Fundamental rate-loss tradeoff for optical quantum key ...

49
Masahiro Takeoka (NICT) Saikat Guha (BBN) Mark M. Wilde (LSU) Fundamental rate-loss tradeoff for optical quantum key distribution Quantum Krispy Kreme Seminar @LSU January 30, 2015

Transcript of Fundamental rate-loss tradeoff for optical quantum key ...

Page 1: Fundamental rate-loss tradeoff for optical quantum key ...

Masahiro Takeoka (NICT)

Saikat Guha (BBN)

Mark M. Wilde (LSU)

Fundamental rate-loss tradeoff for optical quantum key distribution

Quantum Krispy Kreme Seminar @LSU    January 30, 2015

Page 2: Fundamental rate-loss tradeoff for optical quantum key ...

‐Motivation

‐Main result

‐ Problem setting (generic QKD protocol) and proof outline

‐ Future outlook

Outline

Page 3: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Quantum Key Distribution can generate a shared key perfectly secret against any eavesdropper.

‐ Various (repeaterless) QKD protocols have been proposed so far.

‐ In all known protocols, the key rate decreases linearly    with respect to the channel loss. 

Motivation

Page 4: Fundamental rate-loss tradeoff for optical quantum key ...

Various QKD protocols

Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)

Channel loss [dB]

Secret key ra

te

Page 5: Fundamental rate-loss tradeoff for optical quantum key ...

0 10 20 30 40 50 6010-6

10-4

0.01

1

Loss dB

Secr

etke

yrat

ebi

tspe

rmod

e

- Secret key generation rate for the single-photon effcient BB84Scarani et al., RMP 81, 1301 (2009)

Example1: Ideal single-photon BB84

- Ideal case

(efficient BB84 protocol)Lo et al., J. Crypt. 18, 133 (2006)

Key rate (per mode, pulse)

Page 6: Fundamental rate-loss tradeoff for optical quantum key ...

0 10 20 30 40 50 6010-6

10-4

0.01

1

Loss dB

Secr

etke

yrat

ebi

tspe

rmod

e

Scarani et al., RMP 81, 1301 (2009)

Example2: CV-QKD (GG02)

- Ideal case

Page 7: Fundamental rate-loss tradeoff for optical quantum key ...

0 10 20 30 40 50 6010-6

10-4

0.01

1

Loss dB

Secr

etke

yrat

ebi

tspe

rmod

e

Garcia-Patron et al., PRL 102, 210501 (2009)Pirandola et al., PRL 102, 050503 (2009)

Example3: Reverse Coherent Information

: von Neumann entropy of

Reverse coherent information

For a lossy channel

with (infinitely strong) two-mode squeezed vacuum

Garcia-Patron et al., PRL 102, 210501 (2009)

Page 8: Fundamental rate-loss tradeoff for optical quantum key ...

Question

Is this a fundamental rate‐loss tradeoff in any optical QKD?

Are there yet‐to‐be‐discovered optical QKD protocols that could circumvent the linear rate‐loss tradeoff(without repeaters or trusted notes)?

Page 9: Fundamental rate-loss tradeoff for optical quantum key ...

Our result

‐We show that this is the rate‐loss trade off is a fundamental limit. 

‐We prove that the secret key agreement capacity (private capacity) of a lossy optical channel assisted by two‐way public classical communication is upper bounded by:

0 10 20 30 40 50 6010-6

10-4

0.01

1

Loss dB

Secr

etke

yrat

ebi

tspe

rmod

e

(Rev. coh. info. LB)

MT, S. Guha, M. M. Wilde, Nat. Commun. 5; 5235 (2014)

Page 10: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Generic point‐to‐point QKD protocol and its capacity (secret key agreement capacity assisted by two‐way public classical communication)

‐ Squashed entanglement of a quantum channel as an upper bound on the two‐way assisted SKA capacity

‐ Pure‐loss optical channel

‐ Loss and noise optical channel

‐ Summary

Rest of the talk

Page 11: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Generic point‐to‐point QKD protocol and its capacity (secret key agreement capacity assisted by two‐way public classical communication)

‐ Squashed entanglement of a quantum channel as an upper bound on the two‐way assisted SKA capacity

‐ Pure‐loss optical channel

‐ Loss and noise optical channel

‐ Summary

Rest of the talk

Page 12: Fundamental rate-loss tradeoff for optical quantum key ...

General secret key agreement assisted by unlimited two-way public classical communication

secr

et k

eys secret keys

General secret key agreement assisted by unlimited two-way public classical communication

General point-to-point QKD

Page 13: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

Eve

General point-to-point QKD

Page 14: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

Eve

General point-to-point QKD

Page 15: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

two‐way classical communication

Eve

General point-to-point QKD

Page 16: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

Eve

General point-to-point QKD

Page 17: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

two‐way classical communication

Eve

General point-to-point QKD

Page 18: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

Eve

n‐quantum channels

General point-to-point QKD

Page 19: Fundamental rate-loss tradeoff for optical quantum key ...

