Fully coupled snowpack/ atmosphere simulations of snowfall ...Study: High resolution Large Eddy...

23
Fully coupled snowpack/ atmosphere simulations of snowfall and blowing snow in alpine terrain V. Vionnet 1,2,3 , H. Bellot 4 , G. Guyomarc’h 3 , C. Lac 3 , E. Martin 4 , V. Masson 3 , F. Naaim Bouvet 4 , A. Prokop 5 1 Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 2 Environmental Numerical Prediction Research, Dorval, Canada 3 Météo – France - CNRS, CNRM, UMR 3589, Grenoble and Toulouse, France 4 IRSTEA, Grenoble and Aix en Provence, France 5 UNIS, Svalbard, Norway

Transcript of Fully coupled snowpack/ atmosphere simulations of snowfall ...Study: High resolution Large Eddy...

  • Fully coupled snowpack/atmosphere simulations of snowfall and blowing snow in alpine terrain

    V. Vionnet1,2,3, H. Bellot4, G. Guyomarc’h3, C. Lac3, E. Martin4, V. Masson3, F. Naaim Bouvet4, A. Prokop5 


    
1 Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada

    2 Environmental Numerical Prediction Research, Dorval, Canada 3 Météo – France - CNRS, CNRM, UMR 3589, Grenoble and Toulouse, France

    4IRSTEA, Grenoble and Aix en Provence, France 5UNIS, Svalbard, Norway


  • Snow/atmopshere coupling processes during blowing snow events

    • Influence of near-surface atmospheric turbulence and the saltation dynamics • Blowing snow sublimation and feedbacks on the SBL • Evolution of physical properties of surface snow (roughness, cohesion, …)

  • A fully coupled snowpack/atmosphere model

  • A fully coupled snowpack/atmosphere model

    Atmospheric model: Meso-NH

    • 3D Turbulence Scheme • Cloud microphysical scheme

    Lafore et al. (1998), Lac et al. (2018)

  • A fully coupled snowpack/atmosphere model

    Atmospheric model: Meso-NH

    • 3D Turbulence Scheme • Cloud microphysical scheme

    Lafore et al. (1998), Lac et al. (2018)

    Synoptic Wind

    Simulation of complex and turbulent atmospheric flow in alpine terrain

  • A fully coupled snowpack/atmosphere model

    Atmospheric model: Meso-NH

    • 3D Turbulence Scheme • Cloud microphysical scheme

    Lafore et al. (1998), Lac et al. (2018)

    SBL

  • A fully coupled snowpack/atmosphere model

    Atmospheric model: Meso-NH

    Snowpack model: Crocus++

    \ \

    oo

    ••

    ◻◻

    ΛΛ

    • 3D Turbulence Scheme • Cloud microphysical scheme

    • Detailed layering of the snowpack

    • Metamorphism laws

    Brun et al. (1989, 1992), Vionnet et al. (2012)

    Lafore et al. (1998), Lac et al. (2018)

    SBL

  • A fully coupled snowpack/atmosphere model

    Crocus

    Sedimentation

    Turbulentdiffusion

    SnowpackType of grains

    Threshold windlspeed

    SublimationMeso-NH

    2 parametergamma

    distribution

    Saltation layer

    Surface boundarylayer

    Canopy

    2nd level atmospheric model

    WindTemp.ReHu

    SURFEX

    N S q S,

    Radius (m)

    1st level atmospheric model

    Atmospheric model: Meso-NH

    Snowpack model: Crocus++

    \ \

    oo

    ••

    ◻◻

    ΛΛ

    Blowing snow scheme

    • 3D Turbulence Scheme • Cloud microphysical scheme

    • Detailed layering of the snowpack

    • Metamorphism laws

    Brun et al. (1989, 1992), Vionnet et al. (2012)Vionnet et al. (2014)

    Lafore et al. (1998), Lac et al. (2018)

    SBL

  • Spatial variability of snow accumulation during snowfall

    ▪ Orographic snowfall ▪ Preferential deposition of falling snow ▪ Wind-induced transport of deposited snow

    (salation/suspension)

  • Spatial variability of snow accumulation during snowfall

    ▪ Orographic snowfall ▪ Preferential deposition of falling snow ▪ Wind-induced transport of deposited snow

    (salation/suspension)

    - What is the relative importance of these processes? - Can atmospheric models provide useful informations?

  • Spatial variability of snow accumulation during snowfall

    ▪ Orographic snowfall ▪ Preferential deposition of falling snow ▪ Wind-induced transport of deposited snow

    (salation/suspension)

    - What is the relative importance of these processes? - Can atmospheric models provide useful informations?

