Fuel cell vehicle in EMR - EMRwebsite - Home · 1 Helsinki, May 2011 HEVs & EMR 2011 Fuel cell...

23
1 Helsinki, May 2011 HEVs & EMR 2011 Fuel cell vehicle in EMR L. Gauchia , A. Bouscayrol, J. Sanz, R. Trigui and P. Barrade

Transcript of Fuel cell vehicle in EMR - EMRwebsite - Home · 1 Helsinki, May 2011 HEVs & EMR 2011 Fuel cell...

1

Helsinki, May 2011

HEVs & EMR

2011

Fuel cell vehicle in EMR

L. Gauchia, A. Bouscayrol, J. Sanz, R. Trigui and P. Barrade

2

Helsinki, May 2011

HEVs & EMR2011 -- Interest on FCV Interest on FCV --

Internal combustion engine vs. electric propulsion

www.maxwell.com

www.techchunks.com

www.hel.calpody.edu

www.techchunks.com www.maxwell.com

www.maxwell.comwww.hel.calpody.edu

Batt

Batt+SC

FC+SC

FC+Batt+SC

www.techchunks.com

3

Helsinki, May 2011

HEVs & EMR2011 -- Interest on FCV Interest on FCV --

Internal combustion engine vs. electric propulsion

www.greenwheelstacoma.com

4

Helsinki, May 2011

HEVs & EMR2011 -- Interest on FCV Interest on FCV --

Internal combustion engine vs. electric propulsion

RAGONE DIAGRAM

Pb batteriesNi batteries

Li batteries

Supercapacitors

Fuel cell

ICE

Specific power(W/kg)

Specific energy (Wh/kg)

5

Helsinki, May 2011

HEVs & EMR2011 -- Interest on FCV Interest on FCV --

Internal combustion engine vs. electric propulsion

[Thounthong 09]

6

Helsinki, May 2011

HEVs & EMR2011 -- FCV topologiesFCV topologies--

Hybrid energy system topology

BDC

/DC

FC SCInv+

EM

BFC SC

Inv+

EM

DC/

DC

BFCSC

Inv+

EM

DC/

DC

BFC

SC

Inv+

EM

DC/

DC

DC/

DC

DC/

DC

DC/

DC

DC/

DC

7

Helsinki, May 2011

HEVs & EMR2011 -- FCV topologies FCV topologies --

Hybrid energy system topology

DC/

DCBAT

FC

SC

DC/

DC

DC/

DC

Vve

Fres

DCM

8

Helsinki, May 2011

HEVs & EMR2011

• Action – reaction principle

• Respect causality

• Inversion principle

-- FCV using EMR FCV using EMR --

EMR basics

v1

VDC

i

i1

i2

ES

p=VDC i

[Bouscayrol 00]

Allows to methodically:

Model multi-physical elements

Design control schemes

Design control strategies

ES

9

Helsinki, May 2011

HEVs & EMR2011

• Passive non-controllable system

-- FCV using EMR FCV using EMR --

Fuel cell representations

iFC

+

uFC

-

E E0 RT2F

lnpH 2 pO2

pH2O

ddt

pH2

RTVan

qH2

in qH2

out qH2

r

qH2

r NI2F

qH2

out kH2pH2

FCuFC

iFC

[Gauchia 09]

10

Helsinki, May 2011

HEVs & EMR2011

• Simplified controllable system

-- FCV using EMR FCV using EMR --

Fuel cell representations

Controlled to fulfill objective:Avoid O2 starvationMaximum efficiency

pH2

qO2 r

H2

O2

uFC

iFC

qH2 ref

qO2 ref

pO2

pO2qO2 in

pH2

qH2 in

qH2 rE

iFC

Tº ΔS

udl idl

FCuFC

iFC

11

Helsinki, May 2011

HEVs & EMR2011 -- FCV using EMR FCV using EMR --

Fuel cell model and representations

• More complex controllable system

FCuFC

iFC

[Boulon 10]

12

Helsinki, May 2011

HEVs & EMR2011 -- FCV using EMR FCV using EMR --

Energy storage representations

• Battery

• Supercapacitors

BATTubatt

ibatt

+ubatt

-

ibatt

ibatt+

Ubat

-

+

Ubat

-

SCuSC

iSC

+

USC

-

iSC

[Gauchia 09]

13

Helsinki, May 2011

HEVs & EMR2011 -- FCV using EMR FCV using EMR --

Gearbox

Fl_whTl_wh

EnvironmentWheels ChassisDifferent.