Decoding

Alice Bob

two‐way classical communication

Eve

n‐quantum channels

General point-to-point QKD

kse

cret

key

s ksecret keys

Secret key generation rate: R=k/n

Page 20: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Generic point‐to‐point QKD protocol and its capacity (secret key agreement capacity assisted by two‐way public classical communication)

‐ Squashed entanglement of a quantum channel as an upper bound on the two‐way assisted SKA capacity

‐ Pure‐loss optical channel

‐ Loss and noise optical channel

‐ Summary

Rest of the talk

Page 21: Fundamental rate-loss tradeoff for optical quantum key ...

Upper bound on the key rate: squashed entanglement of a quantum channel

: Squashed entanglement of a quantum channel

: Squashed entanglement (of a bipartite state )

Christandl, Winter, J. Math. Phys. 45, 829 (2004)

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Page 22: Fundamental rate-loss tradeoff for optical quantum key ...

Squashed entanglementSquashed entanglement: Esq(A;B)

conditional quantum mutual information

Christandl, Winter, J. Math. Phys. 45, 829 (2004)

A B

E

Channel S should be chosen to squash the quantum correlations between Alice and Bob (the squashing channel)E’

- Entanglement measure for a bipartite state (LOCC monotone, …)- Inspired by secrecy capacity upper bound in classical theory (intrinsic information)

Page 23: Fundamental rate-loss tradeoff for optical quantum key ...

Squashed entanglement of a quantum channel

Definition:

where

AA’

B

Page 24: Fundamental rate-loss tradeoff for optical quantum key ...

Main theorem

Proof outline

Esq(N) is an upper bound on the secret key generation rate R

1. Secret key distillation upper bound Christandl, et al., arXiv:quant-ph/0608119

2. New subadditivity inequality for the squashed entanglement

Theorem1

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Page 25: Fundamental rate-loss tradeoff for optical quantum key ...

Proof outline

1. Secret key distillation upper bound

Christandl, et al., arXiv:quant-ph/0608119

1. Monotonicity (does not increase under LOPC)

2. Continuity: if then

3. Normalization:

4. Subadditivity on tensor product states:

: private state Horodecki et al, PRL 94, 160502 (2005)

Theorem 3.7. Squashed entanglement is an upper bound on the distillable key rate from a tensor product state

The statement is proved by using the following four properties:

The similar technique is applicable to the channel scenario except 4.

Page 26: Fundamental rate-loss tradeoff for optical quantum key ...

Proof outline

4. Subadditivity on tensor product states:

Product state

Could be entangledover n‐channel use! 

?Can be replaced by

Page 27: Fundamental rate-loss tradeoff for optical quantum key ...

AB1

B2

?

Proof outline

Subadditivity of Esq(N) ?

is true if one can show something like

AB1

AB2

Page 28: Fundamental rate-loss tradeoff for optical quantum key ...

Monogamy of entanglement

Proof outline

Subadditivity of Esq ?is true if one can show something like

AB1

B2

AB1

AB2

Koashi and Winter, Phys. Rev. A 69, 022309 (2004)

Page 29: Fundamental rate-loss tradeoff for optical quantum key ...

Proof outline

New subadditivity-like inequality

Proof consists of a chain of (in)equalities based on

-Duality of conditional entropy for

-Strong subadditivity for

is not possible.

However, we are able to show the following inequality:

For any five-party pure state

holds.

Lemma

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Page 30: Fundamental rate-loss tradeoff for optical quantum key ...

implies

Proof outline

Additivity of

Page 31: Fundamental rate-loss tradeoff for optical quantum key ...

Proof outline

1. Monotonicity (does not increase under LOPC)

2. Continuity: if                          then

3. Normalization:

4. Additivity:  

: private state

For the details of the proof, see

From the following four conditions:

One can show

MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Page 32: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Generic point‐to‐point QKD protocol and its capacity (secret key agreement capacity assisted by two‐way public classical communication)

‐ Squashed entanglement of a quantum channel as an upper bound on the two‐way assisted SKA capacity

‐ Pure‐loss optical channel

‐ Loss and noise optical channel

‐ Summary

Rest of the talk

Page 33: Fundamental rate-loss tradeoff for optical quantum key ...

Lossy bosonic channel

Need to find a good squashing channel (in a heuristic way...)

Pure‐loss squashing channel

Alice Bob

Eve

Lossy bosonic channel

minimized at 

maximized with 

(Two‐mode squeezed  vacuum)

Page 34: Fundamental rate-loss tradeoff for optical quantum key ...

Lossy bosonic channel

Ns: a mean input power (average photon number of one share of the TMSV)

Page 35: Fundamental rate-loss tradeoff for optical quantum key ...

‐ Generic point‐to‐point QKD protocol and its capacity (secret key agreement capacity assisted by two‐way public classical communication)

‐ Squashed entanglement of a quantum channel as an upper bound on the two‐way assisted SKA capacity

‐ Pure‐loss optical channel

‐ Loss and noise optical channel

‐ Summary

Rest of the talk

Page 36: Fundamental rate-loss tradeoff for optical quantum key ...