    Study: High resolution Large Eddy Simulation of Snow Accumulation in Alpine Terrain (Vionnet et al., JGR-A, 2017)

    ▪ Case study: 24-h blowing snow event with concurrent snowfall in Feb. 2011 around Col du Lac Blanc

  • Model configuration10

    20

    30

    40

    0

    (km

    )

    200

    600

    1000

    1400

    1800

    2200

    2600

    3000

    3400

    3800

    10 20 30 400(km)

    Elevation (m)

    1000

    2000

    3000

    4000

    0

    (m)

    2000

    2200

    2400

    2600

    2800

    3000

    3200

    3400

    Elevation (m)

    1000 2000 3000 40000(m)

    Alpe d'Huez

    Col du Lac Blanc

    150-m grid

    50-m grid

    a)

    b)

    Lac Blanc

    SarennesDome

    Pic Bayle3465 m

    Pic Blanc3323 m

    Muzelle

    Sarennes glacierAWS

    10

    20

    30

    40

    0

    (km

    )

    200

    600

    1000

    1400

    1800

    2200

    2600

    3000

    3400

    3800

    10 20 30 400(km)

    Elevation (m)

    1000

    2000

    3000

    4000

    0

    (m)

    2000

    2200

    2400

    2600

    2800

    3000

    3200

    3400

    Elevation (m)

    1000 2000 3000 40000(m)

    Alpe d'Huez

    Col du Lac Blanc

    150-m grid

    50-m grid

    a)

    b)

    Lac Blanc

    SarennesDome

    Pic Bayle3465 m

    Pic Blanc3323 m

    Muzelle

    Sarennes glacierAWS

    Downscaling the meteorology to the local scale: ➢ 3 nested grids from operational analysis at 2.5 km down to 50-m grid spacing

  • Atmospheric conditions

    2000 2200 2800 3000 3200 3400

    Elevation (m)2400 2600

    1000

    2000

    3000

    4000

    (m)

    0

    1000 2000 3000 40000(m)

    18 m s-1Wind vector

    R1

    R2B1

    B2

    C1

    Wind field at 1st atmos. level at 09:00 15 Feb.

    ➢ Main structures of atmospheric flow in alpine terrain ➢ Good agreement around CLB ➢ Strong overestimation of wind speed at Sarennes AWS

    010

    020

    030

    0

    a) AWS Dome

    Win

    d di

    rect

    ion

    (°)

    Model 50 mObservation

    010

    020

    030

    0

    b) AWS Muzelle

    Win

    d di

    rect

    ion

    (°)

    Model 50 mObservation

    010

    020

    030

    0

    c) AWS Sarennes

    Win

    d di

    rect

    ion

    (°)

    Model 50 mObservation

    05

    1015

    dom_50[, 4]

    Win

    d sp

    eed

    (m s−1

    )

    05

    1015

    muz_50[, 4]

    Win

    d sp

    eed

    (m s−1

    )

    05

    1015

    Win

    d sp

    eed

    (m s−1

    )

    −12

    −10

    −8−6

    −4

    Time (UTC)

    Tem

    pera

    ture

    (°C

    )

    1500 2100 0300 0900 −12

    −10

    −8−6

    −4

    Time (UTC)

    Tem

    pera

    ture

    (°C

    )

    1500 2100 0300 0900 −12

    −10

    −8−6

    −4

    Time (UTC)

    Tem

    pera

    ture

    (°C

    )

    1500 2100 0300 0900

  • Total solid precipitation

    10 20 30 40 50 600

    a) Total b) Snow c) Graupel

    4000

    3000

    2000

    1000

    1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

    0 5 10 15 20 0 10 20 30 40Accumulated precipitation (mm we)

    0 10 20 30 40 50 60

    0 5 10 15 20 2525 0 10 20 30 40

    0 1000 2000 3000 4000

    2000

    2050

    2100

    2200

    2200

    2350

    2400

    2450 2500

    2550 2600

    2650

    2650

    2700

    2750

    2750

    2800

    2800

    2850

    2850

    2850

    3000

    3200

    3300

    2000

    2050

    2100

    2200

    2200

    2350

    2400

    2450 2500

    2550 2600

    2650

    2650

    2700

    2750

    2750

    2800

    2800

    2850

    2850

    2850

    3000

    3200

    3300

    0 1000 2000 3000 4000

    2000

    2050

    2100

    22002200

    2350

    2400

    2450 2500

    2550 2600

    2650

    2650

    2700

    2750

    2750

    2800

    2800

    2850

    2850

    2850

    3000

    3200

    3300

    2000 2200 2400 2600 2800 3000 3200 3400

    010

    2030

    4050

    60

    Cumulated solid precip. (14/02 15h−15/02 12h)

    Elevation (m)

    Prec

    ipita

    tions

    (mm

    )

    AggregatesGraupelTotal

    ➢ Spatial variability of total solid precipitation ➢ Different contributions of snowflakes and graupel (rimed particles) ➢ Graupel: higher terminal fall velocity, reduced downwind transport

  • Detailed cloud processes

    2500

    2635

    2770

    2905

    3040

    3175

    3310

    3445

    3580

    3715

    3850

    2500

    2635

    2770

    2905

    3040

    3175

    3310

    3445

    3580

    3715

    3850

    2500

    2635

    2770

    2905

    3040

    3175

    3310

    3445

    3580

    3715

    3850

    Ele

    vati

    on (

    m)

    Ele

    vati

    on (

    m)

    0 533 1065 1598 2131 2664 0 533 1065 1598 2131 2664

    0 533 1065 1598 2131 26640 533 1065 1598 2131 2664

    0 533 1065 1598 2131 2664

    Distance (m) Distance (m)

