83

Ram air kites

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 84: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 84

Skysails

Picture from: Skysails

http://www.skysails.info/english/media/

150 m2

• Ground-gen

• Ram air kite

• Airborne control pod

Page 85: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 85

Skysails

Video from: Skysails: MS "BBC SkySails"

http://www.skysails.info/english/media/footage/

Page 86: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 86

Skysails

Picture from: AWEC 2017, Freiburg, book of abstracts

Page 87: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 87

Skysails power

Pictures from:

AWEC 2017, Freiburg, book of abstracts

http://www.skysails.info

• Ground-gen

• Ram air kite

• Airborne control pod (500W typical power consumption)

Page 88: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 88

Cable shape - math time

Page 89: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 89

Cable shape – polynomial curvature

Picture from: http://www.kitepowersystems.com/markets/onshore-kite-power/

Page 90: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 90

Cable shape – polynomial curvature

Picture from: Makani Website

Page 91: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 91

Cable shape – math time

Page 92: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 92

Angle of attack control - math time

Page 93: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 93

Why a control pod

• Makani’s example of angle of attack time history [1]

[1] Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and

Flight Test Validation of High Performance Airborne Wind Turbines» Chapter 28

[2] Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Richard Ruiterkamp and Soren

Sieberling, «Description and Preliminary Test Results of a Six Degrees of Freedom RigidWing Pumping

System» Chapter 26

• Ampyx’s example of angle of attack time history [2]

+ 1°

+ 3°

Page 94: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 94

Plane with fabric wing (?)

• Why a fabric-wing plane doesn’t exist?

• Or doesn’t it?

Video from https://www.youtube.com/watch?v=ZEss6sWw6EY

Page 95: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 95

Swept rigid wing

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 96: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 96

Swept rigid wing

Picture from: AWEC 2017, Freiburg, https://www.tudelft.nl/en/2017/lr/awec-conference-tailwind-for-airborne-wind-energy/

Enerkite

Page 97: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 97

Rotary takeoff system

Picture from: Enerkite https://www.youtube.com/watch?v=6cb9Pxf9Xro

Enerkite

Page 98: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 98

Semirigid kite

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 99: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 99

Semirigid kite

Picture from: http://kitegen.com/2014/08/29/la-prima-power-wing/

Page 100: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 100

Semirigid kite

Picture from: Kitegen on indiegogo

Page 101: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 101

Ground-gen drone with takeoff motors

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 102: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 102

Picture from: AWEC 2017, Freiburg, book of abstracts

Kitemill

Ground-gen drone with takeoff motors

Page 103: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 103

Pictures from: AWEC 2017, Freiburg, book of abstracts

Twingtec

Ground-gen drone with takeoff motors

Page 104: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 104

Biplanes

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 105: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 105

Biplanes

Pictures from:

Wikipedia biplane, Adrian Pingstone

Florian Bauer, AWEC 2017, Freiburg, book of abstracts

Page 106: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 106

Joby Energy

Pictures from: Joby Energy, http://www.jobyenergy.com/tech/visit

• Fly-gen biplane

• VTOL

Page 107: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 107

Skypull

Pictures from: skypull.com

AWEC 2017, Freiburg, book of abstracts

https://www.startups.ch/it/blog/skypull-la-startup-ticinese-dellenergia-eolica-ad-alta-quota/

• Ground-gen biplane

• Onboard motors for takeoff

• Low aspect ratio

Page 108: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 108

Flygen drone

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 109: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 109

Flygen drone - Makani

Picture from: http://berc.berkeley.edu/berc-visits-makani-power/

• Onboard turbines

• High voltage tether

Page 110: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 110

Makani Wing 7

[1] Makani’s Response to the Federal Aviation Authority -

Docket No.: FAA-2011-1279; Notice No. 11-07

http://www.energykitesystems.net/FAA/FAAfromMakani.pdf

Picture from: https://www.thedailybeast.com/whos-next-the-

mysterious-blind-item-king-who-exposed-weinstein-spacey-

and-lauer-before-the-media

Wing 7 Specs [1]

Rated power: 20 KW

Full rated power wind speed: 10 m/s

Operational altitude range: 40 m - 110m

Circling radius: 40 m

Wing

Wing mass: 60 kg

Wing spar: carbon fiber

Wing skin: carbon fiber

Generation system: 4 brushless DC motors

Tether

Mass: 16 kg

Length: 144 m

Conductor: copper

Structure: UHMWPE (Dyneema)

Voltage: 1.1 kV

Page 111: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 111

Makani Wing 7

Video from: Makani Power Website.

http://www.google.com/makani/solution/

Page 112: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 112

Makani M600

[1] Makani’s Response to the Federal Aviation Authority -

Docket No.: FAA-2011-1279; Notice No. 11-07

http://www.energykitesystems.net/FAA/FAAfromMakani.pdf

Picture from: http://www.businessinsider.com/google-x-

wants-to-revolutionize-wind-energy-with-makani-power-2015-

8?IR=T

M600 Specs

Rated power: 600 kW

Full rated power wind speed: 9m/s

Operational altitude range: 140m - 310m

Circling radius: 135 m

Wing

Wing spar: carbon fiber

Wing skin: e-glass

Wing mass: 1050 kg

Generation system: 8 brushless DC motors

Tether

Mass: 250 kg

Length: 440m

Conductor: aluminum

Structure: pultruded carbon fiber

Voltage: 8 kV

Page 113: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 113

Makani M600

Picture from: AWEC 2017, Freiburg, book of abstracts

Page 114: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 114

Makani M600

Picture from: AWEC 2017, Freiburg, book of abstracts

Page 115: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 115

Makani M600

Video cut from: https://www.youtube.com/watch?v=CKFlMDUHtLg

Page 116: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 116

Makani M600

Pictures from: http://berc.berkeley.edu/berc-visits-makani-power/

• Critical aerodynamics of 2-way rotor

• Thick profile

Page 117: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 117

Makani M600 - 28m wingspan

Pictures from:

