FTCE SAE Biology Preparation Course

64
FTCE SAE BIOLOGY PREPARATION COURSE Instructor Valerie Ruwe [email protected]

description

FTCE SAE Biology Preparation Course. Instructor Valerie Ruwe [email protected]. Session Norms. No side bars Work on assigned materials only Keep phone on vibrate only If a call must be taken please leave the room to do so. Session Agenda. Session I: Pre-Test, Competencies 1 & 2 - PowerPoint PPT Presentation

Transcript of FTCE SAE Biology Preparation Course

Page 1: FTCE SAE  Biology Preparation Course

FTCE SAE BIOLOGY PREPARATION COURSEInstructorValerie [email protected]

Page 2: FTCE SAE  Biology Preparation Course

SESSION NORMS No side bars Work on assigned materials only Keep phone on vibrate only If a call must be taken please leave the room

to do so

Page 3: FTCE SAE  Biology Preparation Course

SESSION AGENDA Session I: Pre-Test, Competencies 1 & 2 Session II: Competencies 3,4 Session III: Competencies 5,6 Session IV: Competencies 7,8 Session V: Competencies 9,10

Page 4: FTCE SAE  Biology Preparation Course

5. KNOWLEDGE OF GENETIC PRINCIPLES, PROCESSES, AND APPLICATIONS 12 %1. Evaluate the relationships between the structure and

function of DNA.2. Identify and sequence the principal events in DNA

replication.3. Identify and sequence the principal events of protein

synthesis.4. Distinguish between the various functions of DNA and

RNA.5. Distinguish between the regulatory systems for

prokaryotic and eukaryotic protein synthesis.6. Evaluate the appropriate application of DNA

manipulation techniques (e.g., gene splicing, recombinant DNA, gene identification, PCR technique).

Page 5: FTCE SAE  Biology Preparation Course

5. KNOWLEDGE OF GENETIC PRINCIPLES, PROCESSES, AND APPLICATIONS 12 %7. Predict the effects of environmental and other influences on gene

structure and expression (e.g., viruses, oncogenes, carcinogenic agents, mutagenic agents).

8. Analyze the processes and products of meiosis (e.g., gametogenesis in male and female vertebrates; plant, animal and fungi meiosis) in representative examples from various kingdoms.

9. Differentiate between classical laws of inheritance, their relationship to chromosomes, and related terminology.

10. Analyze applications of probability and chi-square analysis in genetics.11. Analyze various patterns of inheritance (e.g., sex-linked, sex-

influenced, sex-limited, incomplete dominance, autosomal linkage, multiple alleles, polygenic inheritance).

12. Identify the causes of genetic disorders (e.g., point mutation, nondisjunction, translocation, deletion, insertion, inversion, duplication).

13. Identify the effect of a mutation in a DNA sequence on the products of protein synthesis.

Page 6: FTCE SAE  Biology Preparation Course

EVALUATE THE RELATIONSHIPS BETWEEN THE STRUCTURE AND FUNCTION OF DNA

5-carbon pentose sugar (deoxyribose) a phosphate attached at the #5 carbon of

the sugar an organic or nitrogenous base – a nitrogen

containing ring structure – attached at the #1 carbon of the sugar.

the phosphates and sugars form the backbone of the DNA strand. 

Hydrogen bonds form between the nitrogenous bases of each strand of DNA forming a structure that resembles a ladder;  the nitrogenous bases are the rungs of the ladder and the sugars and phosphates form the sides of the ladder. 

The sides of the ladder run in an antiparallel configuration; the sugar-phosphate bonds are laid down in a 5’ to 3’ configuration – a phosphate is bonded to a #5 carbon followed by another phosphate bonded to the #3 carbon which joins the nucleotide to the #5 carbon of the next sugar in the backbone.  The opposite side of the double helix is reversed – the phosphate is bonded to the #3 carbon first.

The amount of A= T & amount of C= G

Page 7: FTCE SAE  Biology Preparation Course

EVALUATE THE RELATIONSHIPS BETWEEN THE STRUCTURE AND FUNCTION OF DNA

Prokaryotic DNA Single Circular

Chromosome Contain Less Contains only EXONS

(expressed sequences) No proteins Smaller circular plasmid

DNA Can be exchanged

Transformation Transduction Conjugation

Page 8: FTCE SAE  Biology Preparation Course

EVALUATE THE RELATIONSHIPS BETWEEN THE STRUCTURE AND FUNCTION OF DNA

Eukaryotic DNA Chromosomes with sister

chromatid attached at centromere visible during mitosis

DNA wrapped around histones

Contains only EXONS (expressed sequences)

Chromatin is uncoiled when genes are being transcribed

Page 9: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS IN DNA REPLICATION.

DNA is copied by a process called DNA replication. During semi conservative replication the 2

strands of DNA separate and 2 new complementary strands are synthesized.

Helicase is an enzyme that unzips the double-stranded DNA helix.

Primase is an enzyme which produces an RNA primer needed to get the process of DNA replication started.Much like you put on a coat of primer before adding paint to a wall, an RNA primer must be placed on the DNA before new DNA bases can be made or synthesized.

DNA polymerase III is an enzyme which adds the new, complementary bases (A, T, C, G) to the growing DNA strand in the proper 5' to 3' direction (5'-->3').

DNA polymerase I is a proof-reading enzyme that corrects any "mistakes" made when the DNA is being copied.

Ligase is an enzyme that acts like molecular tape, linking or joining the new DNA bases together.

Lagging-strand replication is discontinuous, with short Okazaki fragments being formed that are later linked together.

Page 10: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS IN DNA REPLICATION.

Origins of replication Single origin for bacterial chromosome Many origins for eukaryotic chromosomes Replication forks

Prokaryotes have circular DNA, thus this is not a problem

Eukaryotic cells have special nucleotide sequences called telomeres at their ends Telomeres do not contain genes

  Telomeres consist of multiple repeats of one short nucleotide sequence

Example is TTAGGG for humans Telomeres protect genes from

being eroded by successive rounds of replication Telomeres also prevent cell from

recognizing the ends as damaged

Page 11: FTCE SAE  Biology Preparation Course

DISTINGUISH BETWEEN THE VARIOUS FUNCTIONS OF DNA AND RNA.

Central Dogma of Biology DNA>RNA>Protein

Page 12: FTCE SAE  Biology Preparation Course

DISTINGUISH BETWEEN THE VARIOUS FUNCTIONS OF DNA AND RNA.

mRNA (messenger RNA) - carries genetic information from the nucleus to the cytoplasm

tRNA (transfer RNA) - brings amino acids to ribosomes during protein synthesis

rRNA (ribosomal RNA) - guides the translation of mRNA into a protein

Page 13: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS OF PROTEIN SYNTHESIS.

. Transcription Before the synthesis of a protein begins, the corresponding RNA molecule is produced by RNA transcription.

One strand of the DNA double helix is used as a template by the RNA polymerase to synthesize a messenger RNA (mRNA).

This mRNA migrates from the nucleus to the cytoplasm.

During this step, mRNA goes through different types of maturation including one called splicing when the non-coding sequences are eliminated.

The coding mRNA sequence can be described as a unit of three nucleotides called a codon.

Page 14: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS OF PROTEIN SYNTHESIS.

Translation The ribosome binds to the mRNA at

the start codon (AUG) that is recognized only by the initiator tRNA.

The ribosome proceeds to the elongation phase of protein synthesis.

During this stage, complexes, composed of an amino acid linked to tRNA, sequentially bind to the appropriate codon in mRNA by forming complementary base pairs with the tRNA anticodon.

The ribosome moves from codon to codon along the mRNA. Amino acids are added one by one, translated into polypeptidic sequences dictated by DNA and represented by mRNA.

At the end, a release factor binds to the stop codon, terminating translation and releasing the complete polypeptide from the ribosome.

Page 15: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS OF PROTEIN SYNTHESIS..

The sequence of a eukaryotic protein-coding gene is typically not colinear with the translated mRNA; that is, the transcript of the gene is a molecule that must be processed to remove extra sequences (introns) before it is translated into the polypeptide.

Most eukaryotic protein-coding genes contain segments called introns, which break up the amino acid coding sequence into segments called exons.

The transcript of these genes is the pre-mRNA (precursor-mRNA).

The pre-mRNA is processed in the nucleus to remove the introns and splice the exons together into a translatable mRNA. That mRNA exits the nucleus and is translated in the cytoplasm.

Page 16: FTCE SAE  Biology Preparation Course

DISTINGUISH BETWEEN THE REGULATORY SYSTEMS FOR PROKARYOTIC AND EUKARYOTIC PROTEIN SYNTHESIS.

Prokaryotic Control Gene Expression by Operon

Lac Operon is inducible The lac operon is a DNA sequence

that governs the production of proteins and enzymes for transporting and metabolizing lactose in bacteria such as E. coli.

In the absence of lactose, the lac repressor substance binds to the operator (a part of the DNA sequence), inhibiting the production of three proteins.

Lactose, however, represses/inhibits the repressor, allowing the enzymes to be produced.

When the mRNA of the lac operon is transcribed, a polycistronic mRNA, three proteins will be produced by ribosomes: β-galactosidase, lactose permease and transacetylase.

Page 17: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS OF PROTEIN SYNTHESIS..

Prokaryotic Control Gene Expression by Operon

Tryp Operon is repressible trp operon is normally

transcribed When tryptophan is

present, it binds with the trp repressor, triggering an allosteric change

The trp repressor with bound tryptophan binds to the operator, shutting off transcription of the trp operon

·Tryptophan is a corepressor

Page 18: FTCE SAE  Biology Preparation Course

IDENTIFY AND SEQUENCE THE PRINCIPAL EVENTS OF PROTEIN SYNTHESIS..

Eukaryotic Control Chromatin Remodelling The

region of the chromosome must be opened up in order for eznymes and transcription factors to access the gene

Transcription Control  The most common type of genetic regulation

Turning on and off of mRNA formation

Post-Transcriptional Control Regulation of the processing of a pre-mRNA into a mature mRNA

Translational Control Regulation of the rate of Initiation

Post-Tranlational Control (protein activity control) Regulation of the modification of an immature or inactive protein to form an active protein

Page 19: FTCE SAE  Biology Preparation Course

EVALUATE THE APPROPRIATE APPLICATION OF DNA MANIPULATION TECHNIQUES (E.G., GENE SPLICING, RECOMBINANT DNA, GENE IDENTIFICATION, PCR TECHNIQUE).

Gene splicing is just what it sounds like: cutting the DNA of a gene to add base pairs. Chemicals called restriction enzymes act as the scissors to cut the DNA. Once it finds that sequence in a strand of DNA, it attacks it and splits the base pairs

apart, leaving single helix strands at the end of two double helixes. Scientists are then free to add any genetic sequences they wish into the broken chain

and, afterwards, the chain is repaired (as a longer chain with the added DNA) with another enzyme called ligase.

Hence, any form of genetic material can be spliced together; bacteria and chicken DNA can, and have been, combined

Recombinant DNA contains DNA from two different organisms.

Page 20: FTCE SAE  Biology Preparation Course

EVALUATE THE APPROPRIATE APPLICATION OF DNA MANIPULATION TECHNIQUES (E.G., GENE SPLICING, RECOMBINANT DNA, GENE IDENTIFICATION, PCR TECHNIQUE).

Recombinant DNA technology has extensive applications in developing pharmaceuticals.

The first drug created using recombinant DNA was human insulin.

To make the recombinant DNA, the insulin gene is cut from human DNA with restriction enzymes.

The DNA is then placed in a vector, such as a plasmid, and another enzyme, DNA ligase, seals the plasmid containing the insulin gene.

The plasmid is placed into another bacterial cell and this new cell produces multiple copies of the gene, called clones, when it divides.

The host bacterial cell also expresses the gene product, in this case insulin.

This technology is possible because the genetic code is universal. DNA functions in the same way, whether in a human cell or a bacterial cell.

Page 21: FTCE SAE  Biology Preparation Course

EVALUATE THE APPROPRIATE APPLICATION OF DNA MANIPULATION TECHNIQUES (E.G., GENE SPLICING, RECOMBINANT DNA, GENE IDENTIFICATION, PCR TECHNIQUE).

Southern blotting is a technique for detecting specific DNA fragments in a complex mixture. 

It has been applied to detect Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandem Repeat Polymorphism (VNTR).  The latter is the basis of DNA fingerprinting.

Polymorphism refers to the DNA sequence variation between individuals of a species. 

If the sequence variation occurs at the restriction sites, it could result in RFLP. 

The most well known example is the RFLP due to b globin gene mutation. 

Page 22: FTCE SAE  Biology Preparation Course

EVALUATE THE APPROPRIATE APPLICATION OF DNA MANIPULATION TECHNIQUES (E.G., GENE SPLICING, RECOMBINANT DNA, GENE IDENTIFICATION, PCR TECHNIQUE).

The purpose of a PCR (Polymerase Chain Reaction) is to make a huge number of copies of a gene. This is necessary to have enough starting template for sequencing.

Page 23: FTCE SAE  Biology Preparation Course

PREDICT THE EFFECTS OF ENVIRONMENTAL AND OTHER INFLUENCES ON GENE STRUCTURE AND EXPRESSION (E.G., VIRUSES, ONCOGENES, CARCINOGENIC AGENTS, MUTAGENIC AGENTS).

In the last few years, gene-therapy has focused the attention of the scientific community since it could be an efficient new way to cure several major human diseases such as cancer, AIDS, cystic fibrosis, anaemia or progeria.

The concept of gene therapy is the substitution in the cell nucleus of abnormal genes causing diseases by normal healthy DNA sequences.

The main challenge in gene therapy is the design of specific carriers, which allow efficient delivery of the healthy genes in the cell (transfection).

Such carriers should be able to transport DNA in the bloodstream, to cross efficiently cell membranes and to free the genetic material near the cell nucleus.

Typically, viral systems are the most effective carriers for gene delivery. Viral systems can selectively target cells and usually possess a very high transfection efficiency, leading to high gene expression rates. However, viral carriers can also be very toxic for the human body. Moreover, their isolation from biological sources and their processing are very expensive

Page 24: FTCE SAE  Biology Preparation Course

PREDICT THE EFFECTS OF ENVIRONMENTAL AND OTHER INFLUENCES ON GENE STRUCTURE AND EXPRESSION (E.G., VIRUSES, ONCOGENES, CARCINOGENIC AGENTS, MUTAGENIC AGENTS).

Cancer results from the breakdown of the controls that regulate cells.

These controls all originate from the genetic plans in a cell's DNA.

Therefore, a mistake or change in a cell's DNA code would cause problems with the cell's control system.

A mutation is a change in the normal DNA code. A mutation can be spontaneous or caused by outside factors. Mutations can have large effects on the cell or no effect at all.

A mutagen is a substance or agent that induces heritable change in cells or organisms.

A carcinogen is a substance that induces unregulated growth processes in cells or tissues of multicellular animals, leading to cancer.

Although mutagen and carcinogen are not synonymous terms, the ability of a substance to induce mutations and its ability to induce cancer are strongly correlated.

Mutagenesis refers to processes that result in genetic change, and carcinogenesis (the processes of tumor development) may result from mutagenic events

Page 25: FTCE SAE  Biology Preparation Course

PREDICT THE EFFECTS OF ENVIRONMENTAL AND OTHER INFLUENCES ON GENE STRUCTURE AND EXPRESSION (E.G., VIRUSES, ONCOGENES, CARCINOGENIC AGENTS, MUTAGENIC AGENTS).

Cancer genes are specific parts of DNA that when mutated, can lead to cancer. Cancer genes can be divided into two major categories: oncogenes and tumor suppressor genes. In normal cells, these two types of genes work together to regulate cell division.

Oncogenes are genes that usually produce positive signals that promote cell division. When mutated, these genes become permanently "turned on," causing cancer cells to continuously divide out of control. A defective oncogene is analogous to a car with the gas pedal stuck in the "on" position. It will move forward whether you push the pedal or not and can't be stopped.

Tumor suppressor genes are genes that usually produce negative signals that tell cells not to divide. When mutated, these genes become permanently "turned off," allowing cancer cells to divide even when they are not supposed to. A defective tumor suppressor gene is like a car with a broken brake system. You won't be able to stop the car when it is moving.

Page 26: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF MEIOSIS (E.G., GAMETOGENESIS IN MALE AND FEMALE VERTEBRATES; PLANT, ANIMAL AND FUNGI MEIOSIS) IN REPRESENTATIVE EXAMPLES FROM VARIOUS KINGDOMS.

•Meiosis reduces chromosome number from diploid to haploid: a closer look •Meiosis and sexual reproduction significantly contribute to genetic variation among offspring. •Meiosis includes steps that closely resemble corresponding steps in mitosis. •Like mitosis, meiosis is preceded by replication of the chromosomes. •Meiosis differs from mitosis in that this single replication is followed by two consecutive cell divisions: Meiosis I and Meiosis II. •These cell divisions produce four daughter cells instead of two as in mitosis. •The resulting daughter cells have half the number of chromosomes as the original cell; whereas, daughter cells of mitosis have the same number of chromosomes as the parent cell.

Page 27: FTCE SAE  Biology Preparation Course

Sources of Genetic Variation Independent Assortment

Anaphase I Homologues separate and are moved towards the poles by the spindle apparatus. Sister chromatids remain attached at their centromeres and move as a unit towards the same pole, while the homologue

moves towards the opposite pole. This differs from mitosis during which chromosomes line up individually on the metaphase plate (rather than in pairs) and

sister chromatids are moved apart towards opposite poles of the cell. Crossing Over

Prophase I Synapsis occurs. During this process, homologous chromosomes come together as pairs. .Since each chromosome has two chromatids, each homologous pair in synapsis appears as a complex of four chromatids

or a tetrad. In each tetrad, sister chromatids of the same chromosome are attached at their centromeres. Nonsister chromatids are linked by X-shaped chiasmata, sites where homologous strand exchange or crossing-over

occurs. Random Fertilization

Page 28: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF MEIOSIS (E.G., GAMETOGENESIS IN MALE AND FEMALE VERTEBRATES; PLANT, ANIMAL AND FUNGI MEIOSIS) IN REPRESENTATIVE EXAMPLES FROM VARIOUS KINGDOMS.•Animal: In animals, including humans, gametes are the only haploid cells. Meiosis occurs during gamete production. The resulting gametes undergo no further cell division before fertilization. •Fertilization produces a diploid zygote that divides by mitosis to produce a diploid multicellular animal. •Fungi and Some Protists: In many fungi and some protists, the only diploid stage is the zygote. Meiosis occurs immediately after the zygote forms. •Resulting haploid cells divide by mitosis to produce a haploid multicellular organism. •Gametes are produced by mitosis from the already haploid organism. •Plants and Some Algae: Plants and some species of algae alternate between multicellular haploid and diploid generations. This type of life cycle is called an alternation of generations. •The multicellular diploid stage is called a sporophyte, or spore-producing plant. Meiosis in this stage produces haploid cells called spores. •Haploid spores divide mitotically to generate a multicellular haploid stage called a gametophyte, or gamete-producing plant. •Haploid gametophytes produce gametes by mitosis. •Fertilization produces a diploid zygote which develops into the next sporophyte generation.

Page 29: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF MEIOSIS (E.G., GAMETOGENESIS IN MALE AND FEMALE VERTEBRATES; PLANT, ANIMAL AND FUNGI MEIOSIS) IN REPRESENTATIVE EXAMPLES FROM VARIOUS KINGDOMS.

Page 30: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF MEIOSIS (E.G., GAMETOGENESIS IN MALE AND FEMALE VERTEBRATES; PLANT, ANIMAL AND FUNGI MEIOSIS) IN REPRESENTATIVE EXAMPLES FROM VARIOUS KINGDOMS.

Meiosis occurs in the gametangia.•  Gametangium = an organ that produces gametes•  In animals, the gametangia are the ovaries in females which produce eggs and the the testes in males which produce sperm.

•Meiosis is part of gametogenesis, the formation of gametes. •Following meiosis, haploid cells undergo changes in their structure so as to form specialized reproductive cells called gametes. •Spermatogenesis (sperm-formation) occurs in the testes of males while oogenesis (egg-formation) occurs in the ovaries of females.

Page 31: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF MEIOSIS (E.G., GAMETOGENESIS IN MALE AND FEMALE VERTEBRATES; PLANT, ANIMAL AND FUNGI MEIOSIS) IN REPRESENTATIVE EXAMPLES FROM VARIOUS KINGDOMS.

•Moccurs in sporangia (organs that make spores), producing haploid spores.• A spore develops into a haploid stage called the gametophyte ("gamete-plant") which produces gametes.•  After fertilization, a zygote develops into a diploid stage called the sporophyte ("spore-plant") which produces spores.•  So there is an alternation of two multicellular stages: sporophyte (2n) and gametophyte (n).

Page 32: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF DIFFERENTIATE BETWEEN CLASSICAL LAWS OF INHERITANCE, THEIR RELATIONSHIP TO CHROMOSOMES, AND RELATED TERMINOLOGY

Mendel's first law, stating that allele pairs separate during gamete formation, and then randomly re-form pairs during the fusion of gametes at fertilization.

As long as they are unlinked

Page 33: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF DIFFERENTIATE BETWEEN CLASSICAL LAWS OF INHERITANCE, THEIR RELATIONSHIP TO CHROMOSOMES, AND RELATED TERMINOLOGY Trait - any characteristic that can be passed from parent to

offspring Heredity - passing of traits from parent to offspring Genetics - study of heredity Alleles - two forms of a gene (dominant & recessive) Dominant - stronger of two genes expressed in the hybrid;

represented by a capital letter (R) Recessive - gene that shows up less often in a cross; represented

by a lowercase letter (r) Genotype - gene combination for a trait (e.g. RR, Rr, rr) Phenotype - the physical feature resulting from a genotype (e.g.

tall, short) Homozygous genotype - gene combination involving 2 dominant or

2 recessive genes (e.g. RR or Rr); also called pure  Heterozygous genotype - gene combination of one dominant & one

recessive allele    (e.g. Rr); also called hybrid Monohybrid cross - cross involving a single trait Dihybrid cross - cross involving two traits Punnett Square - used to solve genetics problems

Page 34: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF DIFFERENTIATE BETWEEN CLASSICAL LAWS OF INHERITANCE, THEIR RELATIONSHIP TO CHROMOSOMES, AND RELATED TERMINOLOGY Mendel's first law, stating that

allele pairs separate during gamete formation, and then randomly re-form pairs during the fusion of gametes at fertilization.

As long as they are unlinked Mendel demonstrated that an

organism inherits an allele from each of its two parents — this is the law of segregation.

The phenotypes of mothers and fathers often appear to blend in their offspring, and consequently most students of heredity before Mendel thought that inheritance involved some sort of blending of genes.

Page 35: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF DIFFERENTIATE BETWEEN CLASSICAL LAWS OF INHERITANCE, THEIR RELATIONSHIP TO CHROMOSOMES, AND RELATED TERMINOLOGY Mendel's Second Law Also known as the principle

of independent assortment Mendel's Second Law holds

that genes are inherited independently of each other.

Mendelism is an atomistic theory of heredity.

Not only are there discrete genes that encode discrete proteins, but also the genes are preserved during development and passed on unaltered to the next generation.

Page 36: FTCE SAE  Biology Preparation Course

ANALYZE THE PROCESSES AND PRODUCTS OF DIFFERENTIATE BETWEEN CLASSICAL LAWS OF INHERITANCE, THEIR RELATIONSHIP TO CHROMOSOMES, AND RELATED TERMINOLOGY

Page 37: FTCE SAE  Biology Preparation Course

ANALYZE APPLICATIONS OF PROBABILITY AND CHI-SQUARE ANALYSIS IN GENETICS.

Page 38: FTCE SAE  Biology Preparation Course

ANALYZE APPLICATIONS OF PROBABILITY AND CHI-SQUARE ANALYSIS IN GENETICS. Goodness of fit tests •  You can use a goodness of

fit test (like the chi-square test) to find out how close results like those in the examples are to the expected outcomes.

•  This kind of analysis is used to test a hypothesis.

•  You can't prove the hypothesis is right or wrong.

•  You can only say how likely the hypothesis is to be correct.

•  You actually determine if the observed results are consistent with the expected results.

•  Based on the analysis, you accept or reject your hypothesis.

Page 39: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE). Sex linkage is the phenotypic

expression of an allele related to the chromosomal sex of the individual.

This mode of inheritance is in contrast to the inheritance of traits on autosomal chromosomes, where both sexes have the same probability of inheritance.

Since humans have many more genes on the X than the Y, there are many more X-linked traits than Y-linked traits.

In mammals, the female is the homozygous sex, with two X chromosomes (XX), while the male is heterozygous, with one X and one Y chromosome (XY). Genes on the X or Y chromosome are called sex linked genes.

In birds, the opposite is true: the male is the homozygous sex, having two Z chromosomes (ZZ), and the female (hen) is heterozygous, having one Z and one W chromosome (ZW).

Page 40: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Sex influenced: These traits are expressed to some degree in both sexes, but are differentially affected by sex hormones. Examples include amount of body hair, muscle mass, and male pattern balding.

Sex-limited inheritance is where an allele on an autosomal gene cannot be expressed because the individual is the wrong sex. For example, a gene governing breast size is only expressed in females, whereas a gene for beard growth is only expressed in males.

Both Auotsomal alleles

Page 41: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Incomplete Dominance

The heterozygous condition results in an intermediate (third) blended phenotype.

A capital letter is used to represent one allele and the same capital letter prime represents the other allele

Page 42: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE). You will not always have one

recessive and one dominant allelle; sometimes, there might be two or more that are c dominant.

Take the example of blood group, where A and B are dominant to O, and A and B are codominant. This means that if you have the genotype AO or BO then your blood type will be A or B, but having AB means you have both A and B blood group, and the only way to have blood group O is to have the genotype OO.

Page 43: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Epistasis: gene at one locus affects outcome at another locus

e.g., color of labrador retrievers

melanin production: B=more melanin

b=less melanin melanin deposition:

E=deposit melanin in fur e=don't deposit in fur

Page 44: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Peliotropy: one gene multiple effects

Page 45: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Polygenic traits are traits that are controlled by several different genes.

Usually these traits exist on a continuum of expression.

For example consider height; there are not just two types of height but instead normal height exists on a fairly large continum of about 12 inches

Page 46: FTCE SAE  Biology Preparation Course

ANALYZE VARIOUS PATTERNS OF INHERITANCE (E.G., SEX-LINKED, SEX-INFLUENCED, SEX-LIMITED, INCOMPLETE DOMINANCE, AUTOSOMAL LINKAGE, MULTIPLE ALLELES, POLYGENIC INHERITANCE).

Polygenic traits are traits that are controlled by several different genes.

Usually these traits exist on a continuum of expression.

For example consider height; there are not just two types of height but instead normal height exists on a fairly large continum of about 12 inches

Page 47: FTCE SAE  Biology Preparation Course

IDENTIFY THE CAUSES OF GENETIC DISORDERS (E.G., POINT MUTATION, NONDISJUNCTION, TRANSLOCATION, DELETION, INSERTION, INVERSION, DUPLICATION) point mutation, or single

base substitution, is a type of mutation that causes the replacement of a single base nucleotide with another nucleotide of the genetic material, DNA or RNA.

The term point mutation also includes insertions or deletions of a single base pair.

A point mutant is an individual that is affected by a point mutation.

Page 48: FTCE SAE  Biology Preparation Course

IDENTIFY THE CAUSES OF GENETIC DISORDERS (E.G., POINT MUTATION, NONDISJUNCTION, TRANSLOCATION, DELETION, INSERTION, INVERSION, DUPLICATION) A chromosome anomaly, abnormality

or aberration reflects an atypical number of chromosomes or a structural abnormality in one or more chromosomes.

A karyotype refers to a full set of chromosomes from an individual which can be compared to a "normal" karyotype for the species via genetic testing.

A chromosome anomaly may be detected or confirmed in this manner. Chromosome anomalies usually occur when there is an error in cell division following meiosis or mitosis.

There are many types of chromosome anomalies. They can be organized into two basic groups, numerical and structural anomalies.

Page 49: FTCE SAE  Biology Preparation Course

IDENTIFY THE CAUSES OF GENETIC DISORDERS (E.G., POINT MUTATION, NONDISJUNCTION, TRANSLOCATION, DELETION, INSERTION, INVERSION, DUPLICATION) Nondisjunction ("not coming apart") is the

failure of chromosome pairs to separate properly during meiosis stage 1 or stage 2.

This could arise from a failure of homologous chromosomes to separate in meiosis I, or the failure of sister chromatids to separate during meiosis II or mitosis.

The result of this error is a cell with an imbalance of chromosomes. Such a cell is said to be aneuploid.

Loss of a single chromosome (2n-1), in which the daughter cell(s) with the defect will have one chromosome missing from one of its pairs, is referred to as a monosomy.

Gaining a single chromosome, in which the daughter cell(s) with the defect will have one chromosome in addition to its pairs is referred to as a trisomy.

Page 50: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECT OF A MUTATION IN A DNA SEQUENCE ON THE PRODUCTS OF PROTEIN SYNTHESIS

Deletion and insertion mutations also have distinct effects on the coding capabilities of genes (Figure 14.12).

If the number of deleted or inserted nucleotides is three or a multiple of three then one or more codons are removed or added, the resulting loss or gain of amino acids having varying effects on the function of the encoded protein.

Deletions or insertions of this type are often inconsequential but will have an impact if, for example, amino acids involved in an enzyme's active site are lost, or if an insertion disrupts an important secondary structure in the protein.

On the other hand, if the number of deleted or inserted nucleotides is not three or a multiple of three then a frameshift results, all of the codons downstream of the mutation being taken from a different reading frame from that used in the unmutated gene.

This usually has a significant effect on the protein function, because a greater or lesser part of the mutated polypeptide has a completely different sequence to the normal polypeptide.

Page 51: FTCE SAE  Biology Preparation Course

BREAK TIME!!!

Page 52: FTCE SAE  Biology Preparation Course

6. KNOWLEDGE OF THE INTERACTION OF CELL STRUCTURE AND FUNCTION 10 %1. Distinguish the structure and function of viruses and

prokaryotic organisms2. Identify the effects of viruses (e.g., HIV, influenza, measles,

TMV, feline leukemia, genital warts, some human cancers) on organisms.

3. Relate the structures and functions (e.g. morphology, motility, reproduction and growth, metabolic diversity) of prokaryotic organisms to their behavior and identification.

4. Differentiate between the major types of bacterial genetic recombination (i.e., transduction, transformation, and conjugation).

5. Relate microbial processes and products that are helpful or harmful to human beings and their use in biotechnology

Page 53: FTCE SAE  Biology Preparation Course

DISTINGUISH THE STRUCTURE AND FUNCTION OF VIRUSES AND PROKARYOTIC ORGANISMS

Page 54: FTCE SAE  Biology Preparation Course

DISTINGUISH THE STRUCTURE AND FUNCTION OF VIRUSES AND PROKARYOTIC ORGANISMS

Page 55: FTCE SAE  Biology Preparation Course

DISTINGUISH THE STRUCTURE AND FUNCTION OF VIRUSES AND PROKARYOTIC ORGANISMS

Page 56: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS Human immunodeficiency virus (HIV) is a

lentivirus (a member of the retrovirus family) that causes acquired immunodeficiency syndrome (AIDS),[1][2] a condition in humans in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Infection with HIV occurs by the transfer of blood, semen, vaginal fluid, pre-ejaculate, or breast milk. Within these bodily fluids, HIV is present as both free virus particles and virus within infected immune cells. The four major routes of transmission are unsafe sex, contaminated needles, breast milk, and transmission from an infected mother to her baby at birth (perinatal transmission). Screening of blood products for HIV has largely eliminated transmission through blood transfusions or infected blood products in the developed world

Page 57: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS Measles, also known as

morbilli, is an infection of the respiratory system caused by a virus, specifically a paramyxovirus of the genus Morbillivirus. Morbilliviruses, like other paramyxoviruses, are enveloped, single-stranded, negative-sense RNA viruses. Symptoms include fever, cough, runny nose, red eyes and a generalized, maculopapular, erythematous rash.

Page 58: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS Tobacco mosaic virus (TMV) is a

positive-sense single stranded RNA virus that infects plants, especially tobacco and other members of the family Solanaceae. The infection causes characteristic patterns (mottling and discoloration) on the leaves (hence the name). TMV was the first virus to be discovered. Although it was known from the late 19th century that an infectious disease was damaging tobacco crops, it was not until 1930 that the infectious agent was determined to be a virus.

Page 59: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS Feline leukemia virus

(FeLV) is a retrovirus that infects cats. FeLV can be transmitted between infected cats when the transfer of saliva or nasal secretions is involved. If not defeated by the animal’s immune system, the virus can be lethal. The disease caused by this virus is a form of cancer of the blood cells called lymphocytes (a leukemia).

Page 60: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS Genital warts (or Condylomata

acuminata, venereal warts, anal warts and anogenital warts) is a highly contagious sexually transmitted disease caused by some sub-types of human papillomavirus (HPV). It is spread through direct skin-to-skin contact during oral, genital, or anal sex with an infected partner. Warts are the most easily recognized symptom of genital

Those infected can still transmit the virus. Other types of HPV also cause cervical cancer and probably most anal cancers, however it is important to underline that the types of HPV that cause the overwhelming majority of genital warts are not the same as those that can potentially increase the risk of genital or anal cancer

Page 61: FTCE SAE  Biology Preparation Course

IDENTIFY THE EFFECTS OF VIRUSES (E.G., HIV, INFLUENZA, MEASLES, TMV, FELINE LEUKEMIA, GENITAL WARTS, SOME HUMAN CANCERS) ON ORGANISMS

Page 62: FTCE SAE  Biology Preparation Course

RELATE THE STRUCTURES AND FUNCTIONS (E.G. MORPHOLOGY, MOTILITY, REPRODUCTION AND GROWTH, METABOLIC DIVERSITY) OF PROKARYOTIC ORGANISMS TO THEIRBEHAVIOR AND IDENTIFICATION

Comparison of the Gram positive and Gram negative bacterial cell walls. A, a Gram positive bacterium has a thick peptidoglycan layer that contains teichoic and lipoteichoic acids. B, a Gram negative bacterium has a thin peptidoglycan layer and an outer membrane that contains lipopolysaccharide, phospholipids, and proteins. The periplasmic space between the cytoplasmic and outer membranes contains transport, degradative, and cell wasll synthetic proteins. The outer membrane is joined to the cytoplasmic membrane at adhesion points and is attached to the peptidoglycan by lipoprotein links.

Page 63: FTCE SAE  Biology Preparation Course

DIFFERENTIATE BETWEEN THE MAJOR TYPES OF BACTERIAL GENETIC RECOMBINATION(I.E., TRANSDUCTION, TRANSFORMATION, AND CONJUGATION)

Page 64: FTCE SAE  Biology Preparation Course

DIFFERENTIATE BETWEEN THE MAJOR TYPES OF BACTERIAL GENETIC RECOMBINATION (I.E., TRANSDUCTION, TRANSFORMATION, AND CONJUGATION)