Function, Technology and Features of IGCTs and …pelincec.isep.pw.edu.pl/doc/Bernet...

58
Power Electronics Lab All rights reserved.Prof. Bernet 9/2003-1 Steffen Bernet Berlin University of Technology Power Electronics Lab Berlin, Germany Function, Technology and Features of IGCTs and High Voltage IGBTs

Transcript of Function, Technology and Features of IGCTs and …pelincec.isep.pw.edu.pl/doc/Bernet...

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-1

Steffen BernetBerlin University of Technology

Power Electronics LabBerlin, Germany

Function, Technology and Features of IGCTs and High Voltage IGBTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-2

Outline1. Introduction

2. Structure, Function and Characteristics of IGBTs

3. Structure, Function and Characteristics of IGCTs

4. Latest IGCT Technology Developments

IGCT Series Connection

10kV IGCTs

5. Conclusions

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-3

Power Semiconductors

Press-PackPress-Pack

1836

4500V; 4000A 6000V; 6000A

MITSUBISHI

Press-PackPress-Pack

15.7512.65

4500V; 3500A5500V; 2300A

ABBIGCTIPM6.754500V; 1500AABB

Press-Pack3.963300V; 1200ATOSHIBAModule3.963300V; 1200A HITACHI

Module3.963300V; 1200A4500V

MITSUBISHI

ModuleModule

3.963.6

3300V; 1200A, 6500V; 600A

EUPECIGBTPress-Pack184500V; 4000A ABBPress-Pack366000V; 6000A HITACHIPress-Pack366000V; 6000A MITSUBISHIGTO

CaseSwitchPower(MVA)

RatingsCompanyPower Semiconductor

Power Semiconductors for MV Converters

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-5

Advantages:1. High on-state current density2. High blocking voltage and switch power3. High off-state dv/dt withstand capability4. Integration of inverse diode on the same

silicon wafer5. Small part count in the reliable press-

pack case

Characteristics of Conventional GTOs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-6

Udc

Turn-off Waveforms of GTOs

Characteristics

Typical Turn-off Gain:IT/IRG = 3 5

dv/dt = (500-1000) V/µs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-7

Gate

Unit

20 V

ShrinkingPlasma

Turn- off Behaviour of GTOs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-8

Disadvantages:1. Inhomogeneous turn-off transient2. Limitation of dv/dt to about 500-

1000V/µs3. Bulky and expensive snubber circuits4. Complex gate drive5. High gate drive power

Characteristics of Conventional GTOs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-9

Structure of a NPT - IGBT Chip

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-10

Conduction State of a NPT - IGBT

B A

p+

B´A´ Gate Emitter

SiO2

p+

Al

n+

p-

Emitter

p+

n-

p+n-

-

-

-

-

-

--

--

--

--

-Collector

p-d

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2 3 1 1 3 2

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-11

Silicon Chip 220 µmSolder 80 µm

Chip 1 Chip n. . . Aluminium oxide - Isolation 380 µmUpper & lower copper layer 300 µmSolder 80 µmBaseplate(Copper) 3 mmThermal compound 50 µmHeatsink

Structure of an IGBT Module

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-12

Hard Turn on Transient of an IGBT Module

(FZ1200R33KF1 (3300V; 1200A), Vdc=2250V, Io=1050A, Tj=25°C)

-2 0 2 4 6 8 10 12 14 µs 18

2.5

2.0

1.5

1.0

0.5

0

2.0

kA

1.0

0

VCE[kV]

IC[kA]

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-13

Hard Turn off Transient of an IGBT Module

(FZ1200R33KF1 (3300V; 1200A), Vdc=2250V, Io=1050A, Tj=25°C)

-2 0 2 4 6 8 10 12 14 µs 18

1.2

0.8

0.4

0

3.0

2.0

1.0

0

IC[kA]

VCE[kV]

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-14

Protection: Limitation of short circuit current by

IGBT (e.g. VGE=15V; IC=3*Ir ) Turn off transient within 10µs Short Circuit Safe Operating Area:

Vdcmax=2500V; ICmax=3.5*Ir Failure: Heavy destruction of IGBT by

overcurrent Mostly open circuit after destruction

Characteristics of High Power IGBT Modules

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-15

Reliability: Aluminum wires and bonds are critical

parts at power cycling tests Increase of thermal resistance by

migration of thermal contact grease and inhomogeneous thermal contacts

Characteristics of High Power IGBT Modules

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-16

Very low gate drivepower (e.g. 3-5 W)

Control of dv/dt and di/dt

Active overvoltageprotection activeclamping (e.g. forseries connection)

