FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of...

26
Ft P ti S d Future P erspective: Sensors and Electronics Integration Frontier Veljko Radeka [email protected] Instructions from the organizers: “We encourage you to describe ways in which the physics is currently, or will be, enabled by new and creative innovations in electronic instrumentation and methods rather than giving a historical overview and methods, rather than giving a historical overview Nygren FEST 2 3 20 LBNL, May 23, 2014 1

Transcript of FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of...

Page 1: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

F t P ti S dFuture Perspective: Sensors and Electronics Integration Frontierg

Veljko [email protected]

Instructions from the organizers:  

“We encourage you to describe ways in which the physics is currently, or will be, enabled by new and creative innovations in electronic instrumentation and methods rather than giving a historical overview ”and methods, rather than giving a historical overview …

Nygren FEST 2 3 20LBNL, May 2‐3, 2014

1

Page 2: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Electron – (hole, ion) creation energy wi

wi [eV]    Application:

Transition Edge Sensors (TES)

Superconducting Tunnel Junctions      ~ 1‐2 x 10‐3

(Bolometers, Microcalorimeters)

i [ ] pp

EM spectrum, meV – keV,eV‐resolution spectrometry;precision microcalorimetry (Bolometers, Microcalorimeters)

Ge 2.9

Si 3.6

Detectors for:x‐ray, γ‐ray spectrometry;Charged particle tracking,

CdTe                                                          5.2

Diamond                                                  ~13

Xe 16

Monolithic Active Pixel Sensors;sampling calorimeters

Xe 16

Kr                                                               19

Ar 24

Ne                                                              36                                                           

GeV‐TeV calorimetry;Gas and liquid TPCs for detection of neutrinos, nucleon decay, 0ββ‐decay, dark matter

NaI (+PM)                                               ~ 200

LSO (+APD, SiPM)                                 ~ 100SPECTPET

lPbWSO4 (+APD)                                    ~ 105

2

GeV calorimetry

Page 3: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Where is prediction on detectors possible for the next  ~ 20 years? 20  years?

LHC upgrades I and II:

LAr TPCs: scaling up to

TPCs for 0ββ‐decay dark

Detectors for astrophysics;

e+‐e‐collider

SLHCe‐ioncolliderand II:

Increasing  level 1 trigger ratefrom LAr 

scaling up to 10‐30 kton range 

decay, dark matter : scaling up to ton size

astrophysics; photon science

collider collider

calorimetry; new all‐silicon tracking

Symbiosis of “Sensors” and Microelectronics

“Mi l t i ”‐ “composite of two species as one unit”; “obligate” – “one cannot exist without the other”

“Silicon”‐ (bump/directly bonded) 

‐MAPS

TPCs “Microelectronics”‐ What after CMOS?‐ Gas and liquid, 

charge and light

‐ SiPMs

3

Page 4: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Si “Pixel” Detectors Si “Pixel” Detectors 

S i lS i lpixelpixel

Sensor pixelsbump‐bonded to ASIC pixels

Sensor pixelsbump‐bonded to ASIC pixels

pixelchannelpixelchannel

sensorsensor ASIC(s)ASIC(s) pixelspixels

Sensor pixels  fusion‐bonded to (2D or 3D) ASIC pixels Sensor pixels  fusion‐bonded to (2D or 3D) ASIC pixels 

3D pixelchannel3D pixelchannel

Monolithic Active PixelMonolithic Active PixelMonolithic Active Pixel Sensors (MAPS)Monolithic Active Pixel Sensors (MAPS)

4

Page 5: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

3D Integration of Sensors and Readout ICs (“ROICs”) ‐ Goals

Particle Tracking  (ENC~50 e rms) X‐ray Detectors (ENC<10 e rms)g ( )Thin sensors  (~50‐100µm)

y ( )Thick sensors (300‐500µm)

From: H. GrafsmaFrom: G. Deptuch, R. Lipton

5

Page 6: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

A more sober view …. 

6

Page 7: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Technology Challenge → 3D or 2½D? B di t h lBonding technology:‐ Copper to copper‐ Oxide to oxide fusion‐ Copper to tinpp‐ Polymer/adhesive‐ Copper stud

From: R. Yarema, G. Deptuch

Present industry direction:• 2½D→ no vias in active2½D → no vias in activesilicon, only in passiveinterposers• 3D → specialized (e.g., p ( g ,memories)

7

Page 8: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Charge collection in MAPS (Monolithic Active Pixel Sensors) – sensor and transistors in “standard” CMOS technology

d

1 22Dt d 2Dt

2t D

kTDe

d

Diffusion constant (“Einstein 1”)

Diffusion time vs r (“Einstein 2”)2t r D Diffusion time vs r ( Einstein 2 ) ≈ 15ns to diffuse to 10µm; ≈135ns to 30µm in silicon.