    2500

    2635

    2770

    2905

    3040

    3175

    3310

    3445

    3580

    3715

    3850

    2500

    2635

    2770

    2905

    3040

    3175

    3310

    3445

    3580

    3715

    3850

    b) Vertical Wind speed (m s-1)

    c) Graupel mixing ratio (g kg-1) d) Cloud droplets mixing ratio (g kg-1)

    e) Riming rate (10-6 s-1) f) Dry growth rate (10-6 s-1)

    a) Cumulated graupel (mm)

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    0.03

    0.06

    0.09

    0.12

    0.15

    0.18

    0.21

    0.24

    0.27

    0.30

    0.33

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.15

    0.45

    0.75

    1.1

    1.4

    1.7

    2.0

    0 1000 2000 3000 4000

    01

    00

    02

    00

    03

    00

    04

    00

    0

    ➢ Strong updrafts producing supercooled cloud droplets ➢ Growth of snowflakes by riming of cloud droplets ➢ Local maximal production of graupel

    ➢ Local microphysical processes can potentially affect the spatial distribution of snowfall in alpine terrain (similar results as Mott et al. 2014)

  • ➢ Overestimation of near-surface fluxes for intermediate wind speeds ➢ Influence of falling snow flakes on the vertical profile of flux

    Blowing snow fluxes at Col du Lac Blanc

    Snow Particles Counters (SPC)

    Hau

    teur

    (m)

    0.1

    1.0

    10.0

    U= 8 ms−1●

    U= 9 ms−1●

    U= 10 ms−1

    Flux de particules (kg m−2 s−1)

    Hau

    teur

    (m)

    1e−05 1e−03 1e−01

    0.1

    1.0

    10.0

    U= 11 ms−1

    Flux de particules (kg m−2 s−1)

    1e−05 1e−04 1e−03 1e−02 1e−01

    U= 12 ms−1

    ● ObservationsModèle TNVModèle PAV

    Hei

    ght (

    m)

    Hei

    ght (

    m)

    Particle Flux (kg m-2 s-1) Particle Flux (kg m-2 s-1)

    Observations

    Blown snowparticles only

    With falling snow flakes

    Simulated fluxes:

  • Wind-induced snow redistribution

    ➢ Strong spatial variability when including snow transport ➢ Main source of variability of snow accumulation

  • Model limitations

    ➢ Spatial resolution (50 m) is not sufficient to capture fine-scale patterns of snow accumulation

    ➢ Parameterizations in the blowing snow scheme: saltation layer, representation of non-steady processes, …

    ➢ Uncertainties in the representation of cloud processes at high-resolution

    0.6

    Laser : 28/02/11 - 17/02/11

    dHS (m)0.6

    Laser : 28/02/11 - 17/02/11

    dHS (m)

    Meso-NH/Crocus : 18/03/11 23h - 01h

    30

    dSWE (kg m-2)

    12

    3

    4

    5

    6

    7

    Vionnet et al (2014)

  • Conclusion and perspectives

    • Meso-NH/Crocus: a numerical lab. to investigate coupling processes between the atmosphere and the snow surface in alpine terrain (available in Meso-NH 5.4 mesonh.aero.obs-mip.fr).

    http://mesonh.aero.obs-mip.fr

  • Conclusion and perspectives

    • Representation of physical processes: •Interactions between local and non-local atmospheric turbulence and blowing snow

    dynamics (ejections, splash, …) (Paterna et al., 2016; Comola and Lehning, 2017; Askamit and Pomeroy, 2018)

    •Evolution of snow surface properties during blowing snow events: surface roughness (Amory et al. 2015), fragmentation (Comola et el. 2017) and hardening (Sommer et al., 2017)

    • Models at temporal and spatial scales relevant for avalanche hazard and hydrological forecasting

    • Model evaluation with multiple sensors (TLS, ALS, Radar, Wind Lidar, SPC, …)

    • Meso-NH/Crocus: a numerical lab. to investigate coupling processes between the atmosphere and the snow surface in alpine terrain (available in Meso-NH 5.4 mesonh.aero.obs-mip.fr).

    Future challenges for blowing snow models in alpine terrain (in general)

    http://mesonh.aero.obs-mip.fr

  • Thanks for your attention!

  • Case study: 14-15 February 2011

    ➢ Cold front crossing France ➢ Southern flow ahead of the front ➢ Snowfall over the Alps (limit rain/snow 1200 m)

    Synoptic conditions

    Wind field and specific humidity at 700 hPa on 14 February 2011 12:00

  • Case study: 14-15 February 2011

    ➢ Cold front crossing France ➢ Southern flow ahead of the front ➢ Snowfall over the Alps (limit rain/snow 1200 m)

    Synoptic conditions

    Wind field and specific humidity at 700 hPa on 14 February 2011 12:00

    Local conditions at CLB (2700 m)

    ➢ Non-erodable initial snow cover ➢ Snowfall (around 15 cm) ➢ Wind-induced redistribution of falling snow

    Southern Winds