Front Poster 1 - Perimeter Institute · Stephen Hawking (born 1942) is the world’s most famous...

2
epler By Prateek Lala, MD. Unauthorized reproduction of this poster is prohibited.

Transcript of Front Poster 1 - Perimeter Institute · Stephen Hawking (born 1942) is the world’s most famous...

Page 1: Front Poster 1 - Perimeter Institute · Stephen Hawking (born 1942) is the world’s most famous living physicist and has done wide-ranging work in cosmology. Hawking radiation –

epler

By P

rate

ek L

ala,

MD

. Una

utho

rized

repr

oduc

tion

of th

is p

oste

r is

proh

ibite

d.

C

M

Y

CM

MY

CY

CMY

K

Front Poster 1.pdf 1 13-11-07 3:16 PM

Page 2: Front Poster 1 - Perimeter Institute · Stephen Hawking (born 1942) is the world’s most famous living physicist and has done wide-ranging work in cosmology. Hawking radiation –

Anaximander (c. 610-546 BCE) is widely regarded as the world’s first physicist – the first to record his

belief that nature followed fixed laws. He conducted the earliest recorded experiment, and introduced the

sundial and other instruments.

Aryabhatta (476-550) was a pioneer of mathematics and astronomy in India. He is believed to have devised the concept of zero and worked on

the approximation of pi.

René Descartes (1596-1650) was a broad thinker who developed (among many other things) Cartesian

(or analytic) geometry. If you’ve ever graphed equations on a plane with an x and y axis, you can

thank Descartes.

Leonhard Euler (1707-1783), sometimes called “the Galileo of mathematical physics,” did

ground-breaking work across many fields. He discovered Euler’s number, e, the second most

important constant in physics, after pi.

Michael Faraday (1791-1867) proposed the idea of electromagnetic fields extending through space –

at the time a radical notion – after conducting research into the relationships between

electricity and magnetism.

Max Planck (1858-1947) is best remembered for his solution to the problem of black-body radiation: he showed that the theory fit the data if light could only come in packets of certain sizes – no half-packets

allowed. It was the first step on the road to quantum mechanics. The size of those packets, or “quanta,”

are now calculated using Planck’s constant.

Albert Einstein (1879-1955) is synonymous with scientific genius, thanks largely to his general theory

of relativity, one of the pillars of modern physics (alongside quantum mechanics).

Louis de Broglie (1892-1987) was the first to suggest that all matter has wave properties. This

concept is known as wave-particle duality, or the de Broglie hypothesis, and became central to quantum

mechanics. De Broglie won a Nobel Prize.

Richard Feynman (1918-1988) was a larger-than-life figure who made ground-breaking contributions to many branches of physics. He’s enshrined in physics via Feynman diagrams, a

pictorial system for figuring out what happens when particles interact. Feynman painted them on his van.

Peter Higgs (born 1929) was one of several physicists to propose that elementary particles acquire

mass by interacting with a new kind of field. After decades of search, the Large Hadron Collider finally

found the Higgs boson in 2013, proving the existence of the Higgs field.

Werner Heisenberg (1901-1976) is best remembered for the uncertainty principle in

quantum mechanics, which says that there’s a fundamental limit to how much we can know

about a subatomic particle.

Pythagoras (c. 570-495 BCE) discovered the Pythagorean Theorem: that a square laid along the long side of a triangle covers the same area as the

two squares laid along the two shorter sides.

Blaise Pascal (1623-1662) was a polymath who advanced geometry and probability theory, built the first calculating machines, and invented roulette. His

experiments with fluids in open and sealed tubes proved that a vacuum was possible – an idea the

scientific establishment had always dismissed.

Joseph Fourier (1768-1830) was a pioneer in theories of heat and vibration. The technique he

invented for this work – representing complex waves by adding together simpler waves – is now used

everywhere in science and engineering.

William Hamilton (1805-1865) reformulated Newtonian mechanics into what is now known as Hamiltonian mechanics. In doing so, he wrote the mathematical language in which modern physics,

especially quantum theory, is expressed.

William Henry Bragg (1862-1942) and William Lawrence Bragg (1890-1971) were the father-son

team behind Bragg’s law, which describes how X-rays diffract inside crystals. This discovery launched the

field of X-ray crystallography.