Ftot

vev

ENV

vl_whTgear

Wdif

Wl_wh

Tr_wh

Wr_wh

Fr_wh

vr_wh

vev

Fres

DCMUbatt vev

Fres

Ufc

Usc

itotal

+

+=

=

DC-DCconverter DC machine

edcm

idcmUchop_dcm

idcm

Tdcm

Wgearm1

isc Uind_sc

Ubatt

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Uscichop_sc

UbattBAT

FC

ichop_fc

Ubatt

ibatt

SCisc

m2

Ubatt

Ubatt

i1itotal

14

Helsinki, May 2011

HEVs & EMR2011 -- FCV using EMR FCV using EMR --

Objective variable: vev

Tuning variable: m1

Constrain variables: none

Vehicle speed control

Gearbox

Fr_wh

Fl_whTl_wh

EnvironmentWheels ChassisDifferent.

Ftot

vev

ENV

vl_whTgear

Wdif

Wl_wh

Tr_wh

Wr_wh vr_wh

vev

Fres

DC-DCconverter DC machine

edcm

idcmUchop_dcm

idcm

Tdcm

Wgearm1

isc Uind_sc

Ubatt

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Uscichop_sc

UbattBAT

FC

ichop_fc

Ubatt

ibatt

SCisc

m2

Ubatt

Ubatt

i1itotal

15

Helsinki, May 2011

HEVs & EMR2011 -- FCV using FCV using EMR EMR --

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Usc

isc

ichop_sc

Ubatt

itotal

BAT

FC

ichop_fc

Ubatt

ibatt

SCisc

Uind_sc

m2

Ubatt

Ubatt

i1 Ubatt

Fl_whTl_wh

EnvironmentWheels ChassisDifferent.GearboxDC-DC

converter DC machine

Ftot

vev

ENV

vl_wh

edcm

idcmUchop_dcm

idcm

Tdcm Tgear

Wdif

Wl_wh

Tr_wh

Wr_wh

Fr_wh

vr_wh

Wgear

vev

Fresm1

Ubatt mes vev ref

kr

Tl_wh ref Frlwh refkw

Fres mes

vev mes

Ftot ref

Tr_wh ref Fr_wh ref

Tgear refTdcm ref

edcm mes idcm mes

idcm refUchop_dcm ref

[Bouscayrol 06]

16

Helsinki, May 2011

HEVs & EMR2011 -- FCV using FCV using EMR EMR --

Current distribution

Gearbox

Fr_wh

Fl_whTl_wh

EnvironmentWheels ChassisDifferent.

Ftot

vev

ENV

vl_whTgear

Wdif

Wl_wh

Tr_wh

Wr_wh vr_wh

vev

Fres

DC-DCconverter DC machine

edcm

idcmUchop_dcm

idcm

Tdcm

Wgearm1

isc Uind_sc

Ubatt

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Uscichop_sc

UbattBAT

FC

ichop_fc

Ubatt

ibatt

SCisc

m2

Ubatt

Ubatt

i1itotal

17

Helsinki, May 2011

HEVs & EMR2011 -- FCV using FCV using EMR EMR --

itotal ibat ichop _ fc ichop _ sc

Current distribution

Objective variables: ifc , ibat

Tuning variables: m2, m3

itotal

MS

isc Uind_sc

Ubatt

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Uscichop_sc

UbattBAT

FC

ichop_fc

Ubatt

ibatt

SCisc

m2

Ubatt

Ubatt

i1

Constrain variable: Ufc

18

Helsinki, May 2011

HEVs & EMR2011 -- FCV using FCV using EMR EMR --

itotal

MS

isc Uind_sc

Ubatt

Energy generationParallelcoupling

Uind_fc

ifc

m3

Ufc

ifc

Uscichop_sc

UbattBAT

FC

ichop_fc

Ubatt

ibatt

SCisc

m2

Ubatt

Ubatt

i1

Uind_fc ref

ifc mesm2

Ufc mes

Control ifc , ibat

ifc ref ibat ref

i1 ref

itotal mes

ichop_sc ref

ichop_sc mes

[Gauchia 11]