Drift time for electrons and holes 1/vDrift time for electrons and holes ~1/vdrift ,~< 10ns for 100µm

8

Page 9: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

MAPS: From Charge Diffusion to Drift 

10µm~800e

25‐50 µm2‐4ke

20      ohm cm

> 80 ohm cm

• Better  S/N• Shorter charge collection time• Higher radiation tolerance

Challenge: How to do it in a “standard” process?

http://sus.ziti.uni‐heidelberg.de/Forschung/FGDetektoren/SDA/?lang=en

Adapted from: I. PericHigher radiation tolerance

9

Page 10: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Silicon Photo Multipliers (SiPMs) – Geiger‐mode Avalanche Photo Diodes

Passivequenching

Activequenching

Adapted from : T. Frach et al. 10

Page 11: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

SiPMs: “Dark” Noise and Optical Crosstalk → Active Quenching

Adapted from : J. Ninkovic 11

Page 12: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Challenge:   SiPMs to cover large areas …  

12

Page 13: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Fine Granularity Gas TPCs: 1. GEM vs Micromegas2. Interpolating anode configuration - chevron3. Anode-pad–ASIC board topology

HV Cathode Plane Double GEM planesField cage

3. Anode pad ASIC board topology4. S/N, minimize capacitance, gas gain and

positive ion space charge

Digital readout boardboard

Interpolating anode padInterpolating anode pad plane with front end ASICs (7296 channels) in the LEGS TPC; 10 watts total on TPC.

13

Bo Yu et al.

Page 14: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

+ions

electrons 10pF

100fF

14

Page 15: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Signal Formation on Wire Electrodes in Noble Liquid TPCs:        Induced Signals from a Track Segment

Time scale is determined by the electron drift velocity and wire plane spacing (3 mm shown)

[µs]

15

LBNE style wire arrangement:  3 instrumented wire planes + 1 grid planeRaw current waveforms convolved with a 0.5µs gaussian (~1/2 drift length) to mimic diffusion

Page 16: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Signal Formation on Wire Electrodes in Noble Liquid TPCs: Induced Signals from a Track Segment

4

[µs]

LBNE style wire arrangement: 3 instrumented wire planes + 1 grid plane Raw current waveforms convolved with a 0.5µs gaussian (~1/2 drift length) to mimic diffusion

Time scale is determined by the electron drift velocity and wire plane spacing (3 mm shown)

Page 17: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Τ~3.5ms

τe≈ 3.5 ms

16From: Igor Kreslo,  Bern

Page 18: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Dual‐Phase Noble Liquid‐Gas Detectors:Small (multi‐ton) for Dark Matter (WIMP) detection and Large (multi‐10 kton) for neutrino studies, proton decay, 

neutrinos from SN

~1 cm

From: H. Sobel

From:              F. Resnati 

17

Page 19: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Assume

Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 

40 m

12 m

10x10 cm2

• X‐Y strip electrodes have a large capacitance• above ~100‐200 pF per 1 m strip, the S/N is affected

A scaled down

From: F. Resnati

• signal channels:  ≈ 400/m2 → >5x105 for ~ 20 kton  with 12m drift      (~ 25 strips‐channels/ton, nearly the same as for LBNE with 2.5 meter drift distance)• Cold electronics with multiplexing clearly needed

A scaled down LAGUNA conceptFrom: A. Rubbia, A. EreditatoAi i ≥ 100 kCold electronics with multiplexing clearly needed

•Electron multiplication leads to loss of easy  charge calibration inherent to ion chambers

Aiming at  ≥ 100 kton

18

Page 20: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Through-Si Vias3D + 3D

3D2Vfirst MOSFET 100G

CMOS Scaling:

10µ

(TSV) 3D

2.5D > 3GHzXbox One 28nm

6 I7 45

L 10 µm 12

Vfirst MOSFET

10-core XEON 32nmVm

5VL 1G

10G

100G

e

6-core I7 45nm

V 7V1 2Vm

1.2V

0nm 1.5V

80nm 1.

8V250

nm 2.5V

500nm 3.3V1.2

µm 5

l len

gth

L

100M

1G

tors

/ di

e

100n32

nm 1.1V

20nm 0.