Active short circuitprotection

Characteristics of IGBT Gate Units

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-17

Advantages1. Full insulation of base plate (simple cooling)2. Simple mounting3. Low cost plastic package

Disadvantages1. Undefined failure mode (mostly open terminals)2. Possibility of explosion3. Poor power cycling capability4. Single sided cooling

Characteristics of IGBT Modules

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-18

Physical Arrangement of an IGBT Press Pack

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-19

Advantages1. Short circuit in failure mode enables redundant

converter design (e.g. (n+1), (n+2))2. No explosion3. Double sided cooling

Disadvantages1. No insulation of heat sink2. Higher packaging costs

Characteristics of IGBT Press Packs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-20

Physical Arrangement of IGCTs

91mm 4.5kV IGCT for water cooling51 mm 4.5kV IGCT for air cooling

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-21

Electric Field and Doping Level of 4,5 kV PT- und NPT-GTOs

0.0E+0

2.0E+4

4.0E+4

6.0E+4

8.0E+4

1.0E+5

1.2E+5

1.4E+5

12

13

14

15

16

17

18

19

20

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

n+ p+p n-

n+ p+p nn-

distance from cathode [µm]

E(PT)

E(NPT)

NPT:

VAC = 5000 V

PT:

Log doping concentration [cm-3]

Elec

tric

field

[V/c

m]

UAC = 5000 V

Comparison of PT and NPT Structure

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-22

IGCT Turn-off Waveforms

4

1

Ia (kA)Vdm

Tj = 90°C

Itgq

4

3

2

1

0

-10

-20

Vg (V)

2

3

0

anode - voltage Vd

anode - current Ia

gate voltage Vg

thyristor transistorx

Vd (kV)

2015 3025 35 t!!m!s)

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-23

Protection: Active turn-off transient for Ishort (t)<IAmax

(e.g. at external short circuit) Internal shoot through:

IGCTs savely short circuit the dc-link di/dt-clamp limits maximum peak

current

Characteristics of IGCTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-24

Storage time: ts-IGCT=1/15*ts-GTO Despite of increase of Igqrm:

Qg-IGCT=0.4*Qg-GTO Transparent anode : On-state gate

current of IGCT is reduced by 50% IGCT gate drive power is reduced by

50% Uncritical minimum switching times do

not require control on IGCT gate drive

Characteristics of an IGCT- Gate Drive in Comparison to a GTO Gate Drive

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-25

Reliability: Low part count and press-pack case

enable high reliability Qualification tests and field eperience:

FIT(Failure in one billionhours)<2300

for a 3MVA inverter

Characteristics of IGCTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-26

Turn-off Transient of an IGCT Inverse Diode

-1500

-750

0

750

1500

2250

A

-4

-2

0

2

4

6

kV

0 5 10 15 20

µs

(4500V; 1560A - RCIGCT; VDC=2800V, IF=1300A; VDM=4335A;

di/dt=400A/µs)

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-27

Motivation of Research- General Development Trend →

Increasing importance of PWM-VSIs- Replacement of Cycloconverter and LCI

- Increasing use in energy systems (e.g. Windparks, HVDC, STATCOMs, Active Filters, High Power UPS)

→ Increase of converter voltage and power- Converter voltage of Vout,RMS = 6 kV 10 kV →

- Series Connection of IGCTs(e.g. n=3 devices per switch position in 3L-NPC VSI)

- Increase of device voltage at useful silicon utilization(e.g. 10kV IGCT / diode: Vout,RMS =6 kV 7.2 kV in 3L-NPC VSI)

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-28

Voltage definitions

VDRM

VDC NOM

(continuous @ TJmax)

VDC MAX

(≈ 15 seconds @ TJmax)

≈100 µs

≈ 10 ms

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-29

Device Voltage Ratings in 3-Level Inverter (N =1)

Nominal RMS Line Voltage

Nominal DC Half- Link Voltage

15% Vll,, 100 FIT and long-term DC

stability

Maximum DC Half Link Voltage

33% Vll, , SOA and short-term

DC stability

Maximum Repetitive

Blocking Voltage

VRMS (kV) VDC NOM (kV) VDCMAX (kV) VDRM (kV) 2.3 1.9 2.2 3.3 3.3 2.7 3.1 4.5

4.16 3.4 3.9 5.5 6 4.9 5.6 8

6.6 5.4 6.2 9 6.9 5.6 6.5 9.5 7.2 5.9 6.8 10

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-30

Number N of Series Connected Devices in 3L NPC VSI

Nominal RMS Line Voltage

N of 4.5 kV IGCTs / Diodes

N of 5.5 kV IGCTs / Diodes

N of 10 kV IGCTs / Diodes

VRMS (kV) 2.3 1 - - 3.3 1 - -

4.16 - 1 - 6 2 - 1

6.6 3 2 1 6.9 3 2 1 7.2 3 2 1

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-31

IGCT - Series ConnectionReasons for Voltage Unbalance of Series Connected DevicesStatic Deviating leakage currents

Dynamic Delay between Gate Signals Deviating switching behavior (e.g.)