Response to the Federal Aviation Authority - Docket No.: FAA-2011-1279; Notice No. 11-07

http://www.energykitesystems.net/FAA/FAAfromMakani.pdf

Makani website 2015

Current version

• Symmetric wingspan

• Non-symmetric bridle length

Alternative option

• Non-symmetric wingspan

Page 118: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 118

Makani M5 - 65m wingspan

[1] Makani’s Response to the Federal Aviation Authority -

Docket No.: FAA-2011-1279; Notice No. 11-07

http://www.energykitesystems.net/FAA/FAAfromMakani.pdf

Picture from: [1]

M5 Specs

Rated power: 5 MW

Full rated power wind speed: 9 m/s

Operational altitude range: 350m - 650 m

Circling radius: 265 m

Wing

Wing mass: 9,900 kg

Wing spar: carbon fiber

Wing skin: e-glass

Generation system: 8 brushless DC motors

Tether

Length: 1060 m

Mass: 3660 kg

Structure: pultruded carbon fiber

Conductor: aluminum

Voltage: 8 kV

Page 119: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 119

Lifting balloon

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 120: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 120

Altaeros Energy

Picture from: http://www.altaerosenergies.com

Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Chris Vermillion, Ben Glass, Adam Rein,

«Lighter-Than-Air Wind Energy Systems» Chapter 30

30°

• Conventional wind turbine lifted by a balloon

• Blowdown angle is a criticality, typical values around 30 degrees

• The turbine shell must generate lift (either aerostatic or aerodynamic)

• Very famous, it was mentioned in an interview about AWE with Bill Gates

Page 121: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 121

Flying copters

Pictures from: Antonello Cherubini, Andrea Papini, Rocco Vertechy, Marco Fontana, “Airborne Wind Energy Systems,

a review of the technologies”, Renewable and sustainable energy reviews, 2015 51, 1461-1476

Ground-gen drone with takeoff motors

Page 122: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 122

Self lifting multi-rotors

Pictures from: http://www.skywindpower.com; AWEC 2015, TU Delft, book of abstracts

Sky wind

power

Bryan

Roberts

Page 123: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 123

Rotokites

Picture from: Moritz Diehl, AWEC 2017, Freiburg, book of abstracts

Page 124: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 124

Rotokites

Picture from: Gianni Vergnano

Cierva rotor

Page 125: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 125

Moving ground station

Picture from: https://angel.co/nts-gmbh-nature-technology-systems/jobs

x-wind - NTS Energy

Page 126: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 126

Other concepts

Picture from: Kitegen; Tigner Benjamin, Patent: US8066225

Multi-tether planeTigner 2008

CarouselIppolito, 2004

Torsional multicable

transmissionRod Read 2017

Page 127: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 127

Simple kite vs Crosswind kite

Crosswind kite Simple kite

Powerful 2 orders of magnitudeless powerful for example in GG configuration[1]

Large swept area Tiny swept area

XM..L. Loyd, “Crosswind Kite Power” 1980

Page 128: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 128

Magnus effect balloon

Omnidea, Magenn

Picture from: AWEC 2015, TU Delft, book of abstracts

• Equivalent to Loyd’s

“simple kite” mode

• Simple kite is about 100

times less powerful than

crosswind flight mode

Page 129: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 129

Helium vs Hydrogen vs Hot air

Picture from: https://en.wikipedia.org/wiki/Zeppelin#/media/File:Hindenburg_burning.jpg

Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Chris Vermillion, Ben

Glass, Adam Rein, «Lighter-Than-Air Wind Energy Systems» Chapter 30

• He: inert, expensive, hard to contain

• H: 70-80% cheaper, 8% more lift, low ignition energy, anti-static fabric

• Hot air: requires power, provides less lift

Page 130: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 130

Rotational takeoff systems

Picture from: Moritz Diehl, AWEC 2017, Freiburg, book of abstracts

Page 131: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 131

Rotational takeoff systems

Picture from: Moritz Diehl, AWEC 2017, Freiburg, book of abstracts

Page 132: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 132

Tether drag

Warning! Cable drag

Page 133: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 133

Higher availability, even at low altitudes

Pictures from: Makani Power website 2016

Page 134: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 134

Higher availability, even at low altitudes

Pictures from: Makani Power website 2016

Which piece of

information is

missing in this map?

Page 135: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

Multiple drone AWES

Page 136: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 136

A dual drone system is better than a single drone

Picture from: antonellocherubini.com, blog about wind drones

Page 137: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 137

Multiple drone system working principle

Pictures from: Antonello Cherubini, Marco Fontana, An Assessment of a Megawatt Scale Wind Energy Drone Generator at Jet

Stream Altitude, 2016

Take off (1) Take off (2) Production

The dual drone system exploits the intrinsic stability of u-control flight, thus allowing to foresee an easier and more

robust control system for take off, production and landing. Notice that automatic take off and control is a major

problem in many companies involved in wind drones.

Page 138: Fundamentals of Airborne Wind Energy Systems · 2018-04-25 · Airborne Wind Energy book 2013, U. Ahrens, M. Diehl, R. Schmehl Eds. Damon vander Lind, «Analysis and Flight Test Validation

15 December, 2017 Antonello Cherubini 138

Multiple drone system - work in progress

Video from https://www.youtube.com/watch?v=PaeCZ72ghRQ&t=2s