9V45

nm 1.1V

Intel 8048616n

m FinFET 0.7V

28nm 1.

0V65

nm 1.2

90nm 1

130n18

0

rcha

nnel

1M

10M

f tra

nsis

t

1n

10nIntel 80286

1

rans

isto

r

10k

100k

umbe

r of

1960 1970 1980 1990 2000 2010 2020 2030 2040100p

1n

1MHz

Si 0.54nm

first ICIntel 4004Tr

100

1k

Nu

1960 1970 1980 1990 2000 2010 2020 2030 2040

Year19

Page 21: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

The promise of graphene …Electron mobility: >105 !!!Electron mobility: >10 !!!

“Details”: ‐Bandgap → 0

t t

A H t l

- contact resistance high

A. Hsu et al.

Bandgap  is “induced” in a ribbon, but

Graphene MOSFET:       Si‐MOSFET

a ribbon, but mobility drops …

Not a switch

Graphene issue:

‐ Not a switch‐ RF amplifier, yes 

From: F. Schwierz 

From: G. Fiori, G. Iannaccone

Graphene issue:

20

Page 22: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Beyond CMOS? Physical (computational) variables: charge, current, voltage, electric 

CMOS NAND Gate:

dipole,magnetic dipole, orbital state

Devices considered by NRI:t lli FET‐ tunelling FET

‐ graphene nanoribbon FET‐ bilayer pseudospin FET‐ SpinFET‐ spin transfer torque/domain wall‐ spin majority gate‐ spin transfer torque triadspin torque oscillator logic

Any  “Beyond CMOS” device should have many of the same 

From:  F. Schwierz‐ spin torque oscillator logic‐ all spin logic device‐ spin wave device‐ nanomagnet logic

characteristics as CMOS devices :‐ power gain >1‐ ideal signal restoration and fanout‐ high ON/OFF current ratio ~105‐7

‐ III‐V tunnel FETs

Upon analysis:  Spintronic devices have longer switching delays and higher switching energies, 

‐ low static power dissipation‐ compatibility with Si CMOS devices for mixed functions

due to inherent time of magnetization propagation …

21

Page 23: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Through-Si Vias3D + 3D

3D2Vfirst MOSFET 100G

CMOS Scaling:

10µ

(TSV) 3D

2.5D > 3GHzXbox One 28nm

6 I7 45

L 10 µm 12

Vfirst MOSFET

10-core XEON 32nmVm

5VL 1G

10G

100G

e

6-core I7 45nm

V 7V1 2Vm

1.2V

0nm 1.5V

80nm 1.

8V250

nm 2.5V

500nm 3.3V1.2

µm 5

l len

gth

L

100M

1G

tors

/ di

e

100n32

nm 1.1V

20nm 0.

9V45

nm 1.1V

Intel 8048616n

m FinFET 0.7V

28nm 1.

0V65

nm 1.2

90nm 1

130n18

0

rcha

nnel

1M

10M

f tra

nsis

t

1n

10nIntel 80286

1

rans

isto

r

10k

100k

umbe

r of

Detectors?

1960 1970 1980 1990 2000 2010 2020 2030 2040100p

1n

1MHz

Si 0.54nm

first ICIntel 4004Tr

100

1k

Nu

1960 1970 1980 1990 2000 2010 2020 2030 2040

Year22

Information by G. De Geronimo

Page 24: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

After the transistor revolution:

23

Page 25: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

It will be some time before the cartoon reappears:

24

“What about that! His brain still uses those old CMOS 3D systems on chip.”

Page 26: FtFuture PtiP erspective: Sensors and Electronics ......Large Two‐Phase LAr TPCs: The Challenge of Scaling up Readout Electrodes 40 m 12 m 10x10 cm2 • X‐Y strip electrodes have

Creating fertile ground for future Nygrens

The gas TPC was a unique breakthrough idea – its value has been growing due to its continuing evolution. The current and future activity n numer us as and liquid TPCs is the and future activity on numerous gas and liquid TPCs is the best tribute to David.

T i i D id’ di i i h h i f To continue in David’s tradition with the next generation of detector researchers, some thought will have to be devoted how to maintain a climate favorable to creation and pursuit of new ideas and pursuit of new ideas.

In addition to carefully planned R&D programs under tight f di diti d th lti i ht th b d funding conditions and the resulting oversight, the burden will be on research institutions to provide continuity and a degree of freedom. A difficult task that will require considerable vision from the future laboratory leaders considerable vision from the future laboratory leaders …

25