Different tail or reverse recovery charges Different switching times (dv/dts, di/dts)

Consider The IGCT has a latching thyristor structure !⇒ Control of dv/dt or clamping of switch voltage by gate control in active region is not possible in contrast to the IGBT or MOSFET !⇒ External balancing 2-Pole required !

Bal.

2-Pole

Bal. 2-Pole

Bal. 2-Pole

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-32

Balancing Circuit

• Dynamic voltage balancing: RC-Snubber• Static voltage balancing: balancing resistor

Rp

RSnub

CSnub

Design Tradeoffs:• low losses → CSnub ↓

• good balancing → CSnub ↑, selected IGCTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-33

Design Criteria

• avoid Vmax > 4.5kV (immediate device destruction)

t

VGCT

switching transientµs

• average blocking voltage lower than 2.8kV (FIT)

4.5kV

2.8kV

Values given for 4.5kV IGCTs

Blockingms

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-34

snubberresistor

snubbercapacitor

currentsensor

IGCT - Series Connection (RC - Snubber)Test Setup Buck Converter

VDC=6 kV, Iout=4 kA n=2

91mm 4.5kV IGCTs 68mm 4.5kV diodes

Snubber Rsnub=1 Ω Csnub= 500 nF Rp=25 kΩ

Rp

Rsnub

Csnub

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-35

0

1

2

3

100 101 102 103 104 105

IGCT 1IGCT 2

current

voltage

time (µs)

IGC

T vo

ltage

, IG

CT

curre

nt (k

V, k

A)

VDC=4.6kV; Iout=2kA; n=2; Tj=115°C; Csnub=500nF; Rsnub=1Ω

IGCT Series Connection - Turn-off Transient

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-36

1.6

0

2

4

6

8

10

with snubbersnubberless 8.5

6.4

9.28

Etotal

0.630

0.650

0.5

8

Eon,SnubberEoff,SnubberEon, IGCTEoff, IGCT

Loss

es (J

)Losses

VDC = 4.5 kV, Iout = 2 kA

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-37

Technical Data Phase Leg / 3~ Inverter

Parameter Value / Typenominal dc input voltage VDC = 13.2 kV (±10%)rms output current Iout = 1.5 kAnominal peak output current Iout, peak = 2.5 kAoutput power Sout = 8 MVA / 24 MVAcarrier frequency fs = 700 HzIGCT 5SHY35L4503 (4.5kV 91mm)diode (4.5kV 68mm) D65S45 (4.5kV 68mm)

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-38

IGCT Series Connection - Output Waveforms

14.2kV

V4

VoutIout

VDC=14.2kV; Iout,rms=1.5kA;fs=700Hz; fout=50Hz

-10

-5

0

5

10

0 5 10 15 20-2

-1

0

1

2

Vout Iout

Time / ms

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-39

IGCT Series Connection - Test Setup

0,9m

DC-LinkCapacitorsDC-LinkCapacitors

LoadInductorLoadInductor

IGCT-StackIGCT-Stack

RC-SnubberRC-Snubber

Photo Phase Leg

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-40

Trade-off Curves of 5.5 kV and 10 kV IGCTs Similar losses of ideal series connection of 5.5 kV IGCTs and 10 kV IGCTs

Additional snubber losses in real series connection (e.g.)

Static: PR (Rp=25 kΩ) Dynamic: Esnub,C≈ 0.15 Eoff,IGCT

(4.5 kV IGCTs / N=2 @VDC=4500V, Ilout=2 kA)

J=20A/cm2

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-41

Compared to an IGCT series connection (N=2)10 kV IGCTs / diodes feature: → Comparable losses for fs=200 Hz-1 kHz→ Reduction of part count

- by 71% (S ≤ 5.5 MVA)- by 41% (S > 5.5 MVA)

→ Increase of reliability- by 56% (S ≤ 5.5 MVA)- by 12% (S > 5.5 MVA)

→ Simpler stack design Avoidance of RC snubber

→ Simpler maintenance Avoidance of semiconductor selection and RC snubber

Potential of 10 kV IGCTs and Diodes

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-42

Design of 10 kV IGCTs

Cathode

1050 µm

n+ Cathodep Base

n Basen BufferLayer

Low Efficiency

p - Anode

GateAnode

Manufacturing process in line with standard IGCT / GTO process→ Double diffused p-base→ Heavily doped cathode emitter→ Buffer layer for field stopping→ Low efficiency p Anode