Emmy Noether (1882-1935) is remembered for Noether’s theorem, which shows the precise mathematical relationship between symmetries in the laws of nature and conserved quantities. For example, the fact that the laws of nature don’t change with time (time symmetry) implies that energy doesn’t come from nowhere (energy conservation).

Satyendra Nath Bose (1894-1974) is remembered for Bose-Einstein statistics – which explain, among

other things, how lasers work. He is the namesake of the “boson,” a class of particles that obey these

statistical laws.

Rosalind Franklin (1920-1958) was a biophysicist who used X-ray diffraction data to determine the structures of complex minerals and living tissues,

including – famously – DNA.

Roger Penrose (born 1931) is a mathematical physicist. His Penrose tilings are an entirely new

way to tile – that is, to cover a surface with regular shapes – and the first tilings to exhibit five-fold

rotational symmetry.

Paul Dirac (1902-1984) wrote the first general theory of quantum mechanics and discovered the

relativistic equation for the electron, which now bears his name. The remarkable notion of antimatter stems from this equation – which led Dirac to predict the

existence of positively charged anti-electrons (positrons) years before they were found.

Euclid (c. 325-265 BCE) built up a complete description of space from a handful of axioms, such as “two parallel lines never cross.” He’s remembered as the “father of geometry,” and the particular kind of space he described, where parallel lines never cross,

is now called “Euclidian space.”

Leonardo Fibonacci (1170-1250) is the namesake of Fibonacci’s sequence, a series of integers closely connected with ideas such as the golden ratio and the golden spiral. The Fibonacci numbers are still used to describe everything from computer search

techniques to uncurling ferns.

Isaac Newton (1642-1727) is one of the most famous scientists who ever lived. He invented

calculus (see Leibniz), formulated the laws of motion, and proposed the new idea of universal gravitation –

he said it occurred to him when watching an apple fall from a tree.

Thomas Young (1773-1829) pioneered the “double-slit” experiment: shining a light through two narrow slits, he produced a pattern akin to the one

produced by two overlapping water waves. This demonstration of the wave nature of light later

became central to quantum mechanics.

James Clerk Maxwell (1831-1879) formulated the equations that describe electricity, magnetism, and

optics as manifestations of the same phenomenon – the electromagnetic field. He’s also the namesake of Maxwell’s demon, a thought experiment in which a

hypothetical demon violates the Second Law of Thermodynamics.

Marie Skłodowska-Curie (1867-1934) developed the theory of radioactivity (a term that she coined),

learned to isolate radioactive isotopes, and discovered two new elements, radium and polonium. She also won two Nobel Prizes in science, the only

person ever to do so.

Niels Bohr (1885-1962) did foundational work in developing subatomic physics and quantum

mechanics. His Bohr model of the atom was the first to place a large atomic nucleus at the centre

and the small electrons in orbit.

Wolfgang Pauli (1900-1958) discovered the exclusion principle, or Pauli principle, which says that

no two identical fermions can occupy the same quantum state at the same time. If there are two

electrons in the same atomic shell, for instance, one must be spin up and the other down.

Ralph Alpher (1921-2007), Hans Bethe (1906-2005), and George Gamow (1904-1968) are the supposed co-authors of a foundational paper on the big bang

(though Bethe’s name was only added in jest in order to create an author list alluding to the Greek letters α, β,

and γ: alpha, beta, gamma).

Stephen Hawking (born 1942) is the world’s most famous living physicist and has done wide-ranging work in cosmology. Hawking

radiation – the radiation thought to be emitted by black holes – is named after him.

Maria Goeppert-Mayer (1906-1972) developed a mathematical model for the structure of nuclear

shells, work which won her a Nobel Prize.

Archimedes (c. 287-212 BCE) was an early scientist and engineer, maybe one of the most brilliant mathematicians of all time. He designed a number of innovative machines

and discovered the principle of displacement: that the weight of an object floating in water is equal to the weight

of the water it shoves aside.

Galileo Galilei (1564-1642) was the first person to turn a telescope on the moon, the planets, and

the stars. His marriage of observation to mathematics and theory earned him the title

“the father of modern science.”

Gottfried Leibniz (1646-1716) invented calculus, though Isaac Newton independently developed

calculus and is more widely credited as the field’s founder. They were contemporaries, and feuded over

the matter. Leibniz’s last laugh: it’s his notation we use today.