Loss and thermal noise channel

Alice Bob

Channel model

Decomposition of the phase-insensitive Gaussian channel

Caruso, Giovannetti, Holevo, NJP 8, 310 (2006)Garcia-Patron et al., PRL 108, 110505 (2012)

Alice BobT

Pure‐loss ch

Amplifier ch

G

Page 37: Fundamental rate-loss tradeoff for optical quantum key ...

Loss and thermal noise channel

Data processing inequality for quantum conditional mutual information

Out[17]=

0 5 10 15 20

0.050.10

0.501.00

5.0010.00

Loss dB

Secr

etke

yra

te

Esq UB NB=0

Esq UB NB=0.3

Esq UB NB=0.5

RCI LB NB=0RCI LB NB=0.3RCI LB NB=0.5

Page 38: Fundamental rate-loss tradeoff for optical quantum key ...

Summary

‐ The secret key rate of any repeaterless QKD protocols in a lossy optical channel is upper bounded by  

‐ The bound is based on the squashed entanglement of a quantum channel, which is a general upper bound on the two‐way classically assisted secret key agreement capacity. 

‐ Open problems‐ True two‐way assisted capacity?‐ Tight bound for noisy channel?‐ Finite block code analysis

(weak converse)

(needs strong converse or second order analysis)

MT, Guha, Wilde, Nat. Commun. 5; 5235 (2014)MT, Guha, Wilde, IEEE Trans. Info. Theory 60, 4987 (2014)

Page 39: Fundamental rate-loss tradeoff for optical quantum key ...

Finite n analysis

‐ Our upper bound is a weak converseFor a tight upper bound on finite block length, a strong converse or a second order analysis should be established.

‐ However, we can estimate the effect of finite block lengthfrom our result. 

Page 40: Fundamental rate-loss tradeoff for optical quantum key ...

Finite n analysis

: secrecy (based on the trace distance criteria)

n: code length

200 km fiber (0.2dB/km loss)Example in a pure‐loss optical channel:

MT, Guha, Wilde, Nat. Commun. 5; 5235 (2014)

Page 41: Fundamental rate-loss tradeoff for optical quantum key ...

Few more slides…

Extension of the results to 

‐ Quantum repeaters‐Multipartite secret key sharing

Ads..

‐ QCrypt2015‐ Summer internship at NICT

Page 42: Fundamental rate-loss tradeoff for optical quantum key ...

Upper bound on quantum repeaters

Quantum communication with N repeater stations:

Alice Bob

Page 43: Fundamental rate-loss tradeoff for optical quantum key ...

Upper bound on quantum repeaters

Quantum communication with N repeater stations:

Alice Bob

N=0

N=1

N=2

N=3

0 50 100 150 2000.01

0.050.10

0.501.00

5.00

Channel loss in dB =-10log10h

Secr

etke

yra

teb

itspe

rmod

e

Compare with the existing repeater protocols?

Page 44: Fundamental rate-loss tradeoff for optical quantum key ...

Multi-party key distribution

Alice

Bob

Charlie…K

K

K

Broadcast quantum channel

Squashed entanglement of a quantum broadcast channel

Key rate upper bound

‐ Channel examples?‐ How tight?

Page 45: Fundamental rate-loss tradeoff for optical quantum key ...

Few more slides…

Extension of the results to 

‐ Quantum repeaters‐Multipartite secret key sharing

Ads..

‐ QCrypt2015‐ Summer internship at NICT

Page 46: Fundamental rate-loss tradeoff for optical quantum key ...

QCrypt2015 & UQCC2015

QCrypt2015 (4.5days)

Tokyo, Japan  September 28 ‐ October 2, 2015

UQCC2015 (0.5days, Sep 28)

http://2015.uqcc.org/

http://2015.qcrypt.net/

Discuss the latest theoryand experiments on quantum cryptography and related fields

Invites engineers, potential users, media etc, to show the SOTA QKD performance & applications and discuss the possible business solutions

QKD platform

Page 47: Fundamental rate-loss tradeoff for optical quantum key ...

Where?  Tokyo, Japan

Baton Rouge

Tokyo

Central area of Tokyo

QCrypt2015 & UQCC2015September 28 ‐ October 2, 2015

Page 48: Fundamental rate-loss tradeoff for optical quantum key ...

Central are of Tokyo

Imperial Palace

Akihabara

Shinjuku

Asakusa Temple

QCrypt2015 & UQCC2015

Oral presentation submission deadline: April 27 http://2015.qcrypt.net/

Page 49: Fundamental rate-loss tradeoff for optical quantum key ...

Summer internship at Quantum ICT Lab in NICT

http://www.nict.go.jp/en/

QKD network, architecture, applications

Quantum optics: Entangled sources, PNRD, QIP protocols

Collaborative projects

‐Optical space communication G‐Nano ICT G‐Frequency  standard G

Theory: quantum information theory, quantum optics, physical layer security…

LeaderMasahideSasaki