Cosmic ray withstand capability: 2 FIT / cm2

→ n-base thickness: 1050 µm→ Substrate doping level: 4.2 1012 cm-3

→ Silicon resistivity: 1000 Ωcm

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-43

Engineering Sample of 68 mm 10 kV IGCT

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-44

Forward Blocking Characteristics at 25°C

(<17 µA @ 10 kV, 25°C)

magnified by factor 1000:1 µA / div

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-45

Forward Blocking Characteristics at 125°C

(<14 mA @ 7 kV, 125°C) (8-13 mA @ 6 kV, 125°C, PL=50W-80W ( 5%-10% of PRP)

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-46

On-state Characteristics

(4.5V @ 1 kA, 125°C)VT = VT0 + rd⋅IAVT0 (Threshold voltage): 3.5VRd (On-state resistance):1mΩ

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-47

Test circuit and stack design (VDC=2.4kV-7kV, IA=100A-1kA, Tj=25°C-115°C, Lcl=13.6µH, Ccl=1µF, Rcl=2.3 Ω)

Turn-off Characteristics

1R

0,68uF27k

1R

0,68uF27k

1R

0,68uF27k

1R

0,68uF27k

Cbat

Lh

R

D

DUT

D

C

L

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-48

Turn-off Waveforms

Switching characteristics:VDC=5.7 kV, IA=900 A,Tj=85°C: Eoff=11 Ws, tf=1 µs, ttail=6 µs, VAK,max=6.7 kV

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-49

Turn-off WaveformsVAK [V] 1kV / div IA [A] 100A / div

Time [µs] 5µs / div Time [µs] 5µs / divOperating conditions:VDC=2.5kV 5.7kV, IA=800A 900A, Tj=85°CSwitching characteristics:VDC=5.7kV, IA=900A: Eoff=11 Ws, VAK,max=6.6kV, tf=1µs, ttail=6µs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-50

Turn-off Waveforms (SOAR)

Operating conditions:VDC=7kV, IA=1000A, Tj=85°CSwitching characteristics:Eoff=14.8 J, VAK,max=8 kV, toff=8µs, tf=1µs, ttail=5µs

World Record !

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-51

T = 1ms10 kA ITSM

-125°C TJ MAX

-13 K/kWRth J-C

IA = 1000 A, VDC = 6 kV 11 WsEOFF

VDC = 6 kV1000 AITGQ

1 kA (rd = 1 mΩ, VTO = 3.5 V)

4.5 V VTM

-22 V VGR

for 100 FIT, 100 % DC6 kVVDC

Tj = 0 - 125 ° C10 kVVDRM

ConditionsElectrical and thermal characteristics

Specification of 68mm 10kV IGCTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-52

IGBTs and IGCTs replace GTOs in MV Converters Advantages of IGBTs

IGBT MOS-controlled device → Low power GU→ GU control of dv/dt and di/dt→ Short circuit current limitation and active turn off→ Active clamping

Simple mechanics Simple scalability

Conclusions

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-53

Disadvantages of IGBTs Higher losses and poorer Si-utilization than IGCTs Limited power cycling capability of IGBT modules Costs (especially of IGBT press packs)

Development trends Reduction of losses and costs by new technologies and high volume production

Conclusions

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-54

1. Traction Converters (LSC, MSC)

2. Energy Systems (e.g. HVDC, SVC)

3. Industrial Medium Voltage Drives

Applications of HV - IGBTs

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-55

ConclusionsAdvantages of IGCTs

Maximum Silicon Utilization → Low costs / MVA Small Part Count + Press pack →

High Reliability + Explosion Free Inverters Low On-state and Total Losses →

High Efficiency and Power Density 4.5 kV / 5.5 kV IGCT product family →

300 kVA-10 MVA Inverters without Series or Parallel Connection

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-56

Conclusions

Disadvantages of IGCTs Shoot through protection →

High mechanical stress for IM / SM

Thyristor structure → No dv/dt or di/dt control → ClampLarger gate drive power and size

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-57

Development trends IGCT: Mature device Increase of device voltage (e.g. 10kV IGCT) Increase of Tjmax (e.g Tjmax=175°C).

Low cost, efficient series connection

Conclusions

Power Electronics LabAll rights reserved.Prof. Bernet 9/2003-58

1. Industrial Medium Voltage Drives

2. Energy Systems- Railway Interties- Power Quality Products

- e.g. Dynamic Voltage Restorer- Wind Energy Systems

Applications of IGCTs