Uind_sc refisc ref

isc mes

Usc mes Ubatt mes

19

Helsinki, May 2011

HEVs & EMR2011

• Fuel cell voltage constrain• Generate current references of battery and fuel cell • Ways to distribute:

– Medium frequencies: battery– Fuel cell current to obtain high efficiency

• Limitations:– Battery

• Voltage• State-of-charge (SoC)• Charge and discharge current

– Supercapacitor• Voltage• Charge and discharge current

– Fuel cell• Current• Current slew-rate

-- FCV using EMR: StrategyFCV using EMR: Strategy --

Strategy

20

Helsinki, May 2011

HEVs & EMR2011 -- FCV using EMR FCV using EMR --

Simulation results (with FC constrain)

0 50 100 150 200-5

0

5

10

15

20

25

30

35

ReferenceResult

vev (km/h)

t (s) (a)

0 50 100 150 200-15

-10

-5

0

5

10

15

20

25

(b)t(s)

Idcbus (A)

0 50 100 150 200-50

-40

-30

-20

-10

0

10

20

30

Ifc+convIuc+convIbatt (c)t(s)

I (A)

0 50 100 150 200100

102

104

106

108

110

112

114

(a)t(s)

Uuc (V)

0 50 100 150 20060

61

62

63

64

65

(c)t (s)

SoC (%)

21

Helsinki, May 2011

HEVs & EMR2011 -- Conclusions Conclusions --

• EMR is a useful tool for design, modelling and control of fuel cell vehicles.

• It allows to acquire a methodology, known and repeatable.

• EMR also allows to study more in-depth the control schemes and energy strategies

22

Helsinki, May 2011

HEVs & EMR2011 -- References References --

[Boulon 10] L. Boulon, D. Hissel, A. Bouscayrol, and M.-C. Péra, “From modelling to control of a PEM fuel cell using energetic macroscopic representation”, IEEE Trans. Ind. Electron., vol. 57, no. 6, June 2010.

[Bouscayrol 00] A. Bouscayrol, B. Davat, B. de Fornel, B. François, J.P. Hautier, F. Meibody-Tabar and M. Pietrzak-David, “Multimachine multiconverter system: application for electromechanical drives”, Eur. Phys. J, Appl. Phys., vol. 10, no. 2, pp. 131-147, May 2000.

[Bouscayrol 06] A. Bouscayrol, W. Lhomme, P. Delarue, B. Lemaire-Semail, S. Aksas, "Hardware-in-the-loop simulation of electric vehicle traction systems using Energetic Macroscopic Representation", IEEE-IECON'06, Paris, November 2006.

[Gauchia 09] L. Gauchia, Nonlinear dynamic per-unit models for electrochemical energy systems. Application to a hardware-in-the-loop simulation. Doctoral Dissertation on Electrical Engineering. Advisor: Dr. J. Sanz, University of Carlos III, Madrid, Spain, December 2009.

[Gauchia 11] L. Gauchia, A. Bouscayrol, J. Sanz, R. Trigui, and P. Barrade, “Energetic macroscopic representation of a fuel cell-battery-supercapacitor hybrid electric vehicle”, IEEE VPPC, Chicago, EEUU, 2011 (Accepted for presentation)

[Thounthong 09] P. Thounthong, S. Raël, and B. Davat, “ Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications”, Journal of Power Sources, vol. 193, pp. 376-385, 2009.

23

Helsinki, May 2011

HEVs & EMR

2011

Fuel cell vehicle in EMR

L. Gauchia, A. Bouscayrol, J. Sanz, R. Trigui and P. Barrade

Kiitos!