Carl Friedrich Gauss (1777-1855), called “the prince of mathematicians” by his contemporaries,

is now best remembered for his “normal” (or Gaussian) distributions, which plot how likely

things are to vary from average.

Wilhelm Röntgen (1845-1932) was the first person to produce and detect X-rays. The first X-ray image in history was of his wife’s hand, with a heavy ring about her top knuckle. He was awarded the very first Nobel

Prize in Physics.

Ernest Rutherford (1871-1937) theorized that atoms have their charge concentrated in a very small

nucleus. By bombarding atoms with high energy particles and mapping how some bounced back, he

discovered (and named) the proton. He’s remembered as the “father of nuclear physics.”

Erwin Schrödinger (1887-1961) famously proposed a thought experiment, now known as Schrödinger’s

Cat, to point out the apparent paradox of the Copenhagen interpretation of quantum mechanics: if a particle can really be in two states at once, what of

a cat whose fate depends on the particle’s state?

Cecilia Payne-Gaposchkin (1900-1979) was the first person to understand the chemical composition of stars. In particular, she concluded that hydrogen and helium are the most abundant elements in stars

and, therefore, in the universe.

John Stewart Bell (1928-1990) proposed a statistical test, known as Bell’s inequality, for distinguishing between a

quantum world (a world with true unknowable, indeterminate properties) and a classical world (a world where what looks like indeterminacy is just stuff that we

don’t fully understand).

Jocelyn Bell Burnell (born 1943), as a postgraduate student, was key to the discovery of radio pulsars. Her work earned her graduate supervisor a Nobel Prize.

Kurt Gödel (1906-1978), a mathematician and logician, is remembered for his two incompleteness theorems, which say (among other things) that there will always be truths about numbers that no single

mathematical system can prove.

Hypatia (c. 360-415) was the headmaster of the Platonist school at Alexandria, where she taught mathematics and astronomy. She invented the

astrolabe and perhaps the hydrometer, and wrote several major books on geometry.

Johannes Kepler (1571-1630) was a mathematician and astronomer, best known for

discovering three mathematical rules that describe the orbits of planets. The second law states that a line joining a planet and the Sun sweeps out equal

areas during equal intervals of time.

Daniel Bernoulli (1700-1782) is best known for his work in fluid mechanics, in particular for his discovery

that pressure decreases as flow speed increases – a fact that today keeps carburetors running and

fixed-wing planes in the air.

Georg Ohm (1789-1854), one of the first to experiment with the newly invented battery, discovered that the voltage applied across a conductor is directly

proportional to the resulting current. Today, this is known as Ohm’s law.

Nikola Tesla (1856-1943) was a physicist, electrical engineer, and possible mad scientist who designed the modern AC electrical supply system – and also

investigated how to send electricity wirelessly through the air through the use of Tesla coils that produced

giant lightning bolts.

Otto Hahn (1879-1968) and Lise Meitner (1878-1968) added extra neutrons to atomic nuclei

in an attempt to create heavier elements. When lighter elements began to turn up instead, Meitner

realized they had split the atom.

Edwin Hubble (1889-1953) was one of the most important observational astronomers of the 20th

century. By measuring the red shift of distant objects, he showed that the universe was expanding. The

Hubble Space Telescope is named for him.

Enrico Fermi (1901-1954) is best known for his work leading to the development of Chicago Pile 1, the

world’s first nuclear reactor. He used different materials to control the release of neutrons, creating

the first self-sustaining artificial chain reaction.

Vera Rubin (born 1928) realized, while studying galaxy rotation rates, that spiral galaxies were

spinning faster than they should be, given the amount of visible matter in them. This discrepancy is one of

the key pieces of evidence for dark matter.

Chien-Shiung Wu (1912-1997), known as “the first lady of physics,” designed and conducted the Wu

Experiment, which proved that parity is not a conserved quantity – that is, that the universe

can tell its right hand from its left.

epler

Abū Alī al-Hasan ibn al-Hasan ibn al-Haytham

(965-1040) was a mathematician, astronomer, and philosopher, sometimes known in Europe as simply

“the physicist.” He invented the camera obscura and is the father of modern optics.

C

M

Y

CM

MY

CY

CMY

K

Back Poster.pdf 1 13-11-06 1